GB2100740A - Electric field responsive (electroviscous) fluids - Google Patents

Electric field responsive (electroviscous) fluids Download PDF

Info

Publication number
GB2100740A
GB2100740A GB08217764A GB8217764A GB2100740A GB 2100740 A GB2100740 A GB 2100740A GB 08217764 A GB08217764 A GB 08217764A GB 8217764 A GB8217764 A GB 8217764A GB 2100740 A GB2100740 A GB 2100740A
Authority
GB
United Kingdom
Prior art keywords
fluid according
electroviscous fluid
electroviscous
fluids
liquid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08217764A
Other versions
GB2100740B (en
Inventor
James Edward Stangroom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB08217764A priority Critical patent/GB2100740B/en
Publication of GB2100740A publication Critical patent/GB2100740A/en
Application granted granted Critical
Publication of GB2100740B publication Critical patent/GB2100740B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

This invention relates to electroviscous (EV) fluids consisting of solid hydrophilic particles (e.g. of a monosaccharide polymer or a lithium methacrylate polymer) dispersed in hydrophobic liquids, where the liquid contains a diaryl derivative component of general formula I <IMAGE> in which R is CY2, O, S, SO, SO2, SiF2, or O-SiY2-O, X<1> and X<2> are halogens, (m+n) is between 1 and 3 on average, and (p+q) is between 0 and 1 on average. EV fluids containing these liquid components possess generally improved properties in terms of lower viscosities, electrical conductivities, toxicities and freezing points. In a preferred embodiment, the component is a mixture of brominated diphenyl methanes in which R is CH2 n=0, X<1>=Br, (m+n) is approximately one, and (p+q)=0.

Description

SPECIFICATION Electric field responsive (electroviscous) fluids This invention relates to electroviscous (EV) fluids.
Electroviscous fluids are suspensions of finely divided hydrophilic solids in hydrophobic liquids.
When an electric field is applied to such a suspension, it changes from an approximately Newtonian material to a Bingham plastic. The change is very rapid and reversible. The currents passed are extremely low. Such fluids may hence be used as an interface between electronics and power hydraulics.
The hydrophilic solids used in EV fluids have been much studied, for example see UK Patent No.
1,501,635. The liquid components of such fluids have been much less studied. Some desirable properties of a base liquid may be summarised as follows: 1. High boiling point and low freezing point, giving the EV fluid a wide temperature range (ideally ca-400C to 2000 C) and low vapour pressure at normal working temperatures.
2. Low viscosity, to give the fluid a low no-field viscosity.
3. High electrical resistance and high dielectric strength, to ensure that the fluid draws little power in operation and may be used over a wide range of applied field strengths.
4. High density (generally greater than 1.2 and typically 1.3-1.6 g/ml) since it is preferable for the EV solid and liquid components to have the same density, to prevent settling on standing.
5. Chemical stability.
It should also be of relatively low cost and toxicity and preferably bio-degradable.
There appear, moreover, to be other more subtle physico-chemical factors involved in determining whether a liquid is suitable. Synergistic effects occur, and it is found that although two liquids may separately give good EV fluids they may not do so when mixed and certain liquids may be effective only with certain solids. These chemical features are not yet understood.
In practice it is difficult to combine the above requirements in a single liquid, and some of these properties tend to be mutually exclusive. The most difficult objective to achieve is chemical stability without environmental persistence and a consequential pollution hazard: there is at present legislation restricting the use of persistent materials and this legislation is likely to increase. Although EV devices can be constructed so as to be totally enclosed, it would seem to-be a retrograde step to introduce another commercial use for suspect materials.
Of the three types of materials used at present as EV liquids, hydrocarbons, certain fluorinated polymeric materials and polychlorinated biphenyls, none is entirely suitable. Hydrocarbons suffer from the disadvantages of low density and the difficulty of combining high boiling points with low viscosities. The fluorinated materials which have been considered, such as the trifluoro-chloro-ethylene polymer 'Fluorolube' suffer from the disadvantages of environmental persistence, high cost, and a tendency to be immiscible with other liquids which might otherwise be used as inert diluents to achieve density matching with EV solids. Polychlorinated biphenyls have high viscosities and additionally have been recognized as dangerous pollutants.
It is one object of the present invention to provide an EV fluid that employs a liquid component that meets more fully the desirable characteristics listed above.
Other objects and advantages will become apparent from the description set out below.
According to the present invention there is provided an electroviscous fluid comprising a hydrophilic solid and hydrophobic liquid component wherein the hydrophobic liquid component comprises at least one diaryl derivative of general formula I
wherein R, is CY2, O, S, SO2, Si F2 or O-Si(Y2)-0, X1 and X2 are either the same or different and are F, Cl or Br, each of m and n is 0, 1, 2 or 3, each of p and q is 0, 1 or 2 and Y is H, F or a methyl or ethyl group, provided that, for the said diaryl derivatives in the liquid component, the average value of (m+n) is from 1 to 3 inclusive and the average value of (p+q) is from 0 to 1 inclusive.
The term "average value" as used above refers to the sum of (m+n) or (p+q) values for each molecular of diaryl derivative in the liquid component divided by the number of molecules of diaryl derivative in the liquid component.
Preferably R is CH2, O or S, X1 and X2 are either the same or different and are CI or Br, each of m and n is 0, 1 or 2, and each of p and q is 0 or 1. In a particularly preferred embodiment of the hydrophobic liquid component of the present invention R is CH2, X1 and X2 are Br, each of m and n is 0, 1 or 2, each of p and q is 0 and the average value of (m+n) is about 1. This preferred material is referred to hereinafter as Bromodiphenyl methane (BDM).
Preferably a substantial proportion (more than 80%) of the diaryl derivatives in the liquid component are asymmetrically substituted.
The molar volume (gm molecular weight/density) of the liquid component should preferably be above about 120 cm3.
EV liquid components according to the invention combine most of the desirable properties described above. The interposition between the rings of small groups or atoms of the type described allows free rotation of the rings and hence a low viscosity, generally around 1 5-20 mPa.s at 200C (BDM=15 mPa.s at 200C), compared with the conventional biphenyl derivatives, while maintaining a high density. At 200C, diaryl derivatives of general formula I wherein R is CH2 generally have densities of about 1.2-1.64 g/m3, (BDM=1.45 g/m3) and if R is 0 of of about 1.32-1.8 g/cm3, entirely compatible with many EV solids.
The introduction of groups containing benzyl-type carbon atoms, or heteroatoms between the rings, enables them to be degraded by biological processes, and therefore reduces any pollution hazard. The materials are however generally chemically stable and may be stored without deterioration. Some of the derivatives wherein R=CH2 tend to darken from their original water-white or lemon yellow colour on exposure to light, but without any deleterious effect on their EV suitability. This discolouration may easily be removed by distillation or passage through activated alumina.
Some of the thio-ether based materials (R=S) may be susceptible to oxidation. Some sulphone (R=SO) and sulphoxide (R=SO2) based materials are solids at ambient temperatures, and therefore unsuitable for use in the present EV fluid. Others however are stable liquid materials and hence suitable for use.
The asymmetric diaryl derivatives of this invention have lower freezing points than their symmetric counterparts. This effect is very marked and is a significant advantage of the preferred aspect of this invention. The effect is especially pronounced in the monomethyl substituted diphenyl methane derivatives (p or q=1) resulting in a drop of some 600C in the freezing point below that of the corresponding unsubstituted diphenyl methane derivatives. It has been found that additional methyl groups on the ring do not further depress the freezing point, and have a disadvantageous effect in reducing the density. One methyl group therefore appears to be an optimum degree of substitution. In addition, the introduction of asymmetry into the molecule tends to increase the bio-degradability for reasons which are not entirely understood.
Liquid materials according to the invention may be prepared by conventional synthetic methods.
Materials wherein R is CH2, CH CH3 or 0 may for example be prepared by direct halogenation of, for example, diphenyl methanes, 1, 1 diphenyl ethanes or biphenyl ethers using either the elemental halogen in the presence of a suitable catalyst, if necessary, sulphuryl chloride or phosphorus pentachloride. These direct methods tend to give products containing interferring impurities resulting particularly from halogenation of CH2 as well as the ring positions and indirect syntheses, giving more controllable products, are to be preferred. However, liquid components, produced by direct halogenation, and containing impurities such as non-halogenated diphenyl methanes and/or diphenyl methyl halides are within the scope of the present invention.
Suitable indirect syntheses include for example the Schick Reaction (J. W. Schick-US Patent No. 3,028,436) in which two molecules of a substituted phenyl group are condensed with formaldehyde (used in the form of paraformaldehyde) to create a -CH2- bridged diphenyl methane derivative. Such materials may also be prepared via for example reduction and diazotisation reactions starting from 2, 21, 4, 41, tetranitro-diphenyl-methane which is an easily prepared starting reagent (see for example K. Matsumura: JACS 5?, 816, (1929)). Using this route, and via Gatterman, Sandmeyer or Balz and Schliemann reactions a variety of halo-substituted diphenyl-methane derivatives may be obtained.
A preferred method of preparation of materials according to the invention is by a Friedel-Krafts reaction, as this allows the maximum flexibility of choice of ring-systems to be joined and gives the most easily controllable products with the least number of substitution alternatives. Friedel-Krafts reactions are notoriously sensitive in their yield and freedom from side reactions to the exact reaction conditions, and therefore these must be carefully controlled to give an optimum product.
Liquids in which R is CF2 may be prepared for example by exchanging fluorine for chlorine in dichloro-diphenyl methane, made from benzophenone and phosphorus pentachloride, using antimony trifluoride activated with bromine: PCI, Ph2COoPh2CCI2 SbF3 Ph2CCl2-*Ph2CF2 Alternatively, fluorinated materials may be prepared using PhSF3, made from PhSSPh and AgF2.
This reaction may be carried out at ambient pressure in glass apparatus. Both these reactions are described in Hasek W. R., Simith W. C., and Engelhardt V. A.-"The Chemistry of Sulphur Tetrafluoride It: the Fluorination of Organic Carbonyl Compounds" JACS, 82, 543 (1960).
Some silicon-based materials, for example, diphenyl difluorosilane, are commercially available.
Dimethyl diphenylsilane may be made via a Grignard type reaction using dimethyl chlorosilane and excess phenyl magnesium bromide. By the reaction of dimethyl chlorosilane with phenol, dimethyl diphenoxy silane may be prepared. These silicon-based materials may be somewhat susceptible to hydrolysis. Other compounds for use in the invention may be prepared by analogous routes.
Most of these reactions produce a number of stereoisomers and side products but often it has been found that it is not necessary to separate these as they do not interfere with the efficiency of the liquids in EV fluids. It is in fact in some cases advantageous to leave the stereoisomers etc. in the liquid, as they have a desirable effect on the colligative properties of the liquid in lowering the freezing point and raising the boiling point. Where necessary though, the materials may easily be purified by the conventional techniques of fractional distillation, molecular distillation etc.
The hydrophobic liquid component of the present invention may consist of a single diaryl derivative or a mixture of diaryl derivatives. In either case the liquid component may also contain other suitable non-conducting oleaginous liquids, either commercially available liquids, such as for example polymers of trifluoro-vinyl chloride (e.g. Fluorolube F5-S) or polychlorinated biphenyls (e.g. Aroclor 1242), or other compatible and miscible liquids, the addition of the further liquid being designed to achieve a desired ensith or viscosity etc. The diaryl derivatives of the present invention are not completely miscible with all such further diluents, and show miscibility ranges which are sensitive to temperature so that care must be taken to select mixtures miscible throughout the desired range of working temperature.
Liquids may be made up into electroviscous fluids according to the invention with a wide variety of hydrophilic solids, including the solid particulate polyhydric alcohols such as the monosaccharide polymers described in UK Patent No. 1,501,635 (US 4033892), or the water containing polymer particles having free or neutralized acid groups described in UK Patent No. 1,570,234, (US 4129513).
The contents of both UK and US patents are incorporated herein by way of reference. Both the cross linked and un-cross linked forms of the lithium polymethacrylate polymer salt described in UK Patent No. 1,570,234 give good EV solids with similar performances when used with the liquids of the invention, but the cross-linked lithium polymethacrylate polymer salt, especially cross-linked with methylene bis-acrylamide (MBA) and preferably in about a 1:6 molar ratio to the methacrylic acid content, is preferred, as EV fluids prepared using this solid have greater long term stability than those prepared using the un-cross linked solid.
The water content of the hydrophilic solid also affects the EV performance of fluids. This phenomenom is discussed in the above mentioned patents. Since the solids are hygroscopic and swell to form gel-like materials in water, precise measurements of water content are extremely difficult and the definition of a true dry state impossible. Water content may be related, as in UK Patent No.
1,570,234, to an arbitrary "dry" state as achieved by drying in vacuo at 500--600C. However, a more useful measure of water content may be derived from the current/voltage relationship of the EV fluid.
Thus, as further described below, beyond a certain voltage gradient (or voltage across a given gap) the relationship of (dc current per unit area/voltage gradient across-the working gap) to voltage gradient is linear having a slope termed Q. For a given solid/liquid combination log Q is linearly related to water content beyond the arbitrary dry state and hence 0 may be used as a practical measure of water content.
With high water content (high Q) fluids the EV response (change in yield point per unit voltage applied) is high up to a limit, the threshold voltage Eo (the voltage above which EV effects are observed) is low, and the response to changes in the applied field is rapid. The current passed though is high. Very high water contents however produce fluids with high viscosities in the absence of an applied field ("no-field" viscosity) and with a low working range of voltage, as arcing occurs at lower voltages. Such very high water content fluids are therefore undesirable.
With fluids of low water content (low Q) the currents passed are low, the range of working voltage is large, and the no-field properties are good. The threshold voltage is however high, and the response to changes in the applied field is slow. Low water content fluids also have an increased tendency to exhibit rheopexy, i.e. the increase of the yield point of the fluid when the fluid is gently agitated. In EV fluids rheopexy occurs as particles which loosely adhere in a random fashion under the influence of an applied field are compacted under gentle agitation. This effect can cause inconsistencies in measurements of the EV response.
For static (e.g. clutch) applications high and low water content fluids show similar EV responses, but as low water content fluids (0=0 to 1) pass less current, they are generally preferable. For dynamic (e.g. damper) applications, i.e. for retardation of a system in which the fluid is already being sheared when the voltage is applied, high water content fluids (Q=10 and above) are generally moresuitabie than low water fluids. The EV effect in low water content fluids becomes unreliable in dynamic situations as such fluids have a higher static than dynamic yield-point, tend to suffer from hysteresis effects and forms of "stick slip". This results in juddering.
The volume fraction of solid used in the EV fluid will depend on the viscosity of the base liquid. In practice the limiting factor in determining the amount of solid used is the increasing viscosity, accompanied by non-Newtonian behaviours at high solid contents. With suitable liquids and suitably treated solids, volume fractions as high as 50% solids may be used. Detectable EV activity may be found at as low as 10% (v/v) solids, but not only are such fluids very feeble, the electrical power input in relation to the mechanical change resulting is also much higher than when the solids content is higher.
A solids content of 2535% by volume has been found to be generally most suitable when the liquids of the present invention are used. The particle size of the solids is preferably between 1 and 50 microns.
A preferred electroviscous fluid composition comprises a 30% v/v suspension of lithium polymethacrylate cross-linked with methylene bis acrylamide, in Bromo-Diphenyl Methane. The fluids will also contain small amounts of water as understood in the art and discussed in the above UK Patent Nos. 1,501,635 and 1,570,234.
The preparation and properties of hydrophobic liquids according to the invention, and of electroviscous fluids prepared using these liquids will now be illustrated by way of example only with reference to the accompanying drawing in which Fig. 1 shows the relationship of shear strength (S) to applied voltage gradient (E) at zero shear, for an EV fluid according to this invention.
Fig. 2 shows the relationship of (current per unit area (1)/voltage gradient) to the voltage gradient at zero shear, for an EV fluid according to this invention.
Measurements of electroviscous response were carried out at zero shear using the test rig described in UK Patent No. 1,501,635 with an electrode gap of 0.5 mm and an electrode area of 78 cm2. 30% v/v MBA cross-linked lithium polymethacrylate was used in all cases as a standard solid, and was ball-milled and sieved to remove all particles greater than 50 microns diameter before use. In order to over come the problem of variable water content of the solid, the EV activity of each fluid prepared using the liquids of the invention was compared with that of a control fluid using a polychlorinated biphenyl, (Aroclor 1242Trade Mark) prepared simultaneously using the same solid sample.
The EV performance of fluids using the liquids prepared in the examples below are expressed in terms of the threshold voltage gradient Eo and the electroviscous response S/V, both shown in Fig. 1, and the two parameters P and Q which relate the dc current passed by the fluid to the voltage gradient E, as shown in Fig. 2.
The'shear stress, S, of a fluid is related to the voltage gradient E by the linear relationship.
S=K( E-Eo) over the working range of the fluids above Eo. The content k, otherwise termed S/V can hence be determined from the slope of the shear stress/voltage graph, Fig. 1. If E and Eo are in KV/mm and S in KPa, S/V has the units Pa.mm/volt.
The relationship of dc current per unit area, l, to voltage gradient takes the form l=PE+QE2 or E/l=P +QE This relationship is also substantially linear over the working range of the fluids above Eo. P and Q were therefore obtained directly from the intercept on the 1/E axis of the extrapolation of the linear portion of the 1/E against E graph Fig. 2 and the slope of the graph respectively.If I is expressed in milli Amps/m2 and E in KV/mm as before, the units of P and Q are P=nano-Amps/V.m Q=femto-Amps/(Volt)2 All measurements of EV performance reported below were made at a standard temperature of 300 C. In reported experiments P was found to be independent of temperature, but the variation of Q with temperature was found to obey a Boltzman type relationship, i.e.
QTa/0T2=eXp. [ -E/R( 1/T11/T2)1 where T, and T2 are absolute temperatures, R is the gas constant and E is an energy value approximately intermediate between the energy of a hydrogen bond and an ordinary covalent chemical bond, usually about 70 kj/mole.
The linear relationship between log Q and the water content of the solid used has been mentioned above.
In the preparative examples below, all temperatures are in degrees centigrade, and all densities in g.cm-3 unless otherwise stated.
The materials 'Aroclor 1242', 'Fluorolube' and 'Fomblin' are registered Trade Marks and have the following composition.
Aroclor 1242: a polychlorinated biphenyl fraction, density 1.38 g.cm-3, viscosity 40 mPa.s marketed by the Monsanto Chemical Corporation.
Fluorolube: a polymer of trifluorovinyl chloride manufactured by the Hooker Chemical Company of New York.
Fomblin: a perfluoropolyethyl fraction marketed by Montedison.
Example 1 Direct chlorination of diphenyl methane using elemental chlorine Chlorine gas was passed into diphenyl methane in the presence of a catalyst. A suitable catalyst was found to be pyridine, in the approximate ratio of 1 g of pyridine to 20 g of diphenyl methane; other common catalysts, such as aluminium chloride or iron metal, lead to the loss of a great deal of product as a red polymer, while others, such as zinc chloride, were without catalytic action. The reaction was carried out at or slightly above room temperature (the temperature rose sharply at the beginning of the reaction and then slowly fell). The progress of the reaction was followed by periodically weighing the reaction vessel. Under the conditions of the reaction, the first substitution took place on the central carbon atom, and only later into the benzene rings.
When sufficient chlorine gas had been absorbed, the liquid was poured into water, and vigorously stirred. The chlorine atoms attached to the central carbon atom underwent hydrolysis, and the liquid solidified, giving a chlorinated derivative of benzophenone. The solid was collected, and reduced by Clemmensen's method, using hydrochloric acid and amalgamated granulated zinc. By this means, a yellow oil was obtained. The oil was separated from the aqueous phate, and finally purified by molecular distillation (c. 1 500C/2 mm Hg), by which means a clear oil, with slight fluorescence was obtained.
Chlorine equivalent to three atoms per molecule of diphenyl methane was added initially; the final product, having about one chlorine atom per molecule, had a density of 1.2 g.cm-3 and viscosity 15 mPa.s at 2000. The material thus obtained tended to yellow on exposure to light.
EV fluids were made up using this liquid and cross linked lithium polymethacrylate at 30% v/v at two water contents, unmeasured but arbitrarily high and low, and were compared with similar fluids made up using Aroclor. The fluid prepared using the liquid above was found to have a higher Eo than Aroclor and passed an anomalously high current at low voltages, but was otherwise found to give an active fluid. The results are given in Table 2 below.
Example 2 Chlorination of diphenyl methane using sulphuryl chloride A known weight of diphenyl methane was mixed with sufficient sulphuryl chloride to introduce two chlorine atoms into each molecule of diphenyl methane in the presence of a small amount of aluminium chloride as catalyst, and the mixture was gently warmed. The reaction vessel was wrapped in foil to exclude light. A vigorous reaction occurred indicated by a brisk effervescence of HCI gas. The mixture was boiled under reflux until boiling suddenly ceased, indicating that all the sulphuryl chloride had been consumed. When the reaction was complete the mixture was cooled, shaked with water, and the lower organic layer run off, distilled under vacuum (2000 C, 5 mm of mercury) and finally purified by molecular distillation. A water white oil was obtained which had a density of 1.22.The viscosity was considerably lower than Aroclor.
EV fluids were made up with this liquid and the cross-linked lithium polymethacrylate and were found to be quite effective. The results are given in Table 2 below.
Example 3 Chlorination of diphenyl ether A volume of diphenyl ether was placed in a tinfoil-wrapped flask, a small quantity of aluminium chloride was added and the flask gently warmed. A slow stream of chlorine, dried by passage through sulphuric acid was bubbled through the liquid with periodic weighing to monitor the chlorine uptake.
When the increase in weight of the flask corresponded to the introduction of three atoms of chlorine per molecule the chlorine stream was stopped, air was readmitted to the system, and the resulting deep red-brown liquid was shaken with aqueous potassium hydroxide (to remove possible phenolic contaminants) and distilled under reduced pressure (ca 5 mm of mercury). Three fractions were.
collected, over the ranges 1751 8500, 1851 9500 and 1 9512050 C. The lowest fraction was water-white and had a density of 1.32 g.cm-3. The two higher fractions were progressively deeper yellow and had densities of 1.34 and 1.35 g.cm-3 respectively. A sample of the lowest fraction was tested for conductivity in a static test rig (78 cm2, gap 0.5 mm) and passed 100 microamps at 1 kv.
Standing over potassium hydroxide for 48 hours made no difference to this.
The three fractions were pooled and submitted to molecular distillation to obtain a water-white distillate with half the conductivity of the starting material.
The product did not freeze at 50C. 30% v/v fluids were made up using cross-linked lithium polymethacrylate. As can be seen from Table 2 below the liquid showed a slight increase in Eo, as compared with the parent diphenyl ether, but a worse EV performance than Aroclor. The liquid passed higher currents and gave lower yield points. Comparison of shear rate with the shear stress transmitted across the fluid showed that the chlorinated diphenyl ether materials transmitted considerably less shear stress at the same shear rate.
Example 4 Schick reaction between chlorobenzene and formaldehyde in the presence of concentrated sulphuric acid. (US Patent No. 3,028.436 dated 3 April 1962) 500 g of chlorobenzene and 100 g of concentrated sulphuric acid were heated to 1000C, and five 12 g portions of paraformaldehyde added at 30 min intervals over a total of 3 hrs with swirling after each addition to mix the reagents. Water cooling was maintained over this reaction period. At the end of the reaction period, the organic mixture was extracted with water, to remove the acid, and the liquid organic layer distilled at atmosphere pressure. The fraction boiling in the range 300350 C (corresponding roughly to Schick's 'Cut 1' was collected.
For use in EV fluids, the product was further purified, by fractional distillation, using a Vigreux column. The first fraction obtained, up to 3200C, was yellow. Above this, the distillate become waterwhite, and the fraction boiling in the range 328335 C was collected as the major product. A final, high-boiling fraction was discarded. By refractionating the first, yellow fraction a significant amount of the desired product was obtained, leaving a non-volatile coloured residue in the still-pot. It must be emphasised that the desired product is water-white; the colour of the distillate is the best guide during the distillation.
On cooling, the product deposited a very fine white precipitate, which disappeared on warming.
This was removed by slowly cooling the product to OOC, at which temperature it froze completely, and then allowing the mass to thaw slowly in a filter. The filtrate was clear, and water-white; a small quantity of white, waxy contaminant was left on the filter. In some cases, it was necessary to repeat this freeze-thaw treatment if, by chance, a large amount of contaminant was present. The final liquid was clear, water-white with a very faint fluorescence. Its density was 1.23 g.cm-3 and its viscosity at 300C was about 15 mPa.s. From the amounts quoted (500 g chlorobenzene, 60 g paraformaldehyde), 120 g of the desired product was obtained, but approximately 100 g of chlorobenzene, as its water azeotrope (70% chlorobenzene, BP 900 C) was recovered unreacted.
EV fluids made up using this liquid and the cross-linked lithium polymethacrylate solid were found to be almost identical in properties to fluids made up using Aroclor and the same solid as shown in Table 2 below.
The liquid was also found to arc at a higher voltage than the Aroclor based fluids. The liquid was found to be miscible with Fluorolube at ambient temperatures to increase its density, but immiscibility occurred at lower temperatures.
Example 5 Schick reaction between bromobenzene and formaldehyde The basic Schnick method was applied, without fundamental modification, to the production of a bromo-compound. The actual reaction was carried out exactly as in example 4, save that 697 g of bromobenzene were substituted for the original 500 g of chlorobenzene. The reaction using bromobenzene was noticeably more vigorous than with chorobenzene, and quite sufficient heat to boil the water-bath used to control the temperature was generated after each addition of paraformaldehyde.
The purification of the bromo-compound differed from that of the chloro-derivative. The cooled reaction mixture was poured into water; addition of a small amount of acetone, to reduce the viscosity of the organic material was found to be advantageous. The organic layer was then washed, first with 1 N sodium hydroxide, and then with water.
Distillation was carried out in several stages. In the first stage, at atmospheric pressure, the material was heated until the temperature of the vapour reached 2000 C; this removed water and unreacted bromobenzene (BP 1 560C). The distillation was then continued under reduced pressure at 6 mm of mercury. After final traces of volatile materials had been eliminated, the temperature of the vapour rose to 2200 C, and a water-white distillate was collected. Distillation was continued until the vapour temperature reached 2400C, at which point the distillate became high-melting. It was found to be convenient to use a water-cooled condenser in this distillation in order to readily detect when this high-melting material was evolved.Further distillation, conveniently molecular (1 740C/1 mm Hg), was necessary to obtain a water-white product. It has been found that even minor amounts of coloured impurity in the product greatly increase the conductivity of the liquid. The 'freeze-thaw' filtration technique described under Example 4 was advantageously applied to this material, the liquid completely solidifying at about 40C; by its use, significant amounts of a white solid were removed.
The final produce had a density of 1.64 g.cm-3 at 200 C, and an approximate viscosity, at 300 C, of 19 mPa.s. The liquid was found to acquire a yellow tinge on starlding. The high density of the liquid enabled density-matched EV fluids to be prepared using suitable solids. EV fluids made using crosslinked lithium polymethacrylate were found to be effective, and comparable with fluids made using Aroclor as shown in Table 2 below. Though fluids using the liquid had a higher Eo than Aroclor based fluids, they passed less current.
Example 6 Preparation of bromo diphenyl methane 1400 ml of bromobenzene were mixed with 65 g of anhydrous aluminium chloride and the mixture was stirred magnetically. 640 ml of benzyl chloride was added dropwise over approximately four hours, and the mixture left stirring overnight at room temperature. The reaction mixture was then washed three times with 1000 ml 2M NaOH, then three times with 1000 ml water, the aqueous layer being discarded. The organic mixture was then evaporated in a rotary evaporator at 1 0O0C, 12 mm of mercury. The distillate was fractionated to recover re-usable bromobenzene. The residue was 'flash distilled' in a wiped-film still at 1200 C, 12 mm of mercury, and the distillate, largely dibromobenzene, was discarded.The residue was subjected to 'molecular distillation' at 1200C, 10-3 mm of mercury.
The distillate comprised the product 'bromodiphenyl methane', about 700 g (50%) being obtained.
Passage of the residue of the molecular distillation through the still a second time yielded small amounts of the product.
It will be apparent to one skilled in the art that the temperatures and pressures given for the distillations at reduced pressure are only approximate, as the progress of molecular distillation is affected by the geometry of the still and the feedrate. Both the 'Flash Distillation' and the final Molecular Distillation are carried out in a 'wiped-film' still for example of the type manufactured by Leybold Heraeus.
When first distilled, the final product varied from water-white to lemon yellow, but darkened on exposure to light, apparently without deleterious effects to its performance in an electroviscous fluid. If required, the colourwas removed by passage through activated alumina; or by distillation at atmospheric pressure, a process which did not in fact damage the material, reflecting good thermal stability. Such decolourised material in fact normally darkened again when exposed to light. However, it would appear that the darkening is due to an impurity, insofar that some samples of the material have been obtained which have lost this tendency.It is clear that the material, as normally prepared, was in fact a mixture of substances, since both by fractionation at ambient pressure and by careful molecular distillation a series of fractions of gradually increasing boiling-point and density could be obtained. It is suspected that during the primary reaction, transfer of bromine takes place from the bromobenzene, to previously formed bromo-diphenyl methane, giving rise to more highly brominated species. No effort was made to obtain chemically pure materials, since it is believed that the range of species present in the final product was responsible for its particularly advantageous properties.The density of this material, as normally prepared, was about 1.45 g.cm-3, significantly higher than expected and, very conveniently, almost an exact match for the cross-linked lithium polymethacrylate solid, and hence simplifying greatly the problem of producing density matched fluids. Additionally the large number of different chemical species present lead to a very low freezing point for the product, below -200C. The viscosity of the final product as normally prepared is some 15 mPa.s at 200C, although the higher boiling fractions increase the viscosity of some fractions. The EV performance of fluids made using this liquid is shown in Table 2 below.The combination of ease of preparation, stability, boiling point, melting point and viscosity with an average EV response appears to form the best 'envelope' of properties observed among the examples described herein.
Examples 7 and 8 Use of Friedel-Kraft reactions to join other dissimilarly substituted ring systems and thereby form asymmetrically substituted diaryl derivatives Analogous reactions to Example 6 were carried out between a halogen substituted aromatic hydrocarbon (Ar-H) and a substituted benzyl halide Ar1-CH2-Y, in which Y is the halide, in the presence of aluminium chloride, to produce a halogenated diaryl methane Ar-CH2-Ar'. The reactions were carried out as below.
(a) 3 mole equivalents of Ar-H were added to approximately 31 mole equivalent of anhydrous Aluminium Chloride. The suspension was stirred magnetically at room temperature.
(b) 1 mole equivalent of Ar'-CH2-Y was slowly added to the suspension prepared as in (a) above, the addition taking approximately an hour, stirring and cooling in a water bath being maintained. When the addition was complete, the mixture was left stirring at room temperature overnight.
(c) The mixture was washed consecutively with water (1 volume), 1 M eodiumfiydroxide (3x 1 volume) and water (3x 1 volume). The organic layer was then dried by filtration through a phase-separating filter (Whatman, Type IPS).
(d) The organic mixture was then distilled in two stages, the first at atmospheric pressure to remove water and unreacted Ar-H, and the second at reduced pressure. The product was usually found to distil in the region of 2000C/4 mm of mercury after a small lower boiling fraction containing water and unreacted Ar-H.
(e) Any yellow colour in the final distilled product was removed by passing through a short column of activated alumina.
Two materials were prepared in this manner using 2CIC6H4as Ar',2CHSC6H3Ci (Example 7) and C6H4Br (Example 8) as Ar respectively. Neither of these two materials showed any sign of freezing at -1 00C and both had viscosities in the region 1520 mPa.s at 200 C. Both were suitable for use in EV fluids, Example 8 being most suitable in view of its high density.
The properties of the liquid materials produced in Examples 1-8 above may be summarized as in Table 1 below. the EV response at zero shear of fluids prepared from the liquid materials of Examples 1-8 and 30% (v/v) cross linked lithium polymethacrylate are given in Table 2. Similar data for fluids prepared from commercially available liquids and 30% cross linked lithium polymethacrylate is also given in Table 2.
Table 1 Example R Substituents X,X Substituents Density Melting Boiling point C Viscosity CH3 g.cm-3,20 C point C at ( ) mm mercury mPa.s 1 CH2 X=X=CI m+n approximately=1 2 CH2 X=X=CI p=q=0 1.2 - 150 (2) 15 at 20 C m+n approximately=2 3 O X=X=CI p=q=0 1.22 - 200 (5) m+n approximately=3 4 CH2 X=X=CI p=q=0 1.32 less than 5 175-185 (5) m approximately=1 n approximately=1 p=q=0 1.23 0 300 (360) 15 at 30 C 5 CH2 X=X=Br m approximately=1 n approximately=1 p=q=0 1.64 4 174 (1) 19 at 30 C 6 CH2 X=X=Br m approximately=1 n approximately=0 p=q=0 1.45 -20 120 (10-3) 15 at 20 C 7 CH2 X=X=CI m approximately=1 n approximately=1 p=1 q=0 1.2 less than -10 200 (4)) 15-20 at 20 C 8 CH2 X=Br X=CI m approximately=1 n approximately=1 p=q=0 1.55 less than -10 200 (4) 15-20 at 20 C Table 2 Liquid S(V(Pa.mm/V) Eo(kV/mm) P(nA/Vm) O(fA/V2) Aroclor Aroclor Aroclor Aroclor Fluid control Fluid control Fluid control Fluid control EX 1(LW) 1.91#0.28 2.02#0.36 1.7#0.56 0.88#0.44 0.55#0.75 1.57#0.77 2.54#0.24 3.71#0.33 EX 1(HW) 2.45#0.55 1.6#0.15 1.88#0.70 0.92#0.24 -10.7#11.9 -2.25#2.02 18.6#4.8 18.2#1.0 EX 2 2.03#0.4 1.85#0.15 1.1#0.46 0.96#0.20 4.78#1.78 -1.1#2.7 14.2#1.0 16.8#1.30 EX 3 1.84#0.15 2.43#0.2 0.73#0.16 0.32#0.17 -9.4#5.8 -2.4#1.0 20.2#2.8 10.5#0.5 EX 4(LW) 2.23#0.2 1.65#0.10 1.14#0.24 0.76#0.14 -2.1#0.70 -0.49#0.30 3.33#0.28 2.63#0.15 EX 4(HW) 1.98#0.13 1.75#0.11 0.65#0.13 0.45#0.14 -4.8#2.675 -1.98#4.95 20.6#1.4 27.2#2.4 EX 5 1.79#0.04 1.97#0.1 0.86#0.06 0.55#0.12 -0.19#0.50 -0.53#0.34 2.03#0.23 2.31#0.16 EX 6(BDM) 2.31#0.26 " 0.90#0.28 " -1.16#0.52 " 2.30#0.24 " EX 7 2.03#0.14 " 0.46#0.16 0.88#0.44 -0.74#0.21 " 2.29#0.09 " EX 8 1.69#0.07 " 0.90#0.11 0.88#0.44 -0.75#0.35 " 2.44#0.12 " TBE 1.57#0.05 0.60#0.07 " -0.49#0.26 " 2.16#0.12 " DPE(comp) 1.67#0.005 0.60#0.07 " -0.26#0.43 " 2.42#0.15 " DPS(comp) 1.78#0.08 0.87#0.13 " +0.72#0.33 " 2.56#0.13 " DDM(comp) 2.25#0.25 2.1#0.38 " 22.7#9.4 14.5#3.4 " BFPM 2.12#0.13 0.96#0.17 " -0.48#0.30 " 2.09#0.11 " DDS(comp) 0.84#0.12 2.02#0.58 " -23.4#7.7 " 10.81#1.81 " DBDS 1.71#0.24 2.52#0.58 " 10.11#0.75 " 2.69#0.28 " DCM 2.09#0.09 2.13#0.11 1.03#0.14 0.52#0.14 -1.17#0.85 -0.68#0.27 3.58#0.31 3.1#0.11 BBE 1.9#0.13 " 1.43#0.21 " -0.07#1.3 " 3.35#0.44 " NB. EX=Example LW=Low water content, HW=high water content TBE=Tribromophenyl ether DPE=Diphenyl ether DPS=Diphenyl ether DDM=Diphenyl sulphide DDM=Diphenyl difluoromethane BFPM=Bis (Fluorophenyl) methane DDS=Dimethyl diphenoxysilane DBDS=Dimethyl bis (2,4-dichlorophenyl) silane DCM=Dichlorophenyl (Chlorophenyl) methyne BBE=1,1,Bis (Bromophenyl) ethane Comp=comparative

Claims (19)

Claims
1. An electroviscous fluid comprising a hydrophilic solid and a hydrophobic liquid component wherein the hydrophobic liquid component comprises at least one diaryl derivative of general formula I
wherein R is CY2, O, S, SO, SO2, SiO2, SiF2 or 0-SiY2-O, X' and X2 are either the same or different and are F, CI or Br, each of m and n is 0, 1, 2 or 3, each of p and q is 0, 1 or 2 and Y is H, F or a methyl or ethyl group, provided that for the said diaryl derivatives in the liquid component, the average value of (m+n) is from 1 to 3 inclusive and the average value of (p+q) is from 0 to 1 inclusive.
2. An electroviscous fluid according to claim 1 wherein R is CH2, 0 or S2.
3. An electroviscous fluid according to either claim 1 or claim 2 wherein X' and X2 are the same or different and are Cl or Br.
4. An electroviscous fluid according to any one of claims 1 to 3 wherein each of m and n is O, 1 or 2.
5. An electroviscous fluid according to any one of claims 1 to 4 wherein each of p and q is O or 1.
6. An electroviscous fluid according to either claim 4 or claim 5 wherein R is CH2, X1 and X2 are Br, each of m and n is O, 1 or 2, each of p and q is 0 and the average value of (m+n) is about 1.
7. An electroviscous fluid according to any one of claims 1 to 6 wherein more than 80% of the at least one diaryl derivatives in the hydrophobic liquid component are asymmetrically substituted.
8. An electroviscous fluid according to any one of claims 1 to 7 wherein the molar volume of the hydrophobic liquid component is above at least about 120 cm3.
9. An electroviscous fluid according to any one of claims 1 to 8 wherein the density of the hydrophobic liquid component at 200C is between about 1.2 and 1.8 gm cm~3.
10. An electroviscous fluid according to any one of claims 1 to 9 wherein the hydrophobic liquid component further comprises at least one further hydrophobic liquid selected from the group hydrocarbons, fluorinated polymers and polychlorinated biphenyls.
11. An electroviscous fluid according to claim 10 wherein the at least one further hydrophobic liquid is a polymer of trifluorovinyl chloride.
12. An electroviscous fluid according to any one of claims 1 to 11 wherein the hydrophilic solid comprises a polyhydric alcohol in particulate form.
13. An electroviscous fluid according to claim 12 wherein the hydrophilic solid comprises a monosaccharide polymer.
14. An electroviscous fluid according to any one of claims 1 to 11 wherein the hydrophilic solid comprises water containing polymer particles having free or neutralised acid groups, provided that the polymer is not a polyhydric alcohol.
15. An electroviscous fluid according to claim 14 wherein the hydrophilic solid comprises lithium polymethacrylate either in cross-linked or non-cross-linked form.
1 6. An electroviscous fluid according to claim 1 5 wherein the lithium polymethacrylate (LiPM) is cross-linked with methylene bis-acrylamide (MBA).
1 7. An electroviscous fluid according to claim 1 6 wherein the molar ratio of methacrylic acid content to MBA in the polymer particles is 6 to 1.
18. An electroviscous fluid according to any one of claims 14 to 17 wherein the fluid contains between about 25 and 33% (v/v) of the polymer particles, said particles having sizes of between about 1 and 50 microns.
19. An electroviscous fluid according to any one of claims 1 to 18 substantially as hereinbefore described with particular reference to the Figures and any one of the Examples.
GB08217764A 1981-06-19 1982-06-18 Electric field responsive (electroviscous) fluids Expired GB2100740B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08217764A GB2100740B (en) 1981-06-19 1982-06-18 Electric field responsive (electroviscous) fluids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8118885 1981-06-19
GB08217764A GB2100740B (en) 1981-06-19 1982-06-18 Electric field responsive (electroviscous) fluids

Publications (2)

Publication Number Publication Date
GB2100740A true GB2100740A (en) 1983-01-06
GB2100740B GB2100740B (en) 1985-03-06

Family

ID=26279847

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08217764A Expired GB2100740B (en) 1981-06-19 1982-06-18 Electric field responsive (electroviscous) fluids

Country Status (1)

Country Link
GB (1) GB2100740B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310959A1 (en) * 1982-03-25 1983-09-29 National Research Development Corp., London ELECTROVISCOSE LIQUIDS
DE3402863A1 (en) * 1984-01-27 1985-08-01 Hydrocor-Forschungs- und Analytik GmbH, 1000 Berlin BROMYLED BENZYLTOLUOL DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
EP0150994A1 (en) * 1984-01-26 1985-08-07 National Research Development Corporation Electro-rheological fluid compositions
GB2170510A (en) * 1985-02-06 1986-08-06 Nat Res Dev Electrorheological fluids
EP0210612A2 (en) * 1985-07-26 1987-02-04 Hydrocor Forschungs- Und Analytik Gmbh Brominated alkylenebenzene derivatives as a base for hardly inflammable, biologically degradable functional fluids
GB2230532A (en) * 1989-04-19 1990-10-24 Nat Res Dev Electrorheological fluid
EP0457597A1 (en) * 1990-05-18 1991-11-21 Shin-Etsu Chemical Co., Ltd. Electroviscous fluid composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310959A1 (en) * 1982-03-25 1983-09-29 National Research Development Corp., London ELECTROVISCOSE LIQUIDS
EP0150994A1 (en) * 1984-01-26 1985-08-07 National Research Development Corporation Electro-rheological fluid compositions
DE3402863A1 (en) * 1984-01-27 1985-08-01 Hydrocor-Forschungs- und Analytik GmbH, 1000 Berlin BROMYLED BENZYLTOLUOL DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
WO1985003306A1 (en) * 1984-01-27 1985-08-01 Hydrocor Forschungs-Und Analytik Gmbh Hardly inflammable, biologically degradable functional liquid
EP0150826A2 (en) * 1984-01-27 1985-08-07 Hydrocor Forschungs- Und Analytik Gmbh Difficult flammable biodegradable functional fluid
EP0150826A3 (en) * 1984-01-27 1985-11-06 Hydrocor Forschungs- Und Analytik Gmbh Difficult flammable biodegradable functional fluid
GB2170510A (en) * 1985-02-06 1986-08-06 Nat Res Dev Electrorheological fluids
EP0191585A1 (en) * 1985-02-06 1986-08-20 Btg International Limited Electrorheological fluids
EP0210612A2 (en) * 1985-07-26 1987-02-04 Hydrocor Forschungs- Und Analytik Gmbh Brominated alkylenebenzene derivatives as a base for hardly inflammable, biologically degradable functional fluids
EP0210612A3 (en) * 1985-07-26 1988-03-09 Hydrocor Forschungs- Und Analytik Gmbh Brominated alkylenebenzene derivatives as a base for hardly inflammable, biologically degradable functional fluids
GB2230532A (en) * 1989-04-19 1990-10-24 Nat Res Dev Electrorheological fluid
GB2230532B (en) * 1989-04-19 1991-12-11 Nat Res Dev Electrorheological fluid
US5108639A (en) * 1989-04-19 1992-04-28 National Research Development Corporation Electrorheological fluid containing a base-treated polyanthine solid phase
EP0457597A1 (en) * 1990-05-18 1991-11-21 Shin-Etsu Chemical Co., Ltd. Electroviscous fluid composition

Also Published As

Publication number Publication date
GB2100740B (en) 1985-03-06

Similar Documents

Publication Publication Date Title
US4502973A (en) Electroviscous fluids
JP2852979B2 (en) Fluorine-containing compound
McBee et al. Aromatic fluorocarbons
GB2100740A (en) Electric field responsive (electroviscous) fluids
US2600802A (en) Plasticization of perhalocarbon polymers
US5601755A (en) Dielectrics comprising methyl/benzyl derivatives of diphenylmethane
US2975220A (en) Fluorinated organic compounds
EP0150994B1 (en) Electro-rheological fluid compositions
CA1124263A (en) Dielectric liquids
US4577044A (en) Preparation of chlorotrifluoroethylene telomers with fluoroxytrifluoromethane
Goerner et al. A study of the peroxide-catalyzed chlorination of the bromotoluenes with sulfuryl chloride
US3860661A (en) Phenoxybiphenyl compounds
EP0194781A1 (en) Process for preparing alpha, omega-haloperfluoroalkanes
JP4115538B2 (en) Thermal fluid blend containing 1,2,3,4-tetrahydro (1-phenylethyl) naphthalene
US2516403A (en) Aryloxyalkanes
US3192272A (en) Tribrominated dialkyl benzenes
US5495058A (en) Non-ozone depleting chlorination solvents
US3363022A (en) Catalytic dehydrochlorination of chloroparaffins
US2500762A (en) Lubricant composition
US2183552A (en) Alkylated poly-isopropyl halobenzenes
US4368343A (en) Process for producing high-vacuum oils
CA1244054A (en) Substantially non-flammable biologically degradable functional fluid
US3651155A (en) High density fluids
US2695900A (en) Trivinyl trichlorobenzene compounds
US3720727A (en) Purification of acetylenically unsaturated hydrocarbons

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19930618