GB2135810A - Ejection mechanism in tape player - Google Patents

Ejection mechanism in tape player Download PDF

Info

Publication number
GB2135810A
GB2135810A GB08334634A GB8334634A GB2135810A GB 2135810 A GB2135810 A GB 2135810A GB 08334634 A GB08334634 A GB 08334634A GB 8334634 A GB8334634 A GB 8334634A GB 2135810 A GB2135810 A GB 2135810A
Authority
GB
United Kingdom
Prior art keywords
ejection
link
ejection lever
pack
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08334634A
Other versions
GB2135810B (en
GB8334634D0 (en
Inventor
Kazuki Takai
Toshihiro Ikahata
Wataru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP57228292A external-priority patent/JPS59127256A/en
Priority claimed from JP57228293A external-priority patent/JPS59127257A/en
Priority claimed from JP57228294A external-priority patent/JPS59127258A/en
Priority claimed from JP58000458A external-priority patent/JPS59127259A/en
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Publication of GB8334634D0 publication Critical patent/GB8334634D0/en
Publication of GB2135810A publication Critical patent/GB2135810A/en
Application granted granted Critical
Publication of GB2135810B publication Critical patent/GB2135810B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/675Guiding containers, e.g. loading, ejecting cassettes
    • G11B15/67544Guiding containers, e.g. loading, ejecting cassettes with movement of the cassette parallel to its main side and subsequent movement perpendicular thereto, i.e. front loading
    • G11B15/67555Guiding containers, e.g. loading, ejecting cassettes with movement of the cassette parallel to its main side and subsequent movement perpendicular thereto, i.e. front loading the second movement only being made by the cassette holder

Abstract

An ejection mechanism in a tape player includes an ejection lever 23 disposed along a lateral wall of a frame 20 of the tape player for frontward and rearward movement and biased forward by first revival spring 11, and an operation member 34 disposed along the ejection lever for parallel movement with the ejection lever and biased forward by second spring 36. The ejection mechanism of the invention is characterized in that: the ejection lever is formed with an engagement pin 40; the operation member is formed with an engagement hole 38 receiving the engagement pin of the ejection lever; the engagement holes includes a step-up portion and a step-down portion; and the step-down portion is longer than the diameter of the engagement pin. <IMAGE>

Description

SPECIFICATION Ejection mechanism in tape player This invention relates to an ejection mechanism for ejecting a tape cassette from the play position of a cassette-type tape player.
In a cassette-type tape player, a play mode for reproduction or recording is created by engagement of two reel shafts vertically standing on a base plate with shaft bores of a tape cassette. To effect this engagement, various methods are employed depending on whichever direction a cassette is inserted into the tape player. One of the methods is horizontal loading wherein a cassette is horizontally inserted into a pack guide through an insertion opening formed in a front face of a tape player and the pack guide carrying the tape pack is thereafter dropped so that the shaft bores of the tape cassette engage the reel shafts.
In this type of tape player, the pack guide cannot be dropped before the cassette is fully inserted into the pack guide because the reel shaft cannot meet the shaft bores but instead hit the lower face of the tape cassette. It is difficult, however, to fully insert the tape cassette by a finger because the insertion opening is generally so small as the sectional area of the tape cassette and does not permit insertion of a finger, or alternatively, if a finger is inserted through the insertion opening, it may be caught in the tape player when the pack guide drops.
In this connection, there is used a loading mechanism which automatically pulls a halfway manually inserted tape cassette fully into the pack guide. As such loading power, motor driving force or spring force is employed. One type of such loading mechanism employs a single inversion spring which pulls a cassette into the play position and also ejects it therefrom.
Figure 1 shows a loading and ejection mechanism employing such inversion spring. A guide arm 2 which supports a pack guide 1 is formed on an upper plate thereof with a guide groove 3 extending from front to rear of the tape player and slidably receiving therein a pack stopper 4. A shaft 4a formed on the pack stopper 4 is connected by a torsion-type inversion spring 6 to one end of a link 5 which is also linked to the pack guide 1. One end of the inversion spring 6 connected to the shaft 4a is configured in a circle rotatable about the shaft 4a whereas the other end is rotatably inserted into a bore formed at said end of the link 5. The other end of the link 5 is pivotally supported by an axle 7. The middle of the link 5 is connected to an ejection lever 8 by an operation rod 9.The ejection lever 8 is connected to a projection 10 of a frame of the tape player by the revival spring 11'.
With this arrangement, if a tape cassette is manually inserted halfway into the pack guide 1, it pushes and shifts the pack stopper 4 rearward (to the right in the Figures) of the tape player. The inversion spring 6 is urged to decrease the angle made by the two arms thereof, accordingly. As shown by Figure 2, when the pack stopper 4 conveys the associated end of the inversion spring 4 behind (to the right of, in the Figures) the other end of the same, i.e. when the shaft 4a of the pack stopper 4 comes behind the front (left, in the Figures) end of the link 5, expansion force of the inversion spring 6 is oriented rearward with respect to said one end of the link 5 which stands still. Due to this expansion force, the pack stopper 4 is urged rearward together with the cassette engaging therewith, thereby effecting automatic loading.
To eject out the tape cassette, the ejection lever 8 is manually pushed in. As shown by Figure 3, the link 5 is urged by the eject lever 8 via the operation rod 9 and rotates about the axle 7 in the counterclockwise direction. The connection end of the inversion spring 6 is therefore compressed and comes behind the other end linked to the pack stopper 4. As the result, expansion force of the inversion spring 6 is directed frontward and urges the pack stopper 4 and the cassette engaging therewith frontward of the tape player. The ejection lever 8 is thereafter returned to its original position by the revival spring 11 and causes rearward displacement of the link 5 and the pack stopper 4 connected thereto via the inversion spring 6, thereby effecting automatic ejection of the tape cassette from the pack guide 1.
Thus, the inversion spring type loading and ejection mechanism uses the revival force of the inversion spring which is selectively oriented rearward or frontward of the tape player, depending upon changes of positional relation between the front end of the link 5 and the shaft 4a of the pack stopper 4, thereby effecting automatic full insertion of the tape cassette manually halfway inserted into the pack guide 1 or effecting automatic ejection of the tape cassette from the fully inserted position to the halfway inserted position.
This type of prior art loading and ejection mechanism, however, involves some problems. Namely, it is only the revival spring 11 that gives the force for pulling out the slightly frontward shifted tape cassette to the ejected position. However, because the ejection force must overcome the friction between the tape cassette and the inner wall of the pack guide 1 or the resistance of a dust-off door covering the cassette insertion opening of the escutcheon, the revival spring 11 must be large. If the revival spring 11 is large, a considerablly large manual force is required to compress it upon ejecting operation.
Particularly at the beginning of the ejection operation, the manual force must be so large as to also overcome the expansion force of the inversion spring 6 in addition to the revival spring 11.
A further problem of the prior art mechanism is the operative linkage between the ejection lever 8 and the pack stopper 4. Namely, since the ejection lever 8 and the pack stopper 4 are disposed for simultaneous movement, the cassette is not pulled out of the pack guide 1 merely by the insertion of the ejection lever 8. It is ejected out only when the ejection lever 8 is released from the manual force and the revival spring 11 is allowed to return to its original length. Therefore, this gives an impression that the ejecting motion is somewhat slow.
It is therefore an object of the invention to provide an ejection mechanism in a tape player which reduces manual force for inserting the ejection lever and also substantially instantly ejects a tape cassette out of the pack guide before the ejection lever returns to the original position.
The ejection mechanism according to the invention includes an operation member which is disposed for simultaneous movement with insertion of the ejection lever and for independent movement from the ejection lever after full inversion of the inversion spring, and is linked to a link connected to the inversion spring so that full insertion of the ejection lever permits the operation lever to immediately return to its front position to displace the tip of the link fixed to the other end of the inversion spring, thereby using both the revival force of the inversion spring and a revival spring force of the operation member to reduce the load to the latter spring and reduce manual force for pushing the ejection lever.
The ejection mechanism is also characterized in that the operation lever returning forward independently from the ejection lever effects cassette ejection, thereby enabling an immediate ejection by insertion of the ejection lever before revival thereof to the forward non-operated position.
Examples of the present invention will now be described with reference to the accompanying drawings, in which: Figure 1 is a plan view illustrating a prior art loading and ejection mechanism employing an inversion spring wherein a tape cassette is not loaded yet; Figure 2 is a plan view illustrating the prior art mechanism of Figure 1 wherein a tape cassette is loaded; Figure 3 is a plan view illustrating the prior art mechanism of Figure 1 wherein ejecting operation is started; Figure 4A is a side view of an ejection mechanism embodying the present invention as seen from a frame of the tape player wherein loading operation is started; Figure 4B is a plan view of the mechanism of Figure 4A; Figure 5A is a side view of the mechanism of Figure 4A wherein ejecting operation is started;; Figure 5B is a plan view of the mechanism of Figure 5A; Figure 6A is a side view of the mechanism of Figure 4A wherein ejecting operation is completed; Figure 6B is a plan view of the mechanism of Figure 6A; Figure 7A is a side view of a modification of the mechanism shown by Figures 4Ato 6B; Figure 7B is a partial enlargement of Figure 7A; Figure 8A is a side view of another modification of the mechanism shown by Figures 4A to 6B; and Figure 8B is a perspective view illustrating a pack guide cooperating with the mechanism of Figure 8A.
The invention will now be described in detail by way of preferred embodiments illustrated in Figure 4A et.seq.
An ejection lever 23 is mounted beside a frame 20 for frontward and rearward (left and right, in the Figure) movement thereto by means of guide pins 21 and elongated holes 22. The ejection lever 23 is biased frontward by a revival spring 11 provided between the frame and itself. An L-shaped link 24 is pivotally mounted on the frame 20 by an axle 24a and engages at one end thereof with the rear end of the ejection lever 23. More specifically, the ejection lever 23 is formed at the rear end portion thereof with a forward pressure edge 27 and a rearward pressure edge 26 spaced from each other for engagement with an engagement pin 25 projecting from the L-shaped link 24. A guide arm 2 is vertically pivotal about an axle 2a at the rear end thereof and supports a pack guide to raise and drop it.The guide arm 2 is formed at the front end thereof with a pin 2b which engages a U-shaped end of the L-shaped link 24 remote from the engagement pin 25. The engagement pin 25 of the L-shaped link 24 is connected to an upper edge of the frame by a coil spring 24b.
The ejection lever 23 carries at the central portion thereof an axle 28 which pivotally supports a link 29 extending frontward therefrom. The link 29 carries at the front end thereof a pin-shaped cam follower 30 which is received in a cam hole 31 formed in the frame 20. The cam hole 31 includes a tapered cam 32 gradually sloping up toward the rear end of the cam hole. The cam hole 31 is located so that the front edge thereof contracts the cam follower 30 when the ejection lever 23 stays at the foremost position whilst the tapered cam 32 contracts the cam follower 30 when the ejection lever 23 is inserted. The link 29 is biased downward by a spring 33 so that the cam follower 30 moves along the lower edge and the tapered cam/32 of the cam hole 31.
An operation member 34 for compressing an inversion spring is mounted to the frame 20 so as to sandwitch the ejection lever 23 therebetween. The operation member 34 is disposed for frontward and rearward movement by means of elongated holes 35 thereof and the guide pins 21. The operation member 34 is biased forward by a revival spring 36 connecting it to the frame 20. An operation rod 9 connects the operation member 34 and the link 5.
The operation member 34 is provided with an engagement hole 38 including a step-up bottom edge 37 at the rear half thereof and receiving therein an engagement pin 39 formed on the link 29. The engagement pin 39 may be coaxial with the cam follower 30 and projecting in the opposite direction thereto for passing through an oval insertion hole 40 formed in the ejection lever 23 and entering the engagement hole 38 of the operation member 34.
The ejection mechanism having the abovedescribed construction operates as follows.
(1) When the Tape Cassette is in the Play Position (Figures 4A and 4B): When the pack guide 1 is dropped to create the play mode, the ejection lever 23 and the link 29 connected thereto are at the foremost positions. So, the cam follower 30 of the link 29 contacts the front edge of the cam hole 31 of the frame 20. The engagement pin 39 of the link 29 is also located in the left of the step-up edge 37. Since the engagement pin 25 of the L-shaped link 24 is urged frontward by the forward pressure edge 27 of the ejection lever 23 and is positioned frontward with respect to the axle 24a. Therefore, the coil spring 24b connecting the engagement pin 25 to the frame 20 biases the L-shaped link 24 in the clockwise direction and gives a downward pressure to the guide arm 2 and the pack guide 1.
(2) Start of Ejecting Operation (Figures 5A and SB): When the ejection lever 23 is pushed, the rearward pressure edge 26 thereof pushes the engagement pin 25 of the L-shaped link 24 rearward. The L-shaped link 24 rotates about the axle 24a in the counterclockwise direction and lifts the guide arm 2 and the pack guide 1.
The cam follower 30 linked to the ejection lever 23 moves rearward along the cam hole 31 of the frame 20. Concurrently, the oppositely extending engagement pin 39 moves rearward, urging the operation via engagement with the front vertical face of the step-up edge 37 of the hole 38. Insertion of the ejection lever 23 also causes the operation member 34 interlocked therewith to urge the link 5 via the operation rod 9. The link 5 therefore rotates in the counterclockwise direction, compressing the inversion spring 6, up to the position shown in Figure 5B whereat the free end of the link 5 is parallelly aligned with the axle 4a of the pack stopper 4.
(3) Revival of the Operation Member and Completion of Ejecting Operation (Figures 5A and 5B): Along with insertion of the ejection lever 23, the guide pin 30 climbs the tapered cam 32 of the cam hole 31. The link 29 rotates about the axle 28 in the clockwise direction and the engagement pin 39 is lifted to the height for riding on the step-up edge 37 of the engagement hole 38 to allow the operation member 34 to move forward. Due to this, the operation member 34 is vigorously pushed forward by the revival spring 36.Thereby, the operation rod 9 connected to the operation member 34 rotates the link 5 in the clockwise direction, the pack stopper 4 is pushed forward by the revival force of the compress- ed inversion spring 6, and the cassette in the pack guide 1 is ejected frontward by both the inversion spring 6 and the revival spring 36 of the operation member 34.
If the ejection lever 23 is still applied with manual force of a user after the operation member 34 returns to its original position and the cassette is ejected, the ejection lever 23 remains in the rearmost position as shown by the dotted lines in Figures 6A and 6B.
Since the engagement pin 25 of the L-shaped link 24 urged by the ejection lever 23 is also located at the rearmost position, the coil spring 24b biases the engagement pin 25 in the counterclockwise direction so that the guide arm 2 and the pack guide 1 are lifted to the highest position permitting ejection of the cassette and are locked there by a clock mechanism not shown. When the ejection lever 23 is thereafter released from the manual pressure, the revival spring 11 returns it to a forward position whereat the forward pressure edge 27 contacts the engagement pin 25 of the L-shaped link 24.
Figures 7A and 7B show a modification of the mechanism described above wherein a play of a determined stroke is provided between start of displacement of the ejection lever 23 and actual engagement thereof with the operation member 34.
This reduces the insertion force of the ejection lever 23 before the lever 23 engages the operation member 34. During the time, the head is fully shifted away from the tape. After the ejection lever 23 engages with the operation member 34, a larger force must be applied to the ejection lever 23 to overcome the revival force of the revival spring 36 of the operation member 34. Thus, by increasing the resistance against the manual insertion force of the ejection lever 23 halfway of the manual inserting operation and accordingly decreasing the insertion speed of the ejection lever, the time for withdrawal of the head is reliably reserved.
More specifically, the step-down edge of the engagement hole 38 from the front end to the step-up edge 37 thereof is longer than the diameter of the engagement pin 39 so as to keep a distance between the engagement pin 39 and the step 37 when the ejection lever 23 stays at the foremost position, thereby, the ejection lever 23 does not contact the operation member 34 before the engagement pin 39 abuts the step 37.
The frame 20 is provided with a head withdrawal switch 127 fixed to a position thereof adjacent the rear end of the ejection lever 23. The switch 127 has a contact 128 projectingly biased by a spring and opposed to a switch plate 129. The switch plate 129 is coaxially mounted with the L-shaped link 24 and has an engagement means 1 29a contactable with the forward pressure edge 27 of the ejection lever 23 when the ejection lever 23 returns to the front position.
This two-step change of the insertion force of the ejection lever 23 forces a user to change his manual force for inserting the ejection lever 23 and leads to a delay of full insertion. This contributes to prevention of sudden or rapid insertion of the lever and necessarily leads to scrupulous operation even if the user does not intend so. As the result, a time lag is reserved from the start of manual inserting operation to the liftup of the cassette, and the head can fully retire from the tape during the time. Therefore, the cassette never hits the head even when a sudden ejection or insertion force is applied.
Figures 8A and 8B show another modification of the embodiment illustrated in Figures 4Ato 6B. This modification is directed to provision of a cam to the pack guide 1 in order to preventreengagement between the ejection lever 23 and the operation member 34 which once disengage from each other, thereby ensuring full return of the operation member 34 to the foremost position.
More specifically in Figure 8B, the pack guide 1 is integrally formed along the lateral wall thereof with a reengagement prevention cam 41 engageable with the engagement pin 39 in the cam hole 31 of the frame 20. The cam 41 is formed so that the rear end portion thereof is at the height of the bottom of the cam hole 31 whilst the front end thereof is at the height of the highest position of the tapered edge of the cam hole 31 when the pack guide 1 is lifted up.
With this arrangement, when the manual force to the ejection lever 23 is released upon completion of the ejecting operation, and the ejection lever 23 is accordingly allowed to return with the biasing force of the revival spring 11 to the position whereat the forward pressure edge 27 contacts the engagement pin 25 of the locked L-shaped link 24, the engagement pin 39 moves together with the ejection lever 23 on the reengagement prevention cam 41 which is so high as the highest position of the tapered cam portion 32 of the cam hole 31 and is not allowed to drop to the bottom of the hole 38 for engagement with the step 37 to actuate the operation member 34.
As described above, according to the present invention, ejection of a cassette from the pack guide 1 1 is effected by both the inversion spring 6 and the revival spring 36 of the operation member 34, thereby permitting reduction of the force of the revival spring 11 of the ejection lever 23 and also leading to reduction of manual force for inserting the ejection lever 23.
Further, according to the invention, engagement between the ejection lever 23 and the operation member 34 is automatically cancelled by the tapered cam 32 of the frame 20 upon full insertion of the ejection lever 23, and the operation member 34 is pulled forward together with the pack stopper 4 by the revival spring 36. Therefore, a cassette is instantly ejected just upon full insertion of the ejection lever 23. This is a great advantage as compared to the prior art mechanism wherein a cassette is not actually ejected before a finger is detached from the ejection lever 23.

Claims (5)

1. An ejection mechanism in a tape player which comprises: a guide arm vertically movably supporting a pack guide; a a pack stopper linked to said guide arm for frontward and rearward movement; first link connected to said guide arm; an inversion spring provided between said first link and said pack stopper to draw and eject a cassette into and from said pack guide; a cam hole formed in a frame of said tape player and having a tapered cam portion; an ejection lever disposed along a lateral wall of said frame for frontward and rearward movement; first revival spring biasing said ejection lever forward; second link pivotally supported on said ejection lever; a cam follower formed on said second link and inserted in said cam hole;; an operation member disposed beside said ejection leverforfrontward and rearward movement with respect to said frame; second revival spring biasing said operation member forward; an engagement hole formed in said operation member and having a step-up edge along the bottom thereof; an engagement pin formed on said second link and inserted in said engagement hole; and a connection member connecting said operation memberto said first link.
2. An ejection mechanism as set forth in Claim 1 wherein said first link is an L-shaped link supported on said frame and having two arms, one of said arms engaging the rear end of said ejection lever and the other being connected to said pack guide.
3. An ejection mechanism as set forth in Claim 1 or 2 wherein the front half of said engagement hole from the front end to said step-edge thereof is longer than the diameter of said engagement pin.
4. An ejection mechanism as set forth in Claim 1, 2 or 3 wherein said pack guide is formed with a cam for disengaging said ejection lever from said operation member when said pack guide is lifted.
5. An ejection mechanism substantially as herein described with reference to Figures 4A,4B,5A,5B, 6A, 6B, 7A, 7B, 8A and 8B.
GB08334634A 1982-12-31 1983-12-30 Ejection mechanism in tape player Expired GB2135810B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP57228292A JPS59127256A (en) 1982-12-31 1982-12-31 Ejecting mechanism of tape player
JP57228293A JPS59127257A (en) 1982-12-31 1982-12-31 Ejecting mechanism of tape player
JP57228294A JPS59127258A (en) 1982-12-31 1982-12-31 Ejecting mechanism of tape player
JP58000458A JPS59127259A (en) 1983-01-07 1983-01-07 Ejecting mechanism of tape player

Publications (3)

Publication Number Publication Date
GB8334634D0 GB8334634D0 (en) 1984-02-08
GB2135810A true GB2135810A (en) 1984-09-05
GB2135810B GB2135810B (en) 1986-05-21

Family

ID=27453176

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08334634A Expired GB2135810B (en) 1982-12-31 1983-12-30 Ejection mechanism in tape player

Country Status (2)

Country Link
DE (1) DE3347624A1 (en)
GB (1) GB2135810B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538753A (en) * 1981-07-16 1985-09-03 Clarion Co., Ltd. Tape recorder

Also Published As

Publication number Publication date
DE3347624C2 (en) 1992-07-02
GB2135810B (en) 1986-05-21
GB8334634D0 (en) 1984-02-08
DE3347624A1 (en) 1984-07-12

Similar Documents

Publication Publication Date Title
US6109941A (en) Ejector mechanism for a memory card connector
US6986675B2 (en) Device for accommodating inserts
US4626939A (en) Ejection mechanism for tape player
US6017231A (en) Card ejecting mechanism driven by a memory alloy wire
US5898536A (en) Automatic door opening mechanism for ejecting cassette tape of video cassette recorder
US4623945A (en) Automatic insertion/ejection linkage for a magnetic-tape-cassette apparatus
US5215230A (en) Trigger mechanism for glue gun
US20030174626A1 (en) Device for opening and closing lid of optical disk player
US4633348A (en) Ejection mechanism for tape player
JP2802229B2 (en) Disc player
JP2006108114A (en) Discharge operation mechanism for connector for memory card and application method
GB2135810A (en) Ejection mechanism in tape player
US4802039A (en) Tape player
US4510540A (en) Cassette ejection mechanism for a cassette tape recorder
US4344097A (en) Lock mechanism for use in tape player
US4458276A (en) Magnetic tape recording/reproducing apparatus with eject spring set by tape drive motor
SE440419B (en) Ejector mechanism in a tape recorder
JP2760623B2 (en) Magnetic tape cassette device
JPS6120702Y2 (en)
JPH0330937B2 (en)
JPH0461060A (en) Loading device
JPH0650846Y2 (en) Cassette tape player cassette ejection mechanism
JPH0326458B2 (en)
JPH0458108B2 (en)
JPH0240608Y2 (en)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19931230