GB2099508A - Rotary positive-displacement fluid-machines - Google Patents
Rotary positive-displacement fluid-machines Download PDFInfo
- Publication number
- GB2099508A GB2099508A GB8215636A GB8215636A GB2099508A GB 2099508 A GB2099508 A GB 2099508A GB 8215636 A GB8215636 A GB 8215636A GB 8215636 A GB8215636 A GB 8215636A GB 2099508 A GB2099508 A GB 2099508A
- Authority
- GB
- United Kingdom
- Prior art keywords
- pump
- gears
- oil
- liquid
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0053—Venting means for starting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
A gear pump 14 for a liquid e.g. lubricating oil, containing gases is provided with a vent pipe 26 for releasing the entrained gases, which would otherwise collect at the outlet side of the gears 25. The vent pipe terminates within the pump housing 21 at a zone which is out of the path of the liquid centrifuged by the gears and on the downstream side of the gears. An additional inlet pipe 27 which directs liquid across the main inlet 22 into the gap between the periphery of one of the gears and the housing may be provided to ensure adequate sealing and, thus, obviate depriming. <IMAGE>
Description
SPECIFICATION
Gear pumps
This invention relates to gear pumps; that is to say to pumps which employ intermeshing gears for pumping liquids, emulsions or mixtures of liquids and gases.
In some applications the gear pump can unintentionally entrain air or other gases with the liquid to be pumped. In other applications the gear pump is used to pump aerated liquids, liquids containing gases or emulsions of liquids and gases. We have found that in both of these applications the liquids are centrifuged to the perimeter of the gears and the gaseous phase becomes trapped in a void formed at the delivery side of the pump in the lee of the intermeshing gears. The entrapped gas becomes highly compressed and is forced through the intermeshing gears back to the inlet side of the pump at extremely high velocities. This highly compressed gas prevents the liquid entering the pump and eventually the pump recirculates the trapped gases and fails to pump the liquid. The pump then requires to be re-primed with liquid before it will continue pumping.
It can be shown that any gear pump designed to pump liquids that contain gas will unprime (i.e.
empty itself of the liquid) if it has to pump against a high pressure, and will not prime itself until the pressure at the inlet and outlet are nearly equalised.
In some applications, for example, a lubrication system of a gas turbine aero-engine it is impossible to re-prime the gear pumps whilst the pumps are running, and even a momentary loss of supply of oil to vital parts of the engine could prove disastrous.
In general, the entrapment of gas limits the overall pressure ratio that the gear pump can cope with before the gear pump unprimes with liquid.
Typical gear pumps as would be used for pumping aerated oil in a lubrication system of a gas turbine aero engine fail at pressure differentials between the inlet and outlet of the order of 5:1 to 10:1.
The invention as claimed overcomes the problem of the entrapment of air or gases which would otherwise cause the pump to fail, to providing a vent to release the air as it forms at the outlet side of the pump.
It has been found that a conventional gear pump designed to pump aerated oil which normally fails at pressure ratios of about 10:1, when modified in accordance with the present invention, can cope with pressure ratios in excess of 100:1, and can also be stopped and restarted without independently repriming the pump.
The invention will now be described, by way of an example, with reference to the accompanying drawings which shows, schematically, part of an oil lubrication system of a gas turbine aero engine incorporating a gear pump constructed in accordance with the present invention.
Referring to the drawings there is shown a pressurisable oil system which includes a tank 10, and a gearbox 11 which is driven from a shaft of the gas turbine aeroengine in a manner that is well Know. The gearbox 11 is provided for driving various engine accessories including the four gear pumps 12, 13, 14, 1 5 and the centrifugal breather 9, which is constructed and operates as described in our co-pending British Patent No. 1,508,212.
The gear pump 12 scavenges oil from the sump of the gearbox 11 and returns it under pressure to the tank 10. The gear pump 13 pumps oil from the oil tank and supplies it under pressure to various parts of the engine to be lubricated. In the drawing, one of the parts to be lubricated is a bearing 8 which supports a shaft 1 6 of the engine for rotation relative to fixed structure 1 7. The pressurised oil is supplied to the bearing 8 through appropriately placed oil ways 1 8 and the oil from within the bearing chamber 19, together with air that leaks into the chamber 1 9 through the labyrinth seals 20 is scavenged by the gear pump 14. Other gear pumps 1 5 scavenge oil from other parts of the engine and return it to the tank 10 and gearbox 11 via a filter 7 and cooler 6.
Only one gear pump 14 is shown as incorporating the present invention for the sake of clarity. It is to be understood that all the gear pumps may incorporate the present invention.
Referring in greater detail to the gear pump 14, the pump comprises a housing 21 having an inlet 22 connected to the drain of the bearing chamber 19 and an outlet 23 connected to the tank 10. The housing 21 accommodates two intermeshing gears 24, 25 which have conventional gear tooth profiles and are mounted in bearings and driven by a shaft from the gearbox 11.
The housing 21 is also provided with a vent pipe 26 which is of 0.040 to 0.050" (1.0 to 1.5 mm) diameter connected to the air space in the gearbox 11. The end of vent pipe 26 is situated at the outlet side of the pump close to the nip of the intermeshing gears. That is to say in the lee of the gears at that region where, because of the centrifugal forces on the oil as it is propelled around the periphery of the gears, the air or gases is likely to build up.
Additionally the housing 21 is provided with a second inlet pipe 27 of about 0.80" (2.0 mm) diameter at the inlet side of the pump 14. The second inlet pipe 27 is angled relative to one of the gears 25 and relative to the flow of liquid/air mixtures through the main inlet of the pump. The inlet pipe 27 directs high pressure jets of oil from the high pressure gear pump 1 3 across the inlet into the gap between the outer periphery of the gear 25 and the housing to improve the oil seal, and also keep the pump primed with liquid.
The second inlet pipe 27 can be omitted but such a gear pump, although more efficient and less likely to unprime as gear pumps not incorporating the present invention, is not as efficient as where a second inlet pipe 27 is provided.
In operation of the gear pump 14 oil is centrifuged to the wall of the housing and any entrapped air tends to build up in the zone (P2)
immediately out of the path of the centrifuged oil as it is propelled toward the outlet of the pump
(that is to say on the lee side of the gears 25). As the air builds up it is vented through the pipe 26 because the air space in the gearbox is maintained at a pressure lower than that of P2 by means of the centrifugal air separator and breather 9 which is driven by the gearbox 11 and is constructed as described in our co-pending British Patent No.
1,508,212. The vent pipe 26 removes air at a rate equivalent to about 200 gallons per hour of oil.
The opposing streams of centrifuged oil collide and cause thorough mixing of any air not trapped in zone P2, thereby producing an emulsion which is returned to the tank 10 and passed through an air separator. To lessen the task of separating air
at the tank, guide cascade plates 28 could be added at the outlet of the gear pump. These plates serve to redirect the centrifuged oil and thereby minimise direct collision of opposing streams of oil.
Referring to the drawing, the present invention overcomes the problem of the gear pumps becoming unprimed when the aircraft executes manoeuvres that starve the oil system of a sufficient supply of oil to keep the pumps filled.
With oil systems like that shown schematically in the drawing (where the gear pumps 14 and 1 5 discharge back to the tank through a common return, and the pumps are not vented according to this invention) air entrained by any of the pumps 14 or 15, or any drop in the gearbox pressure (for example at high altitude) will cause the pump 14 to pump the air back from its outlet to its inlet and back to the gearbox. This in turn prevents the pump 1 4 priming with oil. The present invention allows the air to pass back to the gearbox without allowing the pump 14 to imprime with oil.
Claims (4)
1. A gear pump comprising a housing having an inlet opening and an outlet opening, two intermeshing gears which when driven pump liquid from the inlet opening to the outlet opening, and a vent pipe terminating within the housing at the outlet side of the pump at a region located in the lee of the gears out of the path of liquid centrifuged by the gears.
2. A gear pump according to claim 1 wherein there is provided a second inlet opening angled relative to the first inlet opening so as to direct liquid across the first inlet opening into a gap formed between the periphery of one of the gears and the housing.
3. A gear pump according to claim 1 or claim 2 wherein the vent pipe is connected to a source of pressure which is lower than that at the region where the vent pipe terminates within the housing.
4. A gear pump substantially as herein described with reference to the accompanying drawing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8215636A GB2099508B (en) | 1981-05-30 | 1982-05-28 | Rotary positive-displacement fluidmachines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8116599 | 1981-05-30 | ||
GB8215636A GB2099508B (en) | 1981-05-30 | 1982-05-28 | Rotary positive-displacement fluidmachines |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2099508A true GB2099508A (en) | 1982-12-08 |
GB2099508B GB2099508B (en) | 1985-06-12 |
Family
ID=26279646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8215636A Expired GB2099508B (en) | 1981-05-30 | 1982-05-28 | Rotary positive-displacement fluidmachines |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2099508B (en) |
-
1982
- 1982-05-28 GB GB8215636A patent/GB2099508B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2099508B (en) | 1985-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4480970A (en) | Self priming gear pump | |
US5004407A (en) | Method of scavenging air and oil and gear pump therefor | |
US3378104A (en) | Air-oil separators for use in gas turbine engines | |
US4213307A (en) | Oil separation and return system for centrifugal refrigerant compressors | |
US5207291A (en) | Barrier system for the lubricating oil for the bearings of a centrifugal compressor with labyrinth seals installed in a confined environment | |
KR890013353A (en) | Sealed Centrifugal Pump | |
US4987795A (en) | Vented transmission | |
US7094042B1 (en) | Dual-inlet gear pump with unequal flow capability | |
EP1698762A2 (en) | Sealing of an aircraft engine accessory lubrication system | |
US8858204B2 (en) | Dry vacuum pump having multiple lubricant reservoirs | |
US2888097A (en) | Lubrication system | |
US4570947A (en) | Gas sealing and fluid scavenge apparatus | |
JP2005521819A (en) | Sealing system | |
US4683985A (en) | Lubrication system for a vertical gear unit | |
US20220026021A1 (en) | Double journal bearing impeller for active de-aerator | |
US5584650A (en) | Lubrication system | |
US3300950A (en) | Centrifugal gas separator | |
US4995797A (en) | Rotary screw vacuum pump with pressure controlled valve for lubrication/sealing fluid | |
US4032312A (en) | Centrifugal compressor | |
US4756664A (en) | Scavenge oil system | |
IT9048597A1 (en) | OIL SEPARATOR FOR REFRIGERATION SYSTEMS. | |
JPH0220812B2 (en) | ||
GB2099508A (en) | Rotary positive-displacement fluid-machines | |
US3520632A (en) | Scavenge pump and accessory drive system | |
US2610788A (en) | Gas and liquids separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |