GB2110708A - Heat storage materials - Google Patents

Heat storage materials Download PDF

Info

Publication number
GB2110708A
GB2110708A GB08230949A GB8230949A GB2110708A GB 2110708 A GB2110708 A GB 2110708A GB 08230949 A GB08230949 A GB 08230949A GB 8230949 A GB8230949 A GB 8230949A GB 2110708 A GB2110708 A GB 2110708A
Authority
GB
United Kingdom
Prior art keywords
amount
salt
heat storage
material according
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08230949A
Other versions
GB2110708B (en
Inventor
Christine Deborah Chalk
Cecil Hayman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calor Group Ltd
Original Assignee
Calor Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calor Group Ltd filed Critical Calor Group Ltd
Priority to GB08230949A priority Critical patent/GB2110708B/en
Publication of GB2110708A publication Critical patent/GB2110708A/en
Application granted granted Critical
Publication of GB2110708B publication Critical patent/GB2110708B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Abstract

The materials comprise at least one hydrated compound which undergoes reversible transformation to an anhydrous or less hydrated form and a fusion temperature-depressing salt both dispersed and suspended throughout a water-swollen crosslinked polymer hydrogel (e.g. a hydrogel as in European Patent 99 or 11411). The improvement is that the fusion temperature-depressing salt is present in an amount of 50 to 75% by weight of the eutectic amount; this substantially reduces thermal hysteresis. In a modification where water is present in excess of the amount required to fully hydrate the compound, the amount of fusion temperature-depressing salt may be increased up to 90% by weight of the eutectic amount.

Description

SPECIFICATION Heat storage materials The present invention is concerned with materials which can store thermal energy as latent heat.
A large number of hydrated compounds, such as inorganic salts, are known which absorb latent heat at a characteristic transition temperature on transition to the anhydrous or a less hydrated crystal form, and release the latent heat on reversion to the more hydrated form when cooling to a temperature below the transition temperature. The transition to the anhydrous or less hydrated form is sometimes called fusion, because solid hydrated compound transforms to liquid at the transition temperature.
Examples of hydrated compounds suitable for latent heat storage include the compounds listed in the following Table.
Fusion Salt temperature Calcium chloride hexahydrate 290C Disodium hydrogen phosphate dodecahydrate 35.50C Sodium sulphate decahydrate 320C Sodium thiosulphate pentahydrate 48"C Barium hydroxide octahydrate 750C Zinc nitrate hexahydrate 350C Potassium fluoride tetrahydrate 18.50C Sodium carbonate decahydrate 350C Lithium chlorate trihydrate 80C Sodium acetate trihydrate 580C Further examples of suitable salts include sodium dihydrogen phosphate heptahydrate, magnesium chloride hexahydrate and double salts such as K2Mg(SO4)2 - 6H2O.
Of the above hydrated compounds, sodium sulphate decahydrate is particularly preferred because it is relatively inexpensive, is commercially available in large quantities and has a useful fusion temperature for the storage of solar energy, for example.
It is known to adjust the fusion temperature of the hydrated compound by the addition of a fusion temperature-depressing salt; examples of suitable fusion temperature-depressing salts for sodium sulphate decahydrate are disclosed in U.S. Patent 3986969 and British Specification 2044437. Such fusion temperature-depressing salts, which are generally non-hydrated salts, are conventionally employed in amounts such that the resulting binary system is a eutectic mixture.
A problem with the use of hydrated compounds for heat storage is the incongruency of phase transition, that is, the transformation of the low-temperature solid phase to a two-phase condition in which solid and liquid coexist. In the two-phase condition, the difference in densities of the two phases causes segregation thereof, which limits their ability to recombine and form the low-temperature single solid phase. Consequently the amount of heat recoverable on cooling is reduced.
Various means of alleviating this problem have been proposed, two proposals being in our European Patents 99 and 11 411, in both of which there is disclosed a heat storage material in which a hydrated compound of the type described above is dispersed throughout a hydrogel comprising a water-swollen cross-linked polymer. In European Patent 99, the cross-linked polymer is formed by cross-linking a water-soluble polymer having pendant carboxylic or sulphonic acid groups by means of cations of polyvalent metal (that is, cross-linking is via an ionic mechanism), while in European Patent 11411, the cross-linked polymer is formed by cross-linking a water-soluble or water-dispersible synthetic hydrophilic polymer by a covalent cross-linking mechanism.
While heat storage materials of the type described in the above European patents are generally satisfactory, we have found that when a eutectic mixture of a hydrated salt and a fusion temperaturedepressing salt is employed, there is disadvantageously high hysteresis during thermal cycling. For example, with a heat storage material comprising a eutectic mixture of sodium sulphate decahydrate and sodium chloride, dispersed in a cross-linked polyacrylamide hydrogel, the material generally transforms to solid at 9 to 1 30C instead of at the theoretical value of 1 80C, while on the heating cycle, fusion generally takes place at 19 to 21 0C.
We have now surprisingly found that thermal hysteresis is substantially reduced if the amount of the fusion temperature-depressing salt is considerably less than that required to form a eutectic mixture with the hydrated compound.
According to the invention, therefore, there is provided a heat storage material which comprises at least one hydrated compound which undergoes reversible transformation to an anhydrous or less hydrated form, and at least one fusion temperature-depressing salt, dispersed and suspended throughout a water-swollen cross-linked synthetic polymer hydrogel, in which the fusion temperature depressing salt is present in an amount of 50 to 75%, preferably 60 to 70%, by weight of the eutectic amount (that is, the amount required to form a eutectic mixture with the hydrated compound).
The amount of the fusion temperature-depressing salt required to form a eutectic mixture with the hydrated compound can be derived from solubility data, for example, as given in "Solubilities of Inorganic and Metal Organic Compounds", Volume 2, by William F. Linke (published by the American Chemical Society).
Thus, the amount of sodium chloride required to form a eutectic mixture with sodium sulphate decahydrate is about 1 6 grams per 100 grams of the mixture (one mole of sodium chloride per mole of sodium sulphate decahydrate); 50 to 75% by weight of this amount of sodium chloride is 8 to 12 grams.
The optimum amount of fusion temperature-depressing salt depends to some extent on the nature of the hydrogel, in particular on the nature and amount of the polymer and cross-linking agent therefor; the optimum amount for any particular system can be determined by routine experimentation.
The hydrogel itself may be formed by cross-linking a water-soluble or water-dispersible synthetic hydrophilic polymer. The latter polymer is preferably linear and thermoplastic, and may have; (i) pendant carboxylic or sulphonic groups, in which case it is preferably cross-linked by reaction with cations of a polyvalent metal (in which case the polymer and the source of the cations of polyvalent metal are preferably as described in detail in the above-mentioned European Patent 99); and/or (ii) functional groups which are crnssAinkable by a covalent cross-linking mechanism (in which case the polymer and cross-linking agent therefor are preferably as described in detail in the abovementioned European Patent 11411).
It is particularly preferred that the cross-linked polymer retains active hydrophilic groups (that is, they are not blocked during cross-linking).
The polymer, the hydrated compound and the fusion temperature-depressing salt are preferably used in such amounts that the storage material contains a major proportion, by weight, of the hydrated compound and fusion temperature-depressing salt, and a minor proportion, by weight, of the crosslinked polymer, whereby the resulting material may have an advantageously high heat capacity per unit volume. For example, the proportion of polymer may be 0.1 to 10%, preferably 2 to 8% (for example, about 5%) based on the weight of the material according to the invention.
The hydrated compound may be conventional, for example, one or more of the compounds listed above; sodium sulphate decahydrate is particularly preferred.
Some hydrated compounds tend to undergo super-cooling when cooled below the fusion point (that is, they do not transform back to the hydrated form until the temperature is below the theoretical fusion point). This may result in less hydrated forms of the compound being formed, with consequent reduction in the amount of energy released. In order to avoid supercooling, the material may be nucleated, for example, by a heat-transfer method as disclosed in U.S. Patent 2677243, by careful control of the proportions of the ingredients of the composition, or by addition of an insoluble nucleating agent. Sometimes the polymer forming the hydrogel may act as the nucleating agent. A preferred nucleating agent for sodium sulphate decahydrate is borax, as proposed in U.S. Patent 2677664.Other suitable nucleating agents are disclosed in British Specifications 1 500245, 1 543336 and 2001096, European Specifications 11357 and 13569, German Offenlegungsschrift 2550106, USSR Patent 568669 and Japanese Applications 55/120686 and 55/142076-81.
When a nucleating agent is present this agent, like the hydrated compound and the fusion temperature-depressing salt, may be dispersed and suspended in the hydrogel and immobilized therein, or it may be added to preformed hydrogel.
The fusion temperature-depressing salt may be for example, a halide (such as a chloride) or nitrate of sodium, potassium or ammonium, or a mixture of two or more thereof. The fusion temperature-depressing salt and the hydrated compound are preferably such that the fusion temperature of the heat storage material is in the range 0 to 250C; suitable fusion temperaturedepressing salts for sodium sulphate decahydrate, and fusion temperatures which may be attained, are given below: Fusion Salt temperature Sodium chloride 180C Ammonium chloride 100C Potassium chloride 40C The heat storage material according to the invention preferably contains water in an amount sufficient to hydrate all the anhydrous form of the compound. Water may be present in a smali excess in some circumstances, reducing the heat storage capacity of the mixture but allowing the fusion temperature-depressing salt to be present in an amount greater than 75% by weight of the eutectic amount, for example 75 to 90% by weight. (Of course less than 75%, that is 50 to 75%, can still be used according to the invention when water is present in excess.) The heat storage material may, if desired, contain a dispersant which facilitates uniform and rapid solution of the polymer. Examples of such dispersants include certain organic liquids which are miscible in water. Particularly preferred such organic liquids are lower aliphatic alochols, such as methanol or ethanol.
When such a water-miscible organic liquid is included (for example when the polymer is not highly water-soluble, but only sparingly water-soluble or water-dispersible), it is preferably present in a relatively minor amount, compared with water, for example from 5 to 25% based on the weight of water.
The material according to the invention is preferably used in a method of heat exchange which comprises alternately cooling the material to a temperature below the transition temperature of the hydrated compound, and passing a fluid at a temperature above the above-mentioned transition temperature in heat-exchange relationship with the material, so as to cool the fluid and heat the cold storage material above the transition temperature.
The alternate cooling and heating of the material can be repeated for many cycles. In use, the material is preferably retained in a receptacle of a gas- or vapour-barrier material.
In order that the present invention may be more fully understood, the following Examples and Comparative Example are given by way of illustration only.
Comparative Example 1 Eight grams of anhydrous sodium sulphate and 32 grams of sodium chloride were dissolved in water and then 10 grams of polyacrylamide powder available commercially from Allied Colloids Ltd as WN33 was stirred into the solution at 25 to 300C until a clear gel solution was obtained. (WN 33 has an average molecular weight of about 4.5 million and a ratio of carboxyl:amide radicals of 7:3.) A further 72 grams of anhydrous sodium sulphate was added with stirring to form a homogeneous mixture; 5 cm3 of formalin (an aqueous solution containing approximately 40% by weight of formaldehyde and 14% by weight of methanol) was added with stirring and the resulting mix was maintained at 400C for six days. A few crystals of borax were added (as nucleating agent).
The resulting composition (which contained sodium chloride and sodium sulphate in equimolar proportions, this being the eutectic proportion) was subjected to a thermal cycling test by alternately heating to 350C and cooling to 50C; on the cooling part of the cycle, the average transformation temperature was 10.60C, while on the heating part of the cycle, the average transformation temperature was 1 90C.
Example 1 Comparative Example was repeated several times, except that the amount of sodium chloride was only 20 grams instead of 32 grams. (This correspond to 62.5% by weight of the eutectic amount.) In the cooling part of the thermal cycle test, the average transformation temperature was 200 C, while on the heating part of the cycle, the average transformation temperature was about 1 8.50C.
Example 2 The procedure of Comparative Example 1 was repeated several times, with sodium chloride in an amount of 1 7.6 grams (that is, 55% by weight of the eutectic amount).
In the cooling part of the thermal cycle test, the average transformation temperature was about 20.1 OC, while on the heating part of the cycle, the average transformation temperature was about 18.10C.
Example 3 The procedure of Comparative Example 1 was repeated several times, with sodium chloride in an amount of 22 grams (that is, 69% by weight of the eutectic amount).
In the cooling part of the thermal cycle test, the average transformation temperature was 1 8.30C, while on the heating part of the cycle, the average transformation temperature was about 19.00 C.
Comparative Example 2 The procedure of Comparative Example 1 was repeated several times, with sodium chloride in amount of 14.7 grams (46% by weight of the eutectic amount).
In the cooling part of the thermal cycle test, the average transformation temperature was about 23.80C, while on the heating part of the cycle, the average transformation temperture was about 1 8.30C.
The results obtained in the above Examples and Comparative Examples are summarised in the sole figure of the accompanying drawing.
Similar effects to those illustrated in the above Examples can be obtained using other fusion temperature-depressing salts (such as potassium chloride, ammonium chloride or potassium nitrate) and/or other hydrated compounds.

Claims (10)

Claims
1. A heat storage material which comprises at least one hydrated compound which undergoes reversible transformation to an anhydrous or less hydrated form, and at least one fusion temperature depressing salt, said compound and said salt being dispersed and suspended throughout a waterswollen cross-linked synthetic polymer hydrogel, in which the total amount of salt is 50 to 75% by weight of the eutectic amount.
2. A material according to claim 1, in which the amount of said salt is 60 to 70% by weight of the eutectic amount.
3. A material according to claim 1 or 2, in which said hydrogel is formed by covalently crosslinking a water-soluble or water-dispersible synthetic hydrophilic polymer.
4. A material according to any of claims 1 to 3, in which said cross-linked polymer has hydrophilic groups which have not been blocked during cross-linking.
5. A material according to any of claims 1 to 4, in which said salt is a halide or nitrate of sodium, potassium or ammonium, or a mixture of two or more thereof.
6. A material according to claim 5, in which said salt is a chloride.
7. A material according to any of claims 1 to 6, in which said hydrated compound and said salt are such that the heat storage material has a fusion temperature in the range 0 to 250C.
8. A material according to any of claims 1 to 7, in which said hydrated compound is sodium sulphate decahydrate.
9. A modification of the heat storage material claimed in any of claims 1 to 8, in which water is present in excess of the amount needed to fully hydrate said compound and the amount of said salt is 75 to 90% by weight of the eutectic amount.
10. A heat storage material substantially as herein described in any of Examples 1 to 3.
GB08230949A 1981-10-30 1982-10-29 Heat storage materials Expired GB2110708B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08230949A GB2110708B (en) 1981-10-30 1982-10-29 Heat storage materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8132829 1981-10-30
GB08230949A GB2110708B (en) 1981-10-30 1982-10-29 Heat storage materials

Publications (2)

Publication Number Publication Date
GB2110708A true GB2110708A (en) 1983-06-22
GB2110708B GB2110708B (en) 1984-12-12

Family

ID=26281130

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08230949A Expired GB2110708B (en) 1981-10-30 1982-10-29 Heat storage materials

Country Status (1)

Country Link
GB (1) GB2110708B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260759A2 (en) * 1986-09-17 1988-03-23 Philips Patentverwaltung GmbH Latent heat accumulating medium and its use
GB2252327A (en) * 1991-01-31 1992-08-05 Sumitomo Chemical Co Heat storage composition and process for preparing the same
US5882542A (en) * 1993-02-12 1999-03-16 Sumitomo Chemical Company, Limited Sodium sulfate base heat-storage composition and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260759A2 (en) * 1986-09-17 1988-03-23 Philips Patentverwaltung GmbH Latent heat accumulating medium and its use
EP0260759A3 (en) * 1986-09-17 1989-09-13 Philips Patentverwaltung GmbH Latent heat accumulating medium and its use
GB2252327A (en) * 1991-01-31 1992-08-05 Sumitomo Chemical Co Heat storage composition and process for preparing the same
US5882542A (en) * 1993-02-12 1999-03-16 Sumitomo Chemical Company, Limited Sodium sulfate base heat-storage composition and process for producing the same

Also Published As

Publication number Publication date
GB2110708B (en) 1984-12-12

Similar Documents

Publication Publication Date Title
CA1103454A (en) Inorganic salt in hydrogel with cross-linked acidic polymer for thermal energy storage
US4273667A (en) Thermal energy storage material comprising hydrated compound and water-swollen cross-linked polymer
KR900001317B1 (en) Thermochemical energy storing medium
CA1197084A (en) Heat storage materials
HU213958B (en) Mixtures of salts for storing thermal energy, as phase transition heat method for producing same, method for storing waste heat produced by motor vehicles and apparatus for storing thermal energy
US4619778A (en) Heat storage materials
CA1149596A (en) Energy storage medium
EP0309227A2 (en) Heat storage chemical mixtures
GB2110708A (en) Heat storage materials
US4283298A (en) Hydrated Mg(NO3)2 /NH4 NO3 reversible phase change compositions
KR830001736B1 (en) Hydrated Calcium Chloride Reversible Phase Change Composition with Nucleation Additives
US4447347A (en) Heat storage system
CA1212534A (en) Heat storage materials
GB2151249A (en) Heat storage material
JPH11349936A (en) Heat regenerating material
JPS58204082A (en) Cold heat-storage material
KR940005189B1 (en) Heat sink material for using carboxymethyl celluolose
EP0140467B1 (en) Heat storage compositions
JPS5947239B2 (en) Latent heat storage material
KR930009901B1 (en) Storage heat material
JPH05504787A (en) storage salt mixture
GB2094813A (en) Energy storage system medium
GB2169915A (en) Heat storage compositions
JPS6197380A (en) Thermal energy storage material
JPS58204083A (en) Cold heat-storage material

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19951029