GB2112675A - Method and apparatus for machining a three-dimensional cavity in a workpiece - Google Patents

Method and apparatus for machining a three-dimensional cavity in a workpiece Download PDF

Info

Publication number
GB2112675A
GB2112675A GB08236643A GB8236643A GB2112675A GB 2112675 A GB2112675 A GB 2112675A GB 08236643 A GB08236643 A GB 08236643A GB 8236643 A GB8236643 A GB 8236643A GB 2112675 A GB2112675 A GB 2112675A
Authority
GB
United Kingdom
Prior art keywords
holes
tool
machining
workpiece
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08236643A
Other versions
GB2112675B (en
Inventor
Kiyoshi Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Publication of GB2112675A publication Critical patent/GB2112675A/en
Application granted granted Critical
Publication of GB2112675B publication Critical patent/GB2112675B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Drilling And Boring (AREA)

Abstract

A method of forming a cavity of a desired three-dimensional contour in a workpiece 1 utilizes two steps of machining operation. In the first step a), a multiplicity of holes 3 are mechanically drilled in the workpiece substantially all over but within a three-dimensional region 2b which is destined to constitute the cavity and which is bounded by a programmed outline corresponding to the desired three-dimensional contour whereby only a minimum of stock is left unmachined in the workpiece within the region. In the second step of operation b), the minimum left unmachined stock among the holes and within the region is electroerosively machined with at least one electrical machining tool electrode 5 having a machining surface which is complementary with the desired contour and which is positioned to lie in parallel with the programmed outline. <IMAGE>

Description

SPECIFICATION Method and apparatus for maching a threedimensional cavity in a workpiece The present invention relates to three-dimensional contour machining and, more particularly, to a new and improved method of and apparatus for forming a cavity of a desired three-dimensional contour in a workpiece to produce, for example, a die or mold.
Certain dies, molds and other products need to be shaped generally with intricate threedimensional contours and these products have hitherto been produced by a milling tool, a grinder or a machine designed to execute electrical discharge machining (EDM) or electromechanical maching (ECM), or a combination of milling, grinding and EDM or ECM machines. To the best of applicant's knowledge, however, there has been no attempt in the art to exploit drilling techniques in making a die, mold or any other intricately contoured product.
It has been recognized that electrical maching processes such as EDM or ECM are capable of reproducing practically any intricate three-dimensional contour with extremely high precision but have a relatively low rate of material removal. Milling and grinding techniques have also been developed to find use, as one of their major genres of application, in the die or mold maching art where these techniques have been employed to roughly shape a desired die or mold contour. The die mold contour roughly shaped by milling or grinding is commonly hand-finished by a skilled worker with considerable labour and time expenditure. It has also been proposed to use electrical machining techniques to finish machine the contour roughly shaped in a milling or grinding machine.
There is, however, a constant desire to reduce the total time and labour in producing a desired die, mold or other product with an intricate three-dimensional contour.
It is accordingly an important object of the present invention to provide a novel and im proved method of forming a three-dimensional contour, which method is much more efficient than the conventional processes and is capable of drastically reducing the total time expended for producing the desired cavity from a blank material.
Another object of the invention is to provide a novel apparatus, which is relatively compact for carrying out the method described.
In accordance with the present invention there is provided, in a first aspect thereof, a method of forming a cavity of desired threedimensional contour in a workpiece, which method comprises the steps of: a) mechani cally drilling a multiplicity of holes in the workpiece substantially all over but within a three-dimensional region which is destined to constitute said cavity and is bounded by a programmed outline corresponding to the said desired three-dimensional contour whereby only a minimum of stock is left unmachined in the workpiece within the said region; and thereafter b) electroerosively machining the said minimum left unmachined stock among the said holes and within the said programmed region with at least one electrical machining tool electrode having a machining surface which is complementary in shape with the said desired contour and is positioned to lie in parallel with the said programmed outline, by: b1) passing an electrical machining current across a machining gap between the said machining surface and said region in the presence of an electrical machining liquid in the said holes and the said gap, and b2) advancing the tool electrode relatively into the workpiece while maintaining the said parallelism and holding the said machining gap spacing substantially constant until the said machining surface reaches a position spaced by the said spacing from the said programmed outline.
Specifically, in step a) the said multiple holes are drilled respectively to individually predetermined depths such that an outline defined by the floor regions of the said holes substantially conforms to and is substantially equi-distantly spaced from the said programmed outline. At least most of the multiple holes are conveniently and thus preferably formed so as to extend substantially in parallel with one another.
Preferably, the said multiple holes include a plurality of holes obliquely intersecting the parallel holes and step b) further includes the step of flushing the said machining liquid through the said oblique holes to create a dynamic flow of the machining liquid through the said machining gap.
Preferably, step a) is carried out with a plurality of drilling tools having different tool sizes to produce the corresponding plural sets of holes different in diameter. The plural sets of holes are preferably drilled successively in the said region. The parallel holes are preferably oriented in a direction substantially the same as the direction in which the tool electrode is advanced in step b2). Preferably, the holes at least in a set of the largest hole diameter are drilled in the region with their centers equi-distantly spaced apart from one another, and the holes at least in another set are drilied in interstices among the holes of the largest hole diameter. Preferably, a further set of holes having a smallest hole diameter are included in the multiple holes and are drilled at least in a zone of the region which is closer to the said programmed outline.
Preferably, the said at least one tool electrode includes a plurality of electrodes including roughing and finishing electrode and in step b) at least a substantial portion of the said left unmachined stock remaining among said multiple holes is electroerosively removed by the roughing electrode and at least a portion of the said unmachined stock remaining between the outline defined by the floor regions of the holes and the said programmed outline is electroerosively removed with the finishing electrode.
The invention also provides, in a second aspect thereof, an apparatus for carrying out the method according to the said first aspect, which apparatus comprises: a tool carriage for carrying at least one drilling tool and at least one electrical machining tool electrode; control means; means operable in response to command signals from the control means for driving the tool carriage to selectively bring the drilling tool, for carrying out step a), into a drilling relationship with, and the tool electrode, for carrying out step b) subsequent to step a), into an electrical machining relationship with, the workpiece, respectively; means for rotating the drilling tool in step a); means for supplying the electrical machining liquid into the holes and the machining gap in step b); means selectively operable in step b) for supplying the electrical machining current between the tool electrode and the workpiece; and means for advancing the drilling tool in step a) and the tool electrode in step b), relatively into the workpiece to drill each of the multiple holes in step a) and to electroerosively machine the said left unmachined stock in step b), respectively.
These and other features of the present invention as well as advantages thereof will become more readily apparent from a reading of the following description of certain exemplary embodiments thereof when made with reference to the accompanying drawings in which: Figure 1(A) is a side view diagrammatically illustrating a manner in which a multiplicity of holes are mechanically formed in a workpiece with a drilling tool in a three-dimensional cavity forming method according to the present invention; Figure 1(B) is a top plan view diagrammati- cally illustrating the workpiece having these holes formed therein; Figure 2 is a side-sectional view diagrammatically illustrating a manner of electrically machining the workpiece of Fig. 1(B);; Figure 3 is a diagrammatic view illustrating a preferred from of drilling the holes in the workpiece in the method according to the invention; Figures 4(A) and 4(B) are side and crosssectional views, respectively, diagrammatically illustrating the drilling tool and the workpiece, respectively, and illustrating a manner of setting the depth of each hole in the workpiece according to a method of this invention; Figure 5 is a side view, partly in section and partly in elevation, diagrammatically illustrating an apparatus for carrying out a method of this invention; Figure 6 is a front view diagrammatically illustrating one form of the tool magazine in the apparatus of Fig. 5; and Figure 7 is a side-sectional view diagrammatically illustrating a portion of the apparatus of Fig. 5 arranged to electrically machine the drilled workpiece.
Referring now to the drawing, first to Figs.
1(A) and 1(B), there is shown a workpiece 1 in the form of a rectangular block in which it is desired to machine a cavity 2 having a rim 2a and a three-dimensional contour 2b to provide, for example, a die. According to the method of this invention, a multiplicity of holes 3 are first mechanically formed with a drilling tool 4 in the workpiece 1 in a region thereof designed to constitute the cavity 2 defined by the rim 2a and the contour 2b.
Thereafter the drilled workpiece 1 is, as shown in Fig. 3, subjected to electrical machining such as electrical discharge machining (ECM) or electromechanical machining (ECM) to remove the remaining stock and thus to finish the three-dimensional contour 2b with a tool electrode 5 complementary thereto.
In the drilling step, a single drilling tool 4 of a given diameter may be employed to form multiple holes 3 of a corresponding uniform diameter but it is generally preferred to use drilling tools of varying diameter 41, 4m, 4n, as shown in Fig. 1(A), to provide plural sets of holes varying in size 31, 3m, 3n as shown in Fig. 1(B). Thus, the tool 41 of a large size may first be used to form multiple large holes 31 with a given equal pitch successively, each to a given depth within a limit defined by the final contour 2b.Then, the tool 4m of a medium size may be employed to drill multiple medium-diameter holes 3m successively again with such a given pitch but in interstices of the large holes 31. The tool 4n of a small diameter may thereafter be used to drill multiple holes 3n in a similar manner in interstices surrounded by the large- and medium-diameter holes 31and 3m. In Fig. 1(B), the small holes 3n are shown as formed at locations in an area closer to the rim 2a so that the outline of the holes 31, 3m and 3n distributorily formed substantially corresponds to the rim 2a.
The drilling tools of different diameters, as will be described in some detail hereinafter, are preferably exchanged successively with an automatic tool change (ATC) system and are each thereby successively brought into drilling positions preprogrammed in conjunction with the drilling positions and sizes of other tools in a manner such that there results an optimum distribution of sets of multiple formed holes 31, 3m and 3n of different sizes which substantially fill a volume destined to constitute the cavity 2 desired. Furthermore, as shown in Fig. 1(A), a plurality of oblique holes should preferably be formed with a tool or tools 4s to constitute passages for the machining liquid in the subsequent electrical machining stage, thereby enhancing the efficiency of electrical machining for finishing.
In the preliminary drilling operation which intrinsically affords a high rate of stock removal (e.g. 1000 g/second for a steel material), it is desirable that a maximum amount of stock be removed from the workpiece 1 within the region thereof defined by the imaginary contour 2b. In the subsequent electrical machining stage, a minimum amount of stock left is removed to yield a precisionshaped contour 2b by taking advantage of high precision shaping ability of electrical machining. The electrical machining stage should preferably employ an EDM process and the description hereafter will be made with particular reference to EDM for the finish machining step.
For the preliminary machining operation any of various forms of drilling multiple holes 3 within the region of the workpiece 1 defined by boundaries 2a and 2b may be adopted. Fig. 3 shows a preferred example. It is shown that multiple large holes 31of a diameter Dl are formed by means of the drilling tool 41to locate their centers at coordi nates (X1, Y2), (X1, Y3), . . ., , (X2, Y1), (X2, Y2) . . . , (X3, Y1), (X3, ....... where X2 - Xl = X3 - X2 = . . = Y2 - Y1 = Y3Y2 = Y4Y3 = .. = D1. After forming the large holes 31, multiple medium-sized holes 3m of a diameter D2 are formed, each among and tangentially with adjacent large holes 31, by means of the drilling tool 4m.
Finally, the drilling tool 4n is used to form multiple small holes 3n in a zone defined between the rim 2a of the imaginary cavity 2 and the group of holes 3land 3m located close to the rim 2a.
In this case, the coordinates of successive points defining the rim 2a may be recorded on a memory medium such as a punched tape. The centers of those large, mediumsized and small holes 3r, 3m' and 3n' closer to the rim 2a are positioned to locate these holes substantially equi-distantly spaced from the boundary 2a, that is, spaced from the latter by a distance wl which satisfies the relationship wo'w'wl where wo and wl are given values.
As shown in Fig. 4, each hole 31, 3m and 3n is drilled to a depth spaced by an equal distance AZ from the desired contour 2b in the drilling direction. Thus, the coordinates of successive points defining the desired contour 2b are preprogrammed and stored on a memory medium such as a punched tape. The drilling tool 4(4m, 4n) is advanced until its end face reaches a position where the minimum distance from points (Xi, Yi, Zi) on the contour surface 2b in the direction of the Zaxis becomes a predetermined value AZ.
Figs. 5 to 7 shows an apparatus designed to carry out the method of the present invention. As shown in Fig. 5, the apparatus includes a bed 10 which horizontally carries thereon a pair of drive tables 11 and 1 2 formed in a cross-feed arrangement. The upper table 1 2 has a worktank 1 3 securely mounted thereon in which the workpiece 1 is fixedly positioned. The table 11 is adapted to be driven by a motor 11 a to displace the worktank 1 3 and hence the workpiece 1 in the direction of the Y-axis. The table 1 2 is adapted to be driven by a motor 1 2a to displace the worktank 1 3 and hence the workpiece 1 in the direction of the X-axis.
The apparatus also has a vertical portion extending upright from the bed 10 and containing a lead screw 1 4 extending in the direction of the Z-axis. The lead screw carries a mounting assembly 1 5 for a tool carriage 1 6 and is driven by a motor 1 7 to vertically move the tool carriage 1 6. The assembly 1 5 and the tool carriage 1 6 are suspended against gravity by means of a counterbalance mechanism comprising a weight 1 8 and a wire 19 trained over rollers 20.
The tool carriage 1 6 is arranged to be rotatable relative to the mounting assembly 1 5 and to be rotated by a motor 21 shown by a phantom line. As shown in Fig. 6, the tool carriage 1 6 holds a plurality of drilling tools of different diameters 41, 4m, 4n. ., 4p and also EDM tool electrodes 51, 5m, 5n. As mounted on the tool carriage 16, each drilling tool is coupled to a corresponding bevel gear 22. When brought into a machining position by a rotation of the motor 21, each bevel gear 22 is brought into engagement with a bevel gear 23 secured to a rotary shaft 24. The rotary shaft 24 is rotated by a motor 25 via bevel gears 26 and 27 to rotate the bevel gear 22 and thence the drilling tool coupled thereto.
Referring to Fig. 7, each of EDM tool electrodes 51, 5m, 5n is adapted to be mounted on the tool carriage 1 6 via an electrical insulator 28 and a conductive holding element 29 which is connected via a wire conductor 30 to a disk conductor 31 in contact with a conductive piston rod 32 which is movable received in a cylinder 33 and electrically connected via a lead conductor 34a to one output terminal of an EDM power supply 35 (Fig. 5). The other output terminal of the EDM supply 35 is electrically connected to the workpiece 1 via a lead conductor 34b. A pressure fluid is introduced from a source 36 via a valve 37 into the cylinder 33 to bring the piston rod into electrical contact with the disk conductor 31 to establish EDM circuit of the total electrode 51 (5 m, 5n) and the workpiece 1 with the power supply 35.
The EDM tool electrode 51(5mn 5n) is formed with an internal bore 5a open to the machining face 5b and having a fluid inlet 38 in the form of a tapered opening. The tapered opening 38 is shown in mating engagement by an elongate element 39 which is an integral portion of a spool 40 movably received in a cylindrical recess 41, the latter being formed in the mounting assembly 1 5. A fluid passageway formed in and extending through the spool 40 and the projection is designated at 42.The pressure fluid from the source 36 is supplied into the cylindrical recess 41 via a valve 42 to displace the bored projecting element 39 of the spool 40 into engagement with the tapered opening 39 to communicate the fluid passageway 42 with the internal bore 5a of the electrode 51 (5m, 5n). An EDM machining liquid is then supplied from a source via a conduit 43 and a valve 44 and the fluid passageway 42 into the internal bore 5a of the tool electrode.
Referring back to Fig. 5, the source of the EDM machining liquid comprises a reservoir 45 for receiving spent EDM liquid from the worktank 13 via a drain 46, a valve 47 and a conduit 48. The liquid in the reservoir 45 is drawn by a pump 49 and supplied via a filter 50, a conduit 51 and an inlet valve 52 into the worktank 1 3. The workpiece 1 is shown as securely supported on a conductive worktable 53 electrically connected to the EDM power supply 35 via the conductor 34b. The motors 11 a, 12a, 20, 21 and 25 are operatively connected to an NC (numerical control) unit 54.
In operation of the apparatus shown in Figs.
5 to 7, a predetermined set of drilling tools 41, 4m, 4n . . ., 4p and a predetermined set of EDM tool electrodes 51, 5m,. . are mounted in position on the tool carriage 1 6 and a workpiece 1 is securely mounted on a worktable 53. A set of programmed tapes or other memory media prepared by a CAD or CAM system is used to operate the NC unit 54 to drive the motors 11 a, 12a, 20, 21 and 25.
For example, the motor 21 for tool selection is first operated to select a drilling tool 4/ of a large diameter for positioning it so as to be oriented vertically downwards and in juxtaposition with the workpiece 1 mounted on the worktable 53. The X-axis and Y-axis displacement motors 11 a and 1 2a are then driven to move the workpiece 1 and to locate a programmed center of one of large holes to be drilled, directly below the axis of the drilling too 41. Thereafter the motor 14 is rotated in one direction to rotate the drilling tool 41 and the motor 1 7 is driven to move down the mounting assembly 1 5 and the tool carriage 1 6 carried thereby to advance the rotating tool 41 into the workpiece 1.The mounting assembly 1 5 is moved down to a programmed depth and thereafter the motor 1 7 is rotated in the opposite direction to retract the tool 41to the initial position. The NC unit 54 then furnishes the motors 11 a and 11 b with a programmed command to displace the workpiece 1 and to locate the drilling tool 41 coaxially with the center of a next programmed large hole. The motor 1 7 is then commanded again to commence advancing the drilling tool 41 and to continue the advance until a programmed drilling depth is achieved. In this manner, a programmed number of multiple holes are formed in the workpiece within a programmed region thereof defined by boundaries 2a and 2b.
After completing the programmed rough-drilling operation with the large-diameter drilling tool 41, the motor 21 is operated with a next command signal from the NC unit 54 to rotate the tool carriage 1 6. The carriage 1 6 is rotated to bring a tool 4m of a medium diameter into juxtaposition with the workpiece 1 and the successive programmed forming of multiple medium-sized holes follows. Successive cycles of drilling operations for multiple holes of different sizes are carried out at a high machining rate so that for EDM, only a minimum amount of stock remains to be removed in the region of the workpiece 1 destined to constitute the desired cavity 2.
After the formation of the multiple holes, the NC unit 54 operates to drive the motor 21 and the motors 11 a and 1 2a so that a tool electrode 5 of a shape complementary to that of the desired cavity 2 is located above the region of the workpiece 1 in which the multiple holes have been formed. The tool electrode 5 is located to position the machining surface in parallel with the imaginary contour 2b. The motor 1 7 is driven to bring the tool electrode 5 into the worktank 1 3 and to position the electrode 5 into an EDM relationship with the workpiece 1.The valves 37 and 42 are opened to introduce the pressure fluid into the cylinders 33 and 41 whereby to bring the piston 32 into electrical contact with the disk conductor 31 on the one hand and to connect the internal bore 5a of the electrode 5 with the EDM liquid supply conduit 43 on the other hand. The pump 49 is driven to introduce the EDM liquid via the internal bore 5a of the electrode 5 into the worktank 1 3 and to circulate it between the latter and the worktank 45 via the conduit 48, the filter 50 and the conduit 51. The EDM power supply 35 is switched on to develop a machining voltage between the tool electrode 5 and the workpiece 1 across the machining gap. The tool electrode 5 continues to be advanced, permitting a succession of time-spaced electrical discharges to develop across the machining gap to electroerosively remove stock from those portions of the workpiece which are directly opposed with the machining face 5b of the tool electrode 5 and subjected to the electrical discharges. As a result, the previously unmachined portions of stock of the workpiece 1 among the drilled holes are progressively removed or machined. The tool carriage 1 6 is advanced until the tool elec trode 5 reaches a preprogrammed depth, producing a complete form of the desired cavity 2 in the workpiece 1.
Preferably in the EDM stage, a plurality of similar tool electrodes should be employed.
Thus, a rough machining electrode 51 is first used to roughly produce the cavity 2 at a relatively high rate of EDM stock removal (e.g.
30 g/second) for a steel material by following the procedure described above. The roughing electrode is then replaced by a finishing tool electrode 5m to reform the rough-machined cavity at a relatively low rate of EDM stock removal (e.g. 0.5 g/second for the steel material) to yield the cavity contour 2a and 2b with a high precision and better surface finish.
A medium-finish machining step utilizing a corresponding tool electrode 5n may be employed subsequent to the roughing step and prior to the finishing step.

Claims (14)

1. A method of forming a cavity of a desired three-dimensional contour in a workpiece, comprising the steps of: a) mechanically drilling a multiplicity of holes in a said workpiece substantially all over but within a three-dimensional region which is destined to constitute said cavity and is bounded by a programmed outline corresponding to said desired three-dimensional contour whereby only a minimum of stock is left unmachined in said workpiece within said region; and thereafter b) electroerosively machining said minimum left unmachined stock among said holes and within said programmed region with at least one electrical machining tool electrode having a machining surface which is complementary in shape with said desired contour and is positioned to lie in parallel with said programmed outline, by: b1) passing an electrical machining current across a machining gap between said machining surface and said region in the presence of an electrical machining liquid in said holes and said gap, and b2) advancing said tool electrode relatively into said workpiece while maintaining said parallelism and holding said machining gap spacing substantially constant until said maching surface reaches a position spaced by said spacing from said programmed outline.
2. The method defined in claim 1 wherein in step a) said multiple holes are drilled respectively to individually predetermined depths such that an outline defined by the floor regions of said holes substantially conforms to and said floor regions are substantially equi-distantly spaced from said programmed outline.
3. The method defined in claim 2 wherein at least most of said multiple holes are formed so as to extend substantially in parallel with one another.
4. The method defined in claim 3 wherein said multiple holes include a plurality of holes obliquely intersecting said parallel holes, step b) further including the step of flushing said machining liquid through said oblique holes to create a dynamic flow of said machining liquid through said machining gap.
5. The method defined in any one of the preceding claims wherein step a) is carried out with a plurality of drilling tools having different tool sizes to produce the corresponding plural sets of holes different in diameter.
6. The method defined in claim 5 wherein step b) comprises: drilling said plural sets of holes successively in said region.
7. The method defined in claim 5 wherein said parallel holes are oriented in a direction substantially the same as the direction in which at least one said tool electrode is advanced in step b2).
8. The method defined in claim 7 wherein said holes at least in a set of the largest hole diameter are drilled in said region with their centers equidistantly spaced apart from one another, and said holes at least in another set are drilled in interstices among said holes of the largest hole diameter.
9. The method defined in claim 8 wherein a further set of holes having a smallest hole diameter are included in said multiple holes and are drilled at least in a zone of said region which is closer to said programmed outline.
10. The method defined in claim 2 wherein said at least one tool electrode includes a plurality of electrodes including a roughing and a finishing electrode and wherein in step b) at least a substantial portion of said left unmachined stock remaining among said multiple holes is electroerosively removed by said roughing electrode and at least a portion of said unmachined stock remaining between said outline defined by the floor regions of said holes and said programmed outline is electroerosively removed with said finishing electrode.
11. An apparatus for carrying out the method defined in claim 1, comprising a tool carriage for carrying at least one drilling tool and at least one electrical machining tool electrode; control means; means operable in response to command signals from said control means for driving said tool carriage to selectively bring said drilling tool, for carrying out step a), into a drilling relationship with and said tool electrode, for carrying out step b) subsequent to step a), into an electrical machining relationship with, said workpiece, respectively; means for rotating said drilling tool in step a); means for supplying said electrical machin ing liquid into said holes and said machining gap in step b); means selectively operable in step b) for supplying said electrical machining current between said tool electrode and said workpiece; and means for advancing said drilling tool in step a) and said tool electrode in step b), relatively into said workpiece to drill each of said multiple holes in step a) and to electroerosively machine said left unmachined stock in step b), respectively.
1 2. The apparatus defined in Claim 11 wherein said tool carriage is arranged for carrying a plurality of drilling tools of different sizes to produce corresponding plural sets of holes of different diameter.
1 3. The apparatus defined in Claim 1 2 or Claim 13, wherein said tool carriage is arranged to carry a plurality of said electrodes including a roughing and a finishing electrode.
1 4. The apparatus defined in Claim 11 and constructed, arranged and adapted to operate substantially as herein before described with reference to, and as illustrated in, the accompanying drawings.
1 5. The method defined in Claim 1, substantially as hereinbefore described with reference to the accompanying drawings.
16. A workpiece which has been machined by the method defined in any one of Claims 1 to 10 and 15, or by means of the apparatus defined in any one of Claims 11 to 14.
CLAIMS (18 Mar 1983) 1 2. The apparatus defined in Claim 11 wherein said tool carriage is arranged for carrying a plurality of drilling tools of different sizes to produce corresponding plural sets of holes of different diameter.
1 3. The apparatus defined in Claim 11 or Claim 12, wherein said tool carriage is arranged to carry a plurality of said electrodes including a roughing and a finishing electrode.
14. The apparatus defined in Claim 11 and constructed, arranged and adapted to operate substantially as hereinbefore described with reference to, and as illustrated in, the accompanying drawings.
1 5. The method defined in Claim 1, substantially as herein before described with reference to the accompanying drawings.
1 6. A workpiece which has been machined by the method defined in any one of Claims 1 to 10 and 15, or by means of the apparatus defined in any one of Claims 11 to 14.
GB08236643A 1981-12-24 1982-12-23 Method and apparatus for machining a three-dimensional cavity in a workpiece Expired GB2112675B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212640A JPS58114828A (en) 1981-12-24 1981-12-24 Three dimensional machining method

Publications (2)

Publication Number Publication Date
GB2112675A true GB2112675A (en) 1983-07-27
GB2112675B GB2112675B (en) 1985-05-22

Family

ID=16625985

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08236643A Expired GB2112675B (en) 1981-12-24 1982-12-23 Method and apparatus for machining a three-dimensional cavity in a workpiece

Country Status (5)

Country Link
JP (1) JPS58114828A (en)
DE (1) DE3248116A1 (en)
FR (1) FR2518921B1 (en)
GB (1) GB2112675B (en)
IT (1) IT1149187B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639568A (en) * 1984-07-13 1987-01-27 Ex-Cell-O Corporation Apparatus and method for finishing fuel injector spray tips using EDM
US4762464A (en) * 1986-11-13 1988-08-09 Chromalloy Gas Turbine Corporation Airfoil with diffused cooling holes and method and apparatus for making the same
JPH01115534A (en) * 1987-10-28 1989-05-08 Nissei Plastics Ind Co Complex machine
JPH0265935A (en) * 1988-08-30 1990-03-06 Fanuc Ltd Wire-cut electric discharge machine
DE4415057C2 (en) * 1994-04-29 1996-05-15 Karlsruhe Forschzent Modular, flat coupling gear for a multi-joint mechanism
DE19623148C2 (en) * 1996-06-10 1998-04-09 Peddinghaus Carl Dan Gmbh Process and plant for the production or refurbishment of three-dimensional, metallic hollow molds
KR100400814B1 (en) * 2001-03-21 2003-10-08 주식회사 엠케이테크놀로지 The boring apparatus of air vent hole in tire - mould
DE10393400B4 (en) 2003-05-20 2009-02-26 Mitsubishi Denki K.K. Electric discharge device
CN106425347B (en) * 2016-11-24 2019-01-22 台州市黄岩宏特精工模具有限公司 injection mould processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH366439A (en) * 1958-06-14 1962-12-31 Hans Dr Ing Deckel Machine tool for making molds, dies, etc.

Also Published As

Publication number Publication date
FR2518921A1 (en) 1983-07-01
IT8249755A0 (en) 1982-12-24
DE3248116A1 (en) 1983-07-07
IT1149187B (en) 1986-12-03
FR2518921B1 (en) 1987-06-26
JPS58114828A (en) 1983-07-08
JPS6355416B2 (en) 1988-11-02
GB2112675B (en) 1985-05-22

Similar Documents

Publication Publication Date Title
US4459190A (en) Method of and apparatus for machining a 3-D cavity in a workpiece
US4596066A (en) Machining center
EP0345353B1 (en) Machining center
US4335436A (en) Microprocessor-controlled EDM system
CA1310073C (en) Laser/edm apparatus drilling precision holes
US4439660A (en) Electroerosive contour-machining method and apparatus with a rotary tool electrode
US20090001053A1 (en) Rough maching method and electroerosion tool performing the same
GB2112675A (en) Method and apparatus for machining a three-dimensional cavity in a workpiece
RU2044610C1 (en) Machine-tool for the electro-erosion processing
Bayramoglu et al. Systematic investigation on the use of cylindrical tools for the production of 3D complex shapes on CNC EDM machines
US4333000A (en) Apparatus for making hollow extrusion dies
US4534831A (en) Method of and apparatus for forming a 3D article
US4543460A (en) Generic electrode EDM method and apparatus, and assembly for maintaining chip concentration in the gap at an enhanced level
Moulton Wire EDM the fundamentals
JPH10193239A (en) Working device
US4229636A (en) Spark erosion machining process
US4596916A (en) Parting-line EDM with selectively actuated fluid flows
JP2002254247A (en) High efficient hole forming method by diesinking micro electrical discharge machining
JPS61121822A (en) Electric discharge processing machine
JP4247932B2 (en) Wire electrical discharge machine
JPH0691479A (en) Machining method of noncircular work
CN220311808U (en) Numerical control drilling machine
CA2067097A1 (en) Electrolytic finishing method of finishing a bevel gear and a method of machining an electrode used for the electrolytic finishing method
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
CN215392574U (en) Glass mould inclined hole straight hole processing machine

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee