GB2139302A - Brake system incorporating a stepping motor - Google Patents

Brake system incorporating a stepping motor Download PDF

Info

Publication number
GB2139302A
GB2139302A GB08411283A GB8411283A GB2139302A GB 2139302 A GB2139302 A GB 2139302A GB 08411283 A GB08411283 A GB 08411283A GB 8411283 A GB8411283 A GB 8411283A GB 2139302 A GB2139302 A GB 2139302A
Authority
GB
United Kingdom
Prior art keywords
brake system
valve
pneumatic
motor
stepping motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08411283A
Other versions
GB8411283D0 (en
GB2139302B (en
Inventor
Jack Washbourn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility Ltd
Original Assignee
Westinghouse Brake and Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB838312025A external-priority patent/GB8312025D0/en
Application filed by Westinghouse Brake and Signal Co Ltd filed Critical Westinghouse Brake and Signal Co Ltd
Priority to GB08411283A priority Critical patent/GB2139302B/en
Publication of GB8411283D0 publication Critical patent/GB8411283D0/en
Publication of GB2139302A publication Critical patent/GB2139302A/en
Application granted granted Critical
Publication of GB2139302B publication Critical patent/GB2139302B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • B60T8/1893Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution especially adapted for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

An electro-pneumatic brake system in which an electric brake demand signal controls the energisation of a stepping motor B. The shaft of the motor is threadedly engaged with a captive nut which bears against an abutment carried by a brake controlling valve, the opening of which determines brake actuating pressure downstream of the valve. Rotation of the motor therefore directly controls the brake pressure by movement of the valve. <IMAGE>

Description

SPECIFICATION Brake system incorporating a stepping motor This invention relates to an electro-pneumatic brake system.
Our earlier published U.K. patent specification number 919519 shows an electrically controlled pneumatic brake system employing a magnet which uses an armature to clock round a ratchet wheel. The ratchet wheel drives a captive nut so as to move a valve actuator in the required direction to open or close the valve.
The problem with such a simple device is that the speed of response is limited. It is only capable of responding at speeds corresponding to telephone dialling speeds. While this may be satisfactory for freight car braking it is not good enough for a transit system using electric traction such as an underground train system or overground tram system where much more flexibility and control, and faster action, is needed.
According to the invention there is provided an electro-pneumatic brake system in which an output pneumatic pressure is determined by the opening of a pneumatic valve, subject to a source of pneumatic pressure, in accordance with an electrical signal connected to energise a stepping motor having an output shaft, stepwise rotatable to control the opening of the pneumatic valve.
The invention also comprises a method of converting electric signals to pneumatic signals in an electric magnetic brake system, including applying the electric signals to a stepping electric motor, employing the stepped rotational output of the electric motor to open a valve in a pneumatic circuit whereby the pneumatic pressure downstream of the valve is proportional to the number of steps effected by the stepping motor.
A stepping motor, which uses a rotor positioned by magnetic alignment of iron teeth on the stationary and rotating parts of the motor is fast, flexible, and very reiiable because it has no brushes and therefore a long life. A variable reluctance stepping motor or a hybrid stepping motor may be used for example.
Such a stepping motor is capable of actuating at very high rates e.g. 10,000 steps per second.
It is ideal to be operated by a microprocessor which can be so designed and programmed as to blend all the different braking arrangement and to take account of all the variables such as load. It can blend the normal braking with emergency braking and with a load sensitive braking etc.
Preferably the stepping motor either rotates a shaft on which there is a nut which cannot rotate but moves axially along the shaft so as to initiate operation of the pneumatic device.
The nut may, for example, move an inlet valve seat of the pneumatic device so as to allow flow of air producing an output proportional to the movement of the seat and therefore proportional to the number of steps made by the stepping motor. Alternatively the nut may move an inlet valve relatively to a fixed seat so as to achieve the same effect.
In one arrangement the nut abuts one end of a valve cage of a pilot valve so that the cage moves axially with the nut, the cage being preferably held against the nut by supply pressure acting on an annular area on the cage. The pilot valve may in turn operate a relay valve.
In addition into the same pneumatic valve that operates the main braking system, there may be incorporated: a) the emergency braking control, and b) the load cut-off These two items a and b could be used with a standard motor with feed back or an ordinary DC motor such as a synchronous motor with an optical decoder. It is not essential that they should be used with a stepping motor.
The invention will now be described, by way of example, with reference to the embodiment illustrated in the accompanying drawings, in which: Figure 1 is a block diagram illustrating the use of a stepping motor in an electro-pneumatic braking system in accordance with the present invention; and Figure 2 is a section through a stepping motor controlled pneumatic valve.
In Fig. 1 is shown a blending unit A which receives and blends electrical signals representing brake demand, train load and dynamic braking. In this unit an output is produced representing brake demand less available dynamic braking but modified in accordance with train loading. The signal therefore indicates the required degree of pneumatic braking. This signal is fed in the form of a series of pulses or digital signals, to a stepping motor drive unit B which produces a rotational output proportional to the number of steps and therefore to the required pneumatic braking.
A stepping motor B (Fig. 1) drives a nut 2 in the stepping motor E.P. unit shown in detail in Fig. 2. The nut 2 cannot rotate and, therefore, moves axially when the motor shaft rotates. The threaded part of the shaft may be formed integrally with the output shaft of the stepping motor.
The nut 2 abuts the lower end of the valve cage 3 of a pilot valve so that the cage moves axially with the nut. The cage is always held against the nut by supply pressure acting downwardly on the annular area 3A on the cage 3.
When rotation of the motor B causes the nut 2 and cage 3 to move upwards the pilot inlet valve 4 is opened to connect supply air to the control chamber 5 of the relay valve and also to the chamber 6 below the pilot valve diaphragm, via a registration choke 7.
Pressure builds up on the pilot valve diaphragm until it overcomes the downward force of the control spring 8 where-upon the diaphragm and the exhaust valve 9 move up permitting the inlet valve 4 to close. Thus the pressure built up in the control chamber of the relay is proportional to the movement of the valve cage and hence the degree of rotation of the stepping motor.
The relay valve is of conventional type of large capacity so that the effective way through should have a diameter 3/4 inch (approx 2 centimetres).
The application can be increased by increasing the degree of rotation of the motor and released by reversing the rotation which causes the pilot valve cage to move down, thus permitting the spring 10 to open the exhaust valve 9 and release air from the relay valve control chamber and also the pilot valve diaphragm chamber until the pressure balances the spring load, where-upon the exhaust valve will reclose.
Normally magnet valve 1 2 is energised to connect supply pressure to the upper side of piston 1 3 which moves it down against spring 14 rendering the spring ineffective. If the magnet valve is de-energised, the chamber above the piston 1 3 is vented and spring becomes effective to move up the emergency piston 1 3 the top end of which engages a ring 1 3A in a groove in the wall of the valve cage 3 thus moving valve cage 3 upwards and causing the brakes to be applied. This would occur for emergency.
However, the amount the spring can move up the valve cage is determined by the position of load cut off stop member 1 5 the position of which in the taper slot 1 SA in the valve cage, is determined by the load dependent pressure P acting on the annulus 1 6A on piston 16 against spring 1 7. This stop prevents overbraking should there be any electric cal failure. The stop member 1 5 is tapered towards its distal end and is carried by piston 1 6 for transverse movement relative to the slot 1 SA in the cage 3. Thus, the position of the piston 16, and hence the member 15, as determined by the load pressure signal P will limit the movement of the axially movable cage 3.
For slide control the stepping motor rapidly moves the cage to the release position under the control of slide control circuitry (not shown).
If jerk limit is required the feed to the relay control chamber can be choked - this choke being by-passed by a spool valve on the emergency piston 1 3.
By incorporating a magnet valve at point X (Fig. 2) between the pilot valve output and the registration on the diaphragm 18 of the brake cylinder valve 20, it also incorporates slide control. When this occurs the magnet valve is energised to disconnect the pilot valve output from the relay valve registration which is connected to atmosphere. Brake cylinder pressure causes the diaphragm to move up fully, causing the exhaust valve to vent the brake cylinder. If adaptive slide is required the stepping motor, at the same time, sets the pilot valve to give the required adaptive pressure when the slide magnet is de-energised.

Claims (9)

1. An electro-pneumatic brake system in which an output pneumatic pressure is determined by the opening of a pneumatic valve, subject to a source of pneumatic pressure, in accordance with an electrical signal connected to energise a stepping motor having an output shaft, stepwise rotatable to control the opening of the pneumatic valve.
2. A brake system as claimed in Claim 1 wherein there are two relatively movable members, a first member movable in an axial direction upon rotation of the second member, and the first member is connected to the valve and the second member is connected to the motor.
3. A brake system as claimed in Claim 2 wherein the two relatively movable members comprise a threadedly engaged nut and shaft.
4. A brake system as claimed in Claim 3 wherein the threaded shaft is integral with the output shaft of the motor and the nut is constrained for relative axial movement.
5. A brake systen as claimed in any preceding claim wherein the value has an abutment against which the axially movable member is urged to effect valve movement.
6. A brake system as claimed in any claim including a stop arranged to iimit movement of the axially movable member and the position of the stop is determined by a load dependent signal.
7. A brake system as claimed in Claim 6 wherein the stop comprises a further member engaged with and movable in a transverse direction with respect to a slot in the axially movable member.
8. A brake system as claimed in Claim 7 wherein the further member comprises a tapered member carried by a piston movable said transverse direction, the piston of which is determined by a load dependent signal.
9. An electro-pneumatic brake system substantially as hereinbefore described with reference to the accompanying drawings.
GB08411283A 1983-05-03 1984-05-02 Brake system incorporating a stepping motor Expired GB2139302B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08411283A GB2139302B (en) 1983-05-03 1984-05-02 Brake system incorporating a stepping motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838312025A GB8312025D0 (en) 1983-05-03 1983-05-03 Brake system
GB08411283A GB2139302B (en) 1983-05-03 1984-05-02 Brake system incorporating a stepping motor

Publications (3)

Publication Number Publication Date
GB8411283D0 GB8411283D0 (en) 1984-06-06
GB2139302A true GB2139302A (en) 1984-11-07
GB2139302B GB2139302B (en) 1986-11-12

Family

ID=26286016

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08411283A Expired GB2139302B (en) 1983-05-03 1984-05-02 Brake system incorporating a stepping motor

Country Status (1)

Country Link
GB (1) GB2139302B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215416A (en) * 1988-01-07 1989-09-20 Honda Motor Co Ltd Method and apparatus for controlling braking hydraulic pressure for a vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215416A (en) * 1988-01-07 1989-09-20 Honda Motor Co Ltd Method and apparatus for controlling braking hydraulic pressure for a vehicle
US4940291A (en) * 1988-01-07 1990-07-10 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for controlling hydraulic braking pressure for a vehicle
US5042886A (en) * 1988-01-07 1991-08-27 Honda Giken Kogyo Kabushiki Kaisha Method for controlling hydraulic braking pressure for a vehicle
GB2215416B (en) * 1988-01-07 1992-07-29 Honda Motor Co Ltd Method of controlling hydraulic braking pressure for a vehicle

Also Published As

Publication number Publication date
GB8411283D0 (en) 1984-06-06
GB2139302B (en) 1986-11-12

Similar Documents

Publication Publication Date Title
US4418963A (en) Control system for a vehicular braking system incorporating a hydrodynamic brake and a friction brake
US4572586A (en) Brake system incorporating a stepping motor
US5147114A (en) Electrically controllable pressure medium brake for vehicles
GB2139302A (en) Brake system incorporating a stepping motor
US4922121A (en) Modulator assembly
GB1323609A (en) Controlling dynamic and fluid pressure brakes
GB1506005A (en) Brake system for a light rail vehicle
US2256287A (en) Brake control means
US715291A (en) System of control for electrically-propelled vehicles.
US4021079A (en) Blending valve for electro-pneumatic brakes
JPS6251182B2 (en)
US856010A (en) Electropneumatic braking device for railway-cars.
US2656222A (en) Combined pneumatic and dynamic brake apparatus
US1713228A (en) Control of braking effect
US2012747A (en) Vehicle braking system
US2208737A (en) Brake control means
US5111916A (en) Apparatus for engaging and disengaging a permanent-magnet slipper brake
US2096480A (en) Electropneumatic brake
USRE12710E (en) Reissued oct
US2068338A (en) Brake control system
US1260484A (en) Automatic train-speed-control device.
US814669A (en) Elevator-brake.
SU643412A1 (en) Mine hoist drive control arrangement
JPH0690503A (en) Braking device for electric car
US1546900A (en) Control system for electric motors

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee