GB2134610A - Improvements in hydraulic anti- skid braking systems for vehicles - Google Patents

Improvements in hydraulic anti- skid braking systems for vehicles Download PDF

Info

Publication number
GB2134610A
GB2134610A GB08400892A GB8400892A GB2134610A GB 2134610 A GB2134610 A GB 2134610A GB 08400892 A GB08400892 A GB 08400892A GB 8400892 A GB8400892 A GB 8400892A GB 2134610 A GB2134610 A GB 2134610A
Authority
GB
United Kingdom
Prior art keywords
skid
wheel
control module
brake
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08400892A
Other versions
GB2134610B (en
GB8400892D0 (en
Inventor
Malcolm Brearley
Glyn Phillip Reginald Farr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF International UK Ltd
Original Assignee
Lucas Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB838302458A external-priority patent/GB8302458D0/en
Application filed by Lucas Industries Ltd filed Critical Lucas Industries Ltd
Priority to GB08400892A priority Critical patent/GB2134610B/en
Publication of GB8400892D0 publication Critical patent/GB8400892D0/en
Publication of GB2134610A publication Critical patent/GB2134610A/en
Application granted granted Critical
Publication of GB2134610B publication Critical patent/GB2134610B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/343Systems characterised by their lay-out
    • B60T8/344Hydraulic systems
    • B60T8/3462 Channel systems

Abstract

An 'X' split hydraulic anti-skid braking system for a four-wheel vehicle, incorporates four skid sensors (25, 26, 27, 28) each for providing skid signals dependent upon the behaviour of a respective wheel (1, 2, 3, 4), a modulator (12, 16) provided in each circuit to modulate the supply of fluid to the brakes (5, 8; 6, 7) of the respective circuit, a control module (19) for operating at least one of the modulators (12, 16) in accordance with the magnitude and nature of the skid signal or signals, and apportioning valves (20, 21) diaposed in the lines between the modulators (12, 16) and the brakes (8, 7) on the rear wheels. The control module (19) is constructed and arranged to ignore a skid signal from a sensor (27, 28) on a rear wheel until a skid signal is also received from the sensor (28, 27) on the other rear wheel, whereafter the control module (19) is operative to operate one of the two modulators (12, 16). Preferably, the threshold of the control module is reduced in response to a signal from a first rear wheel. <IMAGE>

Description

SPECIFICATION Improvements in hydraulic anti-skid braking systems for vehicles This invention relates to hydraulic anti-skid braking systems for vehicles of the kind in which a supply of hydraulic fluid under pressure, for example from an hydraulic master cylinder, is adapted to be supplied to the actuator of a wheel brake through a modulator which is adapted to modulate the pressure applied to the actuator in accordance with a skid signal from skid sensing means.
When an anti-skid braking system of the kind set forth comprises first and second brakeapplying circuits, in which the first circuit comprises a first source of brake-applying fluid, and a first connection between the first source and the brake on one front wheel of a vehicle and the brake on the diagonally opposite rear wheel, and the second circuit comprises a second source of brake-applying fluid, and a second connection between the second source and the brake on the other front wheel of the vehicle and the brake on the diagonally opposite rear wheel, such a system is known as an "X" split and difficulty is experienced in controlling the behaviour of the braked wheels relative to each other unless a separate modulator is provided for each wheel.
It has been proposed to provide a single modulator for each circuit, two sensors, each for providing a skid signal dependent upon the behaviour of a respective one of the front wheels, and an electronic control module which receives the skid signals from the sensors and, depending upon the magnitude and nature of same, is operative to operate a respective modulator to modulate the pressure of hydraulic fluid supplied to the two brakes of the respective circuit.
In such a known "X" split system it is essential to ensure that the brake-applying fluid supplied to the brakes of one circuit is released before the brake on the rear wheel of that circuit can lock otherwise the stability of the vehicle will be seriously effected. To an extent this can be achieved by providing an apportioning valve in the two connections, between the two brakes, and setting the apportioning valve to ensure that the front wheels will lock before the rear wheels.
Unfortunately, to ensure that locking of the rear wheels cannot occur, it is necessary to downgrade and underbrake the rear wheels, which reduces the effective braking effort under normal conditions. However, due to variations in the coefficients of friction of the linings of the brakes with temperature there still remains a tendency, under certain conditions, for the rear wheels to lock before the front wheels.
According to our invention in an anti-skid braking system for a four wheel vehicle having brakes on the front and rear wheels, the system comprises firt and second brake-applying circuits, the first circuit comprises a first source of brakeapplying fluid, and a first connection between the first source and the brake on one front wheel and the brake on the diagonally opposite rear wheel, and the second circuit comprising a second source of brake-applying fluid, and a second connection between the brake on the other front wheel and the brake on the diagonally opposite rear wheel, a first modulator located in the first connection for modulating the supply of fluid from the first source to both the brakes on the said one front wheel and the diagonally opposite rear wheel, a second modulator located in the second connection for modulating the supply of fluid from the second source to both the brakes on the said other front wheel and the diagonally opposite rear wheel, four skid sensors, each for providing a skid signal dependent upon the behaviour of a respective wheel, a control module for operating at least one of the modulators in accordance with the magnitude or nature of the skid signal or signals, and apportioning valves disposed in the lines between the modulators and the brakes on the rear wheels, the control module being constructed and arranged to ignore a skid signal from a sensor on a rear wheel until a skid signal is also received from the sensor on the other rear wheel, whereafter the control module is operative to operate one of the two modulators.
This caters for the situation in which a sensor of a rear wheel brake emits a premature skid signal due to the co-efficient of the brake lining tendency to cancel the apportioning effect of the respective apportioning valve and therefore ensures that the brakes cannot be released prematurely. Otherwise a skid signal from a sensor on one rear wheel would immediately release, not only the brake on that wheel, but also the brake on the diagonally opposite front wheel which, under such circumstances, would probably be being applied effectively, thereby reducing the braking effort unnecessarily and causing instability.
The control module is preferably arranged such that, in response to a signal from a sensor of one rear wheel, the threshold of the control module is automatically reduced. This ensures that one of the two modulators will then be operated earlier in response to a reduced signal from the sensor on the other rear wheel.
Preferably each modulator is driven from the respective front wheel of a front wheel drive vehicle, or through a drive from the output shaft of a gear box of a rear wheel drive vehicle.
This provides the energy for re-applying the brake following skid correction and ensures that the brakes can be re-applied when the vehicle has forward motion.
In the former case, which is preferred, the modulator is operable to re-apply the brakes only when the wheel is rotating following correction of a skid, and no additional time delay to prevent premature brake re-application has to be provided.
Should a drive to one of the modulators fail, we may arrange for the control module to shut down the system with the driver being provided with a suitable warning.
One embodiment of our invention is illustrated in single Figure of the accompanying drawings which is a layout of an "X" split hydraulic anti-skid braking system for a four wheel vehicle.
The braking system illustrated in the layout of Figure 1 comprise two separate hydraulic brakeapplying circuits for a vehicle of a front wheel drive type having two front wheels 1, 2 and two rear wheels 3, 4.
The wheels 1 and 2 are adapted to be braked by respective brakes 5 and 6, and the wheels 3 and 4 by respective brakes 7 and 8.
A pedal-operated master cylinder 9 has two pressure spaces 10 and 11.
The pressure space 10 is connected to a brakepressure modulator 12 through a pipe-line 13 and the modulator 12, in turn, is connected to the brake 5 on the front wheel 1 and to the brake 8 on the diagonally opposite rear wheel 4 through a common pipe-line 14. The modulator 12 is driven through a drive 1 5 from the front wheel 1.
The pressure space 11 is connected to a brakepressure modulator 1 6 through a pipe-line 17, and the modulator 16, in turn, is connected to the brake 6 on the front wheel 2 and the brake 7 on the diagonally opposite rear wheel 3 through a common pipe-line 1 8. The modulator 1 6 is driven through a drive 1 9 from the front wheel 2.
Each modulator 12, 1 6 is conveniently of the kind forming the subject of our G.B. Patent Application No. 8230101 and need not be further described herein.
A brake-pressure apportioning valve 20 is positioned in the pipe-line 1 4 between the modulator 12 and the brake 8, and a brakepressure apportioning valve 21 is positioned in the pipe-line 1 8 between the modulator 1 6 and the brake 7. The valves 20 and 21 are incorporated to ensure that the front wheels will lock before the rear wheels, for given co-efficients of friction of the linings.
The behaviour of each wheel 1, 2, 3, 4, namely deceleration and/or slip is sensed by respective sensors 25, 26, 27, 28 which emit skid signals, and the skid signals are supplied to an eiectronic control module 29 which, in turn, is operative to emit an electric current to operate the solenoidoperated dump valve of one of the modulators in order to relieve the pressure of fluid supplied to the two respective brakes.
When a skid signal is emitted by either of the sensors 25 or 26, the control module 29 is operative to operate the respective modulator 12, 1 6 whereby to relieve and re-apply at a controlled rate, the brakes of the two wheels of that circuit.
When a skid signal is emitted by either of the sensors 27 or 28 indicative that the co-efficients of friction of the linings have departed from their given values, the control module 29 is arranged to ignore that signal, and only to operate one of the modulators upon receipt of a similar signal from the sensor on the other rear wheel. In this connection, after a skid signal is emitted by the said one sensor, the control module 1 9 downgrades its threshold so that it is operative to operate a modulator in response to a signal from the sensor on the other wheel which is less than that which would otherwise be required to correct a skid condition. Thus the brakes are released earlier.
Either modulator can be operated depending upon the braking requirements of a particular vehicle, irrespective of which sensor 7 or 8 first emitted a skid signal. Normally the second rear wheel to lock would be the first to be released, since on surfaces of split M it is desirable to maintain the braking effect of the front wheel which is running on the surface of higher ,u.

Claims (7)

1. An anti-skid braking system for a four wheel vehicle having brakes on the front and rear wheels, in which the system comprises first and second brake-applying circuits, the first circuit comprising a first source of brake-applying fluid, and a first connection between the first source and the brake on one front wheel and the brake on the diagonally opposite rear wheel, and the second circuit comprising a second source of brakeapplying fluid, and a second connection between the brake on the other front wheel and the brake on the diagonally opposite rear wheel, a first modulator located in the first connection for modulating the supply of fluid from the first source to both the brakes on the said one front wheel and the diagonally opposite rear wheel, a second modulator located in the second connection for modulating the supply of fluid from the second source to both the brakes on the said other front wheel and the diagonally opposite rear wheel, four skid sensors, each for providing a skid signal dependent upon the behaviour of a respective wheel, a control module for operating at least one of the modulators in accordance with the magnitude or nature of the skid signal or signals, and apportioning valves disposed in the lines between the modulators and the brakes on the rear wheels, the control module being constructed and arranged to ignore a skid signal from a sensor on a rear wheel until a skid signal is also received from the sensor on the other rear wheel, whereafter the control module is operative to operate one of the two modulators.
2. A braking system as claimed in Claim 1, in which the control module is arranged such that, in response to a signal from a sensor of one rear wheel, the threshold of the control module is automatically reduced.
3. A braking system as claimed in Claim 1 or Claim 2, in which each modulator is driven from the respective front wheel of a front wheel drive vehicle.
4. A braking system as claimed in Claim 1 or Claim 2, in which each modulator is driven through a drive from the output shaft of a gear box of a rear wheel drive vehicle.
5. A braking system as claimed in Claim 3, in which the modulator is operable to re-apply the brakes only when the wheel is rotating following correction of a skid.
6. A braking system as claimed in any preceding claim in which the control module is adapted to shut down the system upon failure of a drive to one of the modulators.
7. An hydraulic anti-skid braking system for a four wheel vehicle substantially as described herein with reference to and as illustrated in the accompanying drawings.
GB08400892A 1983-01-28 1984-01-13 Improvements in hydraulic anti-skid braking systems for vehicles Expired GB2134610B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08400892A GB2134610B (en) 1983-01-28 1984-01-13 Improvements in hydraulic anti-skid braking systems for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838302458A GB8302458D0 (en) 1983-01-28 1983-01-28 Hydraulic anti-skid braking systems
GB08400892A GB2134610B (en) 1983-01-28 1984-01-13 Improvements in hydraulic anti-skid braking systems for vehicles

Publications (3)

Publication Number Publication Date
GB8400892D0 GB8400892D0 (en) 1984-02-15
GB2134610A true GB2134610A (en) 1984-08-15
GB2134610B GB2134610B (en) 1987-02-11

Family

ID=26285064

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08400892A Expired GB2134610B (en) 1983-01-28 1984-01-13 Improvements in hydraulic anti-skid braking systems for vehicles

Country Status (1)

Country Link
GB (1) GB2134610B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165603A (en) * 1984-10-11 1986-04-16 Lucas Ind Plc Improvements in hydraulic anti-skid systems for vehicles
US4652060A (en) * 1984-09-04 1987-03-24 Akebono Brake Industry Co., Ltd. Antiskid control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652060A (en) * 1984-09-04 1987-03-24 Akebono Brake Industry Co., Ltd. Antiskid control method
GB2165603A (en) * 1984-10-11 1986-04-16 Lucas Ind Plc Improvements in hydraulic anti-skid systems for vehicles

Also Published As

Publication number Publication date
GB2134610B (en) 1987-02-11
GB8400892D0 (en) 1984-02-15

Similar Documents

Publication Publication Date Title
EP0120555B1 (en) Improvements in hydraulic anti-skid braking systems for vehicles
EP1175320B1 (en) Improved back-up braking in vehicle braking systems
US4708406A (en) Hydraulic braking system with malfunction alarm junction
JPH0729558B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS59199352A (en) Brake gear for automobile
JP3116314B2 (en) Vehicle with trailing axle that can be raised and lowered
GB2155129A (en) Slip-controlled brake system for automotive vehicles
GB2317930A (en) Vehicle with automatic braking effort control on downhill gradients
US4508393A (en) Brake-force control for at least one axle of a vehicle equipped with an anti-locking system
US4761042A (en) Anti-lock hydraulic brake system
JPS59206248A (en) Brake gear with slip control mechanism
JPH029981B2 (en)
GB2190159A (en) Anti-lock controlled brake system for example for automotive vehicles
GB2255602A (en) Vehicle anti-lock brake system
US5105903A (en) Brake system with anti-lock control for all-wheel driven automotive vehicles
EP1004492A2 (en) Pedal travel limitation in electro-hydraulic (EHB) braking systems
JPH0672310A (en) Control system of anti-lock brake device of vehicle
US5477456A (en) Process and circuit arrangement for the reduction of disadvantageous effects of engine stall torques
JPS62244748A (en) Slip-control brake system
US6505893B2 (en) Vehicle brake system having two brake circuits
US6375281B1 (en) Brake torque regulation for vehicles
EP0825940B1 (en) Vehicle braking system with drive wheel slip control
GB2134610A (en) Improvements in hydraulic anti- skid braking systems for vehicles
GB2183757A (en) Method and circuit arrangement for the control of wheel slip in vehicles with all-wheel drive
EP0120554B1 (en) Improvements in hydraulic anti-skid braking systems for vehicles

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19930113