GB2083841A - Glow discharge coating - Google Patents

Glow discharge coating Download PDF

Info

Publication number
GB2083841A
GB2083841A GB8125093A GB8125093A GB2083841A GB 2083841 A GB2083841 A GB 2083841A GB 8125093 A GB8125093 A GB 8125093A GB 8125093 A GB8125093 A GB 8125093A GB 2083841 A GB2083841 A GB 2083841A
Authority
GB
United Kingdom
Prior art keywords
substrate
cathode
glow discharge
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8125093A
Other versions
GB2083841B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Priority to GB8125093A priority Critical patent/GB2083841B/en
Publication of GB2083841A publication Critical patent/GB2083841A/en
Application granted granted Critical
Publication of GB2083841B publication Critical patent/GB2083841B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Abstract

Coatings of hard carbon, silicon, or germanium are applied to electrically insulating materials in a D.C. glow discharge chamber. Initiation and maintenance of a glow discharge is ensured by using a cathode of larger area than the material to be coated. For example the cathode 7 may be twice the diameter of the material 8 to be coated. Materials capable of being coated include zinc sulphide, zinc selenide, silica, and glass. The gases used are hydrocarbon e.g. butane, methane etc. for carbon coatings; silane for silicon coatings; and germane for germanium coatings. <IMAGE>

Description

SPECIFICATION Coating insulating materials by glow discharge This invention relates to the deposition of coatings on insulating materials using glow discharge.
Glow discharge deposition is a known process in which ions form a plasma to strike a cathode and gradually form a layer. The plasma is generated in a low pressure gas in a chamber. For example silicon layers may be deposited from a silane gas plasma, and carbon layers grown from a hydrocarbon plasma.
Both RF and DC power supplies have been used to provide the necessary glow discharge when growing layers on an electrically conducting substrate.
To grow e.g. carbon on insulating substrates it had been considered necessary to use RF excitation of the gas to form the plasma because an electrical insulating cathode substrate would prevent initiation of the glow discharge.
A known process for growing amorphous carbon on glass substrates is described in U.S.
Patent Specification No. 4,060,660. An essential feature of this process is the heating of the substrate above 3000 C. Unfortunately such heating may be undesirable, for example the glass may suffer decomposition at its surface and the physical and electrical properties of the carbon layer are temperature dependent.
According to the present invention a method of depositing coatings on an insulating material substrate by D.C. glow discharge includes the step of providing a cathode of substantially larger area than the substrate, whereby the exposed area of the cathode serves to maintain a glow discharge and dark space above the insulating substrate in a flow discharge chamber.
Apparatus for carrying out the method of this invention comprises a chamber capable of being evacuated by a vacuum pump, supplies of a suitable gas, a cathode having a larger surface area than a substrate to be coated, and a D.C.
power source. The ratio of cathode to substrate radii may be about 1.5 or greater.
The substrate may be an electrically insulating material such as a glassy or a crystalline material.
For example the substrate may be zinc sulphide, zinc selenide, silica, rock salt, or glass.
The coatings may be for example hard diamond-like carbon deposition from a gas such as butane, methane, acetylene, etc.; or silicon from silane gas; or germanium from germane gas.
Thin substrates may be iaid directly on an electrically conducting cathode. For thicker substrates the cathode may be recessed e.g. so that the upper surface of cathode and substrate are approximately coplanar.
Prior to deposition the substrate may be cleaned by argon ion bombardment.
The cathode may incorporate heaters and/or coolers.
The invention will now be described,. by way of example only, with reference to the accompanying drawings of which: Figure 1 shows apparatus for coating an electrically insulating substrate; Figure 2 shows an alternative cathode used when coating thick substrates.
As shown in Figure 1 a chamber 1 has a gas inlet port 2, and an outlet port 3 connected to a vacuum pump 4. Valves 5, 6 control flow through these ports 2, 3. Inside the chamber 1 is a cathode 7 which carries a substrate 8, e.g. a flat plate or lens. The cathode 7 may contain a heater 9 and/or cooler and is electrically insulated from the chamber 1. In one example the cathode was 120 mm diameter and the substrate was 60 mm diameter. Electrical leads 10, 11 pass from the cathode 7 to a D.C. power supply 12 and from heater 9 to heater supply 1 3 respectively, and pipes 14, 1 5 to a cooler supply (not shown) outside the chamber 1. An earthed shield 1 6 is fitted about the cathode 7 to confine the discharge. The substrate 8 may be recessed within the cathode 7 as shown in Figure 2.
Operation to coat the substrate 8 is as follows.
The chamber 1 is evacuated to about 10-4 Torr.
or lower to remove air and contaminants. Argon gas is bled into the chamber 1 whilst the pump 6 is throttled down to give a pressure of about 10-1 to 10-2 Torr. typically 0.5 Torr.
A D.C. voltage of about kV is applied to the cathode 7 causing initiation of a glow discharge at the unshielded areas of the cathode 7, flow of electrons reduces the positive charge accumulation at the substrate. Argon ions from the plasma thus created, strike the substrate 8 to clean its surface. Typically 10 minutes of argon ion bombardment is used.
Whilst maintaining the glow discharge, the argon supply is stopped and a hydrocarbon gas admitted into the chamber 1. This gas may be butane, methane, acetylene, etc. at a pressure of 10-' to 10-2 Torr. and forms a hydrocarbon plasma. A layer of hard diamond-like carbon is formed by carbon atoms and ions striking the negatively charged substrate 8 where they gradually build up a layer of the required thickness. Typically a 1 SIm thick layer is formed in about 1 hour.
When the layer is fully grown the D.C. supply is stopped, the vacuum inside the chamber is released, and the substrate removed.
Heating of the substrate up to about 2500C prior to deposition may be used to enhance bonding. When depositing carbon layers the temperature should not reach 3000C or more otherwise infra red absorbing graphite carbon is deposited.
Silicon and germanium may be deposited in a manner similar to that for carbon using silane and germane respectively.
Multi-layer coatings may be formed by the apparatus shown in the drawings, by changing the gas in the chamber whilst maintaining the glow discharge. For example silicon and germanium layers may be grown in a D.C. glow discharge using the gases silane and germane, respectively.
For some materials such as zinc sulphide a thin, e.g. about 1 ,OOO , layer of silicon may be deposited to form a bonding layer for subsequent deposition of the carbon.
As described in co-pending Application No.
80 27,279 substrates of germanium and silicon may be coated with a thin layer of hard carbon by D.C. glow discharge techniques. The present technique may be used to grow thick insulating layers on conducting substrates.
Some advantages of carbon coatings are their transparency at infra red radiation wavelengths, their extreme hardness and their chemical durability.

Claims (17)

1. A method of depositing coatings on an electrically insulating material substrate in a glow discharge chamber supplied with D.C. electrical power wherein the substrate is mounted on a cathode of larger area than the substrate whereby the exposed area of the cathode serves to maintain a glow discharge and dark space above the substrate.
2. The method of claim 1 wherein the coating is infra red transparent hard carbon deposited from a hydrocarbon gas.
3. The method of claim 1 wherein the coating is silicon deposited from silane gas.
4. The method of claim 1 wherein the coating is germanium deposited from germane gas.
5. The method of claim 1 wherein the substrate is heated prior to depositing the coating.
6. The method of claim 1 wherein the substrate is cleaned by ion bombardment prior to depositing the coating.
7. The method of claim 1 wherein at least two layers of different materials are deposited on the substrate.
8. Apparatus for carrying out the method of claim 1 comprising, a vacuum chamber including an anode, means for providing vacuum condition in the chamber, means for supplying D.C. electrical power, means for supplying a gas into the chamber, and a cathode structure for carrying a substrate to be coated, the cathode having a substantially larger area than the substrate so that exposed areas of the cathode maintain a glow discharge and a dark space above the substrate whilst the D.C. power is applied to the anode S cathode structure.
9. Apparatus as claimed in claim 8 wherein the cathode structure is recessed to receive the substrate.
10. Apparatus as claimed in claim 8 wherein the cathode structure includes means for controlling its temperature.
11. Apparatus as claimed in claim 8 wherein an earthed shield surrounds the cathode structure to confine the glow discharge.
12. A substrate coated by the method of claim 1.
1 3. A substrate as claimed in claim 12 coated with a layer of infra red transparent hard carbon.
14. A substrate as claimed in claim 13 wherein a thin bonding layer of silicon is applied to the substrate before deposition of the hard carbon.
1 5. A substrate as claimed in claim 12 wherein the substrate material is zinc sulphide.
1 6. A substrate as claimed in claim 12 wherein the substrate material is zinc selenide.
17. The method of claim 1 substantially as hereinbefore described with reference to the accompanying drawings.
1 8. A substrate as claimed in claim 12 substantially as hereinbefore described with reference to the accompanying drawings.
GB8125093A 1980-08-21 1981-08-17 Glow discharge coating Expired GB2083841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8125093A GB2083841B (en) 1980-08-21 1981-08-17 Glow discharge coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8027277 1980-08-21
GB8125093A GB2083841B (en) 1980-08-21 1981-08-17 Glow discharge coating

Publications (2)

Publication Number Publication Date
GB2083841A true GB2083841A (en) 1982-03-31
GB2083841B GB2083841B (en) 1985-03-13

Family

ID=26276649

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8125093A Expired GB2083841B (en) 1980-08-21 1981-08-17 Glow discharge coating

Country Status (1)

Country Link
GB (1) GB2083841B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3237851A1 (en) * 1981-10-21 1983-04-28 RCA Corp., 10020 New York, N.Y. Amorphous, carbon-containing film and process for the preparation thereof
GB2122224A (en) * 1982-06-23 1984-01-11 Atomic Energy Authority Uk Ion beam carbon layers
EP0106638A1 (en) * 1982-10-12 1984-04-25 National Research Development Corporation Method and apparatus for growing material in a glow discharge
EP0106637A1 (en) * 1982-10-12 1984-04-25 National Research Development Corporation Infra red transparent optical components
US4504519A (en) * 1981-10-21 1985-03-12 Rca Corporation Diamond-like film and process for producing same
GB2165266A (en) * 1982-10-12 1986-04-09 Nat Res Dev Infra red transparent optical components
GB2174038A (en) * 1985-03-23 1986-10-29 Canon Kk Thermal recording head
GB2174580A (en) * 1985-03-22 1986-11-05 Canon Kk Heat generating resistor
US4704339A (en) * 1982-10-12 1987-11-03 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Infra-red transparent optical components
US4783369A (en) * 1985-03-23 1988-11-08 Canon Kabushiki Kaisha Heat-generating resistor and heat-generating resistance element using same
US4804974A (en) * 1985-03-23 1989-02-14 Canon Kabushiki Kaisha Thermal recording head
US4847639A (en) * 1985-06-10 1989-07-11 Canon Kabushiki Kaisha Liquid jet recording head and recording system incorporating the same
US4870388A (en) * 1985-03-22 1989-09-26 Canon Kabushiki Kaisha Heat-generating resistor and heat-generating resistance element using same
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
US4983993A (en) * 1985-03-25 1991-01-08 Canon Kabushiki Kaisha Thermal recording head
GB2240113A (en) * 1990-01-02 1991-07-24 Shell Int Research Preparation of adsorbent carbonaceous layers
GB2280201A (en) * 1987-06-15 1995-01-25 Secr Defence Infra red transparent window

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504519A (en) * 1981-10-21 1985-03-12 Rca Corporation Diamond-like film and process for producing same
DE3237851A1 (en) * 1981-10-21 1983-04-28 RCA Corp., 10020 New York, N.Y. Amorphous, carbon-containing film and process for the preparation thereof
GB2122224A (en) * 1982-06-23 1984-01-11 Atomic Energy Authority Uk Ion beam carbon layers
US4704339A (en) * 1982-10-12 1987-11-03 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Infra-red transparent optical components
EP0106638A1 (en) * 1982-10-12 1984-04-25 National Research Development Corporation Method and apparatus for growing material in a glow discharge
EP0106637A1 (en) * 1982-10-12 1984-04-25 National Research Development Corporation Infra red transparent optical components
GB2129833A (en) * 1982-10-12 1984-05-23 Secr Defence Method and apparatus for depositing coatings in a glow discharge
GB2165266A (en) * 1982-10-12 1986-04-09 Nat Res Dev Infra red transparent optical components
US4851808A (en) * 1985-03-22 1989-07-25 Canon Kabushiki Kaisha Heat-generating resistor and heat-generating resistance device by use of said heat-generating resistor
GB2174580A (en) * 1985-03-22 1986-11-05 Canon Kk Heat generating resistor
US4870388A (en) * 1985-03-22 1989-09-26 Canon Kabushiki Kaisha Heat-generating resistor and heat-generating resistance element using same
GB2174038A (en) * 1985-03-23 1986-10-29 Canon Kk Thermal recording head
GB2174038B (en) * 1985-03-23 1989-03-22 Canon Kk Thermal recording head
US4845513A (en) * 1985-03-23 1989-07-04 Canon Kabushiki Kaisha Thermal recording head
US4804974A (en) * 1985-03-23 1989-02-14 Canon Kabushiki Kaisha Thermal recording head
US4783369A (en) * 1985-03-23 1988-11-08 Canon Kabushiki Kaisha Heat-generating resistor and heat-generating resistance element using same
US4983993A (en) * 1985-03-25 1991-01-08 Canon Kabushiki Kaisha Thermal recording head
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
US4847639A (en) * 1985-06-10 1989-07-11 Canon Kabushiki Kaisha Liquid jet recording head and recording system incorporating the same
GB2280201A (en) * 1987-06-15 1995-01-25 Secr Defence Infra red transparent window
GB2280201B (en) * 1987-06-15 1995-06-28 Secr Defence Infra red transparent windows
GB2240113A (en) * 1990-01-02 1991-07-24 Shell Int Research Preparation of adsorbent carbonaceous layers

Also Published As

Publication number Publication date
GB2083841B (en) 1985-03-13

Similar Documents

Publication Publication Date Title
EP0049032B1 (en) Coating insulating materials by glow discharge
EP0032788B2 (en) Method for depositing coatings in a glow discharge
GB2083841A (en) Glow discharge coating
EP0048542B2 (en) Coating infra red transparent semiconductor material
EP0797688B1 (en) Method for deposition of diamondlike carbon films
EP0106637B1 (en) Infra red transparent optical components
US4704339A (en) Infra-red transparent optical components
GB2165266A (en) Infra red transparent optical components
GB2082562A (en) Coating germanium or silica with carbon
EP0106638A1 (en) Method and apparatus for growing material in a glow discharge
CN108456857A (en) A kind of coating system and its method for preparing fexible film
JPH03146489A (en) Coated filament for use in composite material
US5753379A (en) Protective coatings for optical components
CN112831769B (en) Composite antireflection film for infrared optical product and preparation method thereof
JP2854130B2 (en) Apparatus for coating substrates by sputtering
GB2243844A (en) Coating of filaments by sputter-ion-plating
KR102595151B1 (en) A metal separator for fuel cells and a method of manufacturing the same
KR100779247B1 (en) Manufacturing method of decorative metal plate
JPH0247252A (en) Production of composite material film
JPH057462B2 (en)
JPH0280556A (en) Manufacture of film of composite material
JPH1050508A (en) Resistance control film and deposition thereof
JPS5832411A (en) Manufacture of amorphous silicon

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PE20 Patent expired after termination of 20 years

Effective date: 20010816