GB2082749A - Improved Radiator - Google Patents

Improved Radiator Download PDF

Info

Publication number
GB2082749A
GB2082749A GB8125600A GB8125600A GB2082749A GB 2082749 A GB2082749 A GB 2082749A GB 8125600 A GB8125600 A GB 8125600A GB 8125600 A GB8125600 A GB 8125600A GB 2082749 A GB2082749 A GB 2082749A
Authority
GB
United Kingdom
Prior art keywords
radiator
connector
combination
spigot
socket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8125600A
Other versions
GB2082749B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myson Group Ltd
Original Assignee
Myson Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myson Group Ltd filed Critical Myson Group Ltd
Priority to GB8125600A priority Critical patent/GB2082749B/en
Publication of GB2082749A publication Critical patent/GB2082749A/en
Application granted granted Critical
Publication of GB2082749B publication Critical patent/GB2082749B/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • F28F9/0258Arrangements for coupling connectors with flow lines of quick acting type, e.g. with snap action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0035Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators

Abstract

A heat-exchange radiator (1) is connected to a fluid flow circuit by a connector (19) which provides one member (21) of an interengageable spigot and socket pair (21 and 25) for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations (22 and 27) at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal (23) and either latching fingers (42) or a resilient latching circlip (22). <IMAGE>

Description

SPECIFICATION Improvements in Radiators The present invention relates to improvements in heat exchange radiators and more particularly but not exclusively to a connector for forming a connection between a pipe fitting and a radiator panel.
A known panel radiator for room heating comprises a pair of super-imposed preformed metal sheets having water manifolds extending lengthwise of the sheets near two opposed edge regions and transverse ducts interconnecting the manifolds. The preformed sheets are welded together by an automated welding process, usually resistance welding. The manifolds extend up to the longitudinal ends of the radiator and each end of the two manifolds is closed by a respective end plate which is manually welded in position. The end plate has a threaded hole formed therein for receiving threaded pipe fittings.
A radiator of this type is referred to as a "single panel radiator with end connections".
Double panel radiators having "end connections" are also known. A double panel radiator has two panels which are fixed together in parallel spaced apart relationship and, unlike the single panel radiator described above, a recess is formed in each manifold on adjacent areas of the inner, facing surfaces of the panels.
Each recess extends inwardly from the longitudinal end of the panel and a connecting web of U-shaped cross-section is welded between the two panels at the periphery of the two opposed recesses. An end plate having a threaded bore formed therein is welded to the two free edges of the connection web and the manifolds to close the end of the radiator, provide a fluid connection between the two radiator panels and form the end connection.
A double or single panel radiator having end connections of this type suffers from the disadvantage that skilled manual labour is required to fit the end plates by welding and these welds may be prone to leakage.
Another known panel radiator comprises a pair of preformed metal sheets also having manifolds extending lengthwise of the sheets and transverse ducts interconnecting the manifolds. The manifolds are swaged together at the transverse edges of the sheets and the sheets are welded together by a machine along the longitudinal and transverse edges. A bore is formed in the manifold wall at a distance inset from the edge of the radiator and a connector is welded onto the radiator to surround this bore. A radiator of this type is referred to as a back connection radiator because the connection is at the back of the radiator rather than on the end.
In the known arrangement the connector is projection welded into position and this requires the provision of a back up ring, having passageways in its circumference, which is positioned inside the manifold between the front and rear walls so as to surround the bore.
Projection welding has the advantage that reliable welds are produced but has the disadvantage that it requires expensive capital equipment. In addition the back up ring is redundant once welding is completed and thus constitutes an additional expense of manufacture.
Double panel back connection radiators are also known and these comprise two single panel radiators which are connected together by projection welding a T-shaped connection between the manifolds of the two radiator panels at or near two of the corners of the radiator. A double panel radiator having this construction suffers from the same disadvantage of a single radiator with projection welded back connection.
In another known radiator a pair of aligned bores are formed in the manifold walls and two flanged cylindrical brass components, constituting a so-called banjo connection, are inserted into the respective bores and screw threadingly interconnected with one another. A rubber sealing ring is disposed between the flange of each component and the respective manifold wall to prevent fluid leakage. Connections of this type have the advantage that they require no welding but they have the disadvantage that being turned parts they are expensive to produce. In addition the connection is visible from the front of the radiator which is undesirable aesthetically.
It is an aim of the present invention to avoid or at least ameliorate the above-mentioned disadvantages.
According to the present invention there is provided in combination, a connector having a first end formation adapted to co-operate with a fluid flow circuit component and a second end formation comprising one member of an interengageable spigot and socket pair, and a heat-exchange radiator which includes the other member of said spigot and socket pair, wherein the connector and the radiator are connectible by push-fit, fluid-tight, engagement of the connector and the radiator, co-operating latching formations being provided on the connector and the radiator, at least one of which latching formations is resilient.
One example of the said fluid flow circuit component is a pipe, another is a fluid flow control valve and a third is an air-bleed valve. The connector is adapted to be connected to any one or more of these exemplary components or to some other component of the circuit, such as an end plug. In a preferred embodiment the member of the spigot and socket pair defined by the panel is a swaged socket in the manifold wall, having walls which converge in a direction towards the interior of the radiator. The spigot on the connector naturally has a corresponding tapered configuration.
In one embodiment the means for securing !atching engagement comprises a resilient clip, preferably a circlip, received in a groove formed in the spigot and which is disposed within the radiator and in engagement with the end face of the wall of the swaged hole.
To ensure a fluid-tight fit between the panel and the connector there may be provided a sealing means in the form of a resilient ring of plastics material. This may be received in a groove formed in the spigot for sealing engagement with the spigot and the socket. The sealing means can be an O-ring seal. As an alternative or in addition, a seal may be provided between the connector and the wall of the manifold external of the spigot and socket pair.
Where the radiator is a panel radiator, the connection is preferably of the so-called back connection type and the connector may be a hot, non-ferrous forging.
In a further preferred embodiment of the invention a connector for us in providing a double panel radiator has two of said second end formations which engage with respective formations on the two panels which form the double panel radiator. Thus, the connectors serve as fluid connections between the two panels.
These last-mentioned connections preferably have a T-shaped configuration with a pair of tapered spigots each of which carries a circlip and co-operates with a respective swaged socket formed in respective panels of the double panel radiator.
For a better understanding of the present invention preferred embodiments thereof will now be described, by way of example only, with reference to the accompanying drawings, in which: Fig. 1 is an end view of a single panel radiator with two connectors in accordance with the invention; Fig. 2 is a cross-section plan view of the connector of Fig. 1 drawn to a larger scale; Fig. 3 is a cross-sectional plan view similar to that of Fig. 2 of a second embodiment of connector; and Fig. 4 is a cross-sectional view of a third embodiment of connector and a fragment of a double panel radiator of which the connector is a part.
Referring to the embodiment of Fig. 1 and 2 there is shown a single panel radiator generally indicated as 10 having a pair of preformed metal shells comprising a rear shell 11 and a front shell 12 which together define manifolds 1 3 and 14 near to the edge regions of the shells and extending longitudinally of the shells, and a plurality of transverse ducts 1 5 interconnecting the manifolds. The shells are machine welded together along their longitudinal edges 1 6 and transverse edges 1 7 by a resistance seam welding process and, where the shells abut one another between the transverse ducts 15, the shells are spot welded together.As will be seen from the drawing, each end 1 8 of the manifolds 13 and 14 is swaged together so as to form the continuous transverse edge 1 7.
The radiator panel is provided with four connectors has only two of which, identified generally by reference 19, are visible in Fig. 1. The connectors are disposed adjacent to the four corners of the radiator and these permit pipe fittings and the like to be connected to the radiator. In one example (not shown), an air-bleed valve is fitted to one of the top two connections, a plug to the other top connection, a "lockshield" valve to one of the bottom two connections and a manually adjustable flow control valve to the other bottom connection. Connectors which incorporate one or more of those functions, as well as universal connectors for accommodating any one of them or a fluid flow conduit, are all in accordance with the invention. Where a fluid flow valve is included in the connector it is conveniently a ball valve.The illustrated back connections are by way of ports in the rear radiator shell 11 , each of which emerges into one of the manifolds 1 3 and 14 at a position near the edge of the radiator panel. The construction of the connector will now be described more fully with reference to Fig. 2 of the drawings.
Each connector 1 9 is formed by a body member 20, provided with a spigot 21 which carries a retaining clip 22 and an O-ring seal 23 in an annular recess in the exterior surface of the spigot. The socket with which the spigot cooperates is a bore 25 formed in the rear shell 11.
The bore 25 is formed into a port by swaging during the manufacture of the rear radiator shell.
The bore 25 has a wall 26 which extends inwardly toward the interior of the manifold and which converges in a direction toward the interior of the manifold. The position of an end face 27 of the wall 26 is accurately controlled during the manufacturing process such that distance X between the end face 27 and the exterior face 28 of the'wall of the manifold is accurately controlled.
The spigot 21 has a tapered configuration which matches accurately the taper of the swaged hole 25. A first annular groove 29 accommodates the O-ring seal 23 and a second annular groove 30 accommodates the retaining clip 22 which is a C-shaped circlip. A shoulder 31 is present at the boundary between the spigot 21 and the remainder of the body member 20 and, when the connector and panel combination is assembled, the shoulder 31 abuts the exterior wall 28 of the manifold. The distance Y between the shoulder 31 and that edge 32 of the second annular groove 30 which is further from the shoulder 31 is dimensioned so as to be greater than the distance X by the thickness of the clip 22, and the clip is a snug fit in the groove 30 between the groove 32 and an opposite edge 33.
On assembly, the resilient ring 23 and the circlip 22 are positioned in their respective grooves 30 and 29 and the spigot is introduced into the socket 25 in the direction of the arrow A.
The converging walls of the socket 25 compress the circlip 22 and the moment of contact of the shoulder 31 with the surface 28 is such that it allows insertion of the spigot 21 into the socket 25, with the edge 33 of the groove 30 pushing the circlip 22 deeper into the socket 25, just to the extent that the circlip 22 emerges at the end face 27 of the socket 25, upon which emergence, the circlip 22 relaxes from its compressed condition and thus returns to its uncompressed dimensions. The enlarged circlip thus abuts the end face 27 and, because the circlip 22 is a snug fit in the groove 30, any withdrawal of the spigot from within the socket is prevented. Contact of the O-ring seal 23 with both the spigot 21 and the socket 25 maintains a fluid-tight connection.
The degree of compression of the O-ring is fixed, movement of the spigot in and out of the socket being prevented on the one hand by contact of the shoulder 31 and surface 28 and, on the other hand, by contact of the circlip 22, surface 27 and groove edge 32.
In the arrangement illustrated, the retaining ring is located inside the manifold and it is therefore not readily possible to gain access to the retaining ring and so removal of the body member is not a practical possibility.
As shown in Fig. 2, the body member 20 has an end formation 34 which is provided with a threaded bore 35 for receiving pipe fittings and the like. In the arrangement illustrated, the connector has a fluid flow passage 36 which comprises two flow passage portions which intersect at right angles, but any other convenient arrangement may be used.
A "back connection" as illustrated in Figs. 1 and 2 has the advantage that it is easily formed by the action of push-fit latching engagement of the connector with the radiator panel, at any time after the pair of preformed shells have been welded together, and without the need for manual welding. This contrasts with the case of the known "end connections" and avoids the capital expense of projection welding associated with the known back connection. The connection of the invention has the additional advantage that, even after the connection is made, the connector can, with suitable design of the body member 20, freely be rotated to any convenient angle.
It may be convenient to make the connections between the panel and the connectors before the radiator is degreased and stove enamelled. With enamelling at a temperature of approximately 1 20CC it has been found that a seal 23 of nitryl rubber is able to withstand these operations.
Although the body member 20 is preferably a hot forging, which may be a ferrous or non-ferrous material, and the body member can even be moulded from a plastics material.
In the alternative embodiment illustrated in Fig.
3, a pipe connection for a single panel radiator is shown which is similar to that of Fig. 1 or 2 but is made of a resilient plastics material. Like reference numerals have been used to denote like parts. The spigot 21 has four equally spaced slots 40 which extend axially of the spigot inwardly from its end face 41 to define four fingers 42 at the free end-of the spigot. The free end of the spigot is provided, on the external face of each of the fingers, with a latching lip surface 43. The slots are wide enough to permit the spigot end to be compressed when the spigot is pushed into the socket, and the spigot is resilient so that the fingers 42 spring out and the lip surfaces 43 spring over the socket end surface 27 when the spigot is pushed into the socket 25 far enough to bring the shoulder 31 into contact with the external surface 28 of the radiator panel.Again, the connector is freely rotatable in the socket 25 provided the body member 20 is so designed as not to foul the rear shell 11 of the radiator panel when the connector rotates.
A further embodiment of the invention will now be described with reference to Fig. 4 which illustrates a connector 50 for a double panel radiator. The double panel radiator comprises two single panel radiator panels 51 and 52 mounted back to back. As in the above-described case of a single panel radiator each double panel radiator is provided with four connections disposed at the corners of the radiator and for a double radiator these are conveniently located between the two single panels. Fig. 4 illustrates one such connection. It comprises a T-shaped body member 52 which has a central threaded bore 35 and two like spigots 53 and 54 of tapered configuration which are received in converging bores 25 formed in the manifolds of the two radiator panels 51 and 52.The single radiator panels making up the double radiator are identical in construction the single panel radiator described above and like reference numerals are used to describe features thereof. Each spigot 53 and 54 is of identical construction to that of Fig. 3 and like reference numerals are used to describe features thereof.
Naturally, the construction of Fig. 2 may be applied to the construction of double panel radiators as in Fig. 4.
The invention makes available the advantage that the single panels which go to make up a double panel radiator can be of identical construction to one another and to the panel of a single panel radiator. By contrast, in the known double panel radiators having "end connections" the single panels required for making up the double panel have first to be modified. The double panel radiator also has the above-stated advantages of the single panel radiator namely quick mechanical assembly without welding and the possibility of adjustment of the angle of the connection.
The invention may be applied to panel radiators having more than two panels and may also be applied to convector radiators.
One further advantage of the invention is the possibility of deferring final assembly of the connectors and the radiator until after delivery to the contractor or plumber. Radiator panels without the body members attached would occupy less space in transit and single or double panel radiators may be made up by the contractor on site by utilising connectors as described above.
As mentioned above, the connectors could incorporate air-bleed valves, end plugs, lockshield valves or flow control valves, with further saving in installation costs.
Finally, the said first end formation of the connector can be provided as an end formation identical or corresponding to said second end formation, so that the connector can provide nothing more than a simple connection between the two panels of a double panel radiator.

Claims (19)

Claims
1. In combination, a connector having a first end formation adapted to co-operate with a fluid flow circuit component and a second end formation comprising one member of an interengageable spigot and socket pair, and a heat-exchange radiator which includes the other member of said spigot and socket pair, wherein the connector and the radiator are connectible by push-fit, fluid-tight, engagement of the connector and the radiator, co-operating latching formations being provided on the connector and the radiator, at least one of which latching formations is resilient.
2. A combination as claimed in Claim 1 wherein the spigot has a tapering mating surface with the shape of a trincated cone, the smaller end diameter of which is at the leading edge of the spigot.
3. A combination as claimed in Claim 1 or 2 wherein the latching formation on the connector is at the leading edge of the spigot.
4. A combination as claimed in Claim 3 wherein the spigot is of circular transverse crosssection and the connector latching formation is a compressible circlip housed within an annular recess of the spigot to project proud of the recess when uncompressed and engage with an annular re-entrant surface in the socket, which constitutes the socket latching formation.
5. A combination as claimed in Claim 3 wherein the connector latching formation comprises a resilient fingers provided with a lip surface for springing from a compressed state into engagement with a re-entrant surface on the socket, which constitutes the socket latching formation.
6. A combination as claimed in any one of the preceding claims wherein stop surfaces on the radiator and the connector by mutual contact limit further inward movement of the spigot relative to the socket beyond the point at which latching engagement occurs.
7. A combination as claimed in Claim 6 wherein said stop surfaces comprise the external surface of the radiator surrounding the spigotisocket connection and a shoulder on the connector.
8. A combination as claimed in any one of the preceding claims wherein the spigot is of circular cross-section and is formed with an annular recess which houses a resilient ring for providing a seal between the spigot and the socket.
9. A combination as claimed in Claim 8 wherein the ring is a so-called "O-ring" seal.
10. A combination as claimed in Claim 8 or 9 wherein the ring is formed from a nitryl rubber.
11. A combination as claimed in any one of the preceding claims wherein the socket is provided on the radiator.
12. A combination as claimed in Claim 11 wherein the radiator is a rectangular panel radiator and the socket is formed in a shell of the radiator in the wall of a manifold of the radiator at or near a corner of the radiator.
13. A combination as claimed in any one of the preceding claims wherein the connector is formed as a hot, metal forging.
14. A combination as claimed in any one of the Claims 1 to 12 wherein the connector is formed as a plastics moulding.
1 5. A combination as claimed in any one of the preceding claims being a double panel radiator and including one or more connectors having two like second end formations, one to engage with each of the two panels.
16. A combination as claimed in any one of Claims 1 to 14 being a radiator with more than one panel and a connector wherein said first end formation is identical with, or corresponds to, said second end formation whereby the connector serves only to connect two adjacent panels of the radiator and not to connect said panels to any other fluid flow circuit component.
1 7. A combination substantially as hereinbefore described with reference to, and as shown in, any one of the accompanying drawings.
18. A combination as claimed in any one of Claims 1 to 1 5 and 1 7 wherein the connector has a body portion which incorporates a fluid flow control device.
19. A combination as claimed in Claim 1 8 wherein the device is a ball valve.
GB8125600A 1980-08-22 1981-08-21 Improved radiator Expired GB2082749B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8125600A GB2082749B (en) 1980-08-22 1981-08-21 Improved radiator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8027339 1980-08-22
GB8125600A GB2082749B (en) 1980-08-22 1981-08-21 Improved radiator

Publications (2)

Publication Number Publication Date
GB2082749A true GB2082749A (en) 1982-03-10
GB2082749B GB2082749B (en) 1984-04-18

Family

ID=26276661

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8125600A Expired GB2082749B (en) 1980-08-22 1981-08-21 Improved radiator

Country Status (1)

Country Link
GB (1) GB2082749B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138124A (en) * 1983-03-16 1984-10-17 Norcros Investments Ltd Ventilator
GB2147383A (en) * 1983-09-29 1985-05-09 Toyoda Gosei Kk Hose fixture
BE1006570A5 (en) * 1993-06-22 1994-10-18 Genebrev Sa Device for assembly heat exchangers.
GB2294754A (en) * 1994-11-01 1996-05-08 Balvinderjit Singh Nagi Radiator coupling
US5538076A (en) * 1993-12-17 1996-07-23 Nippondenso Co., Ltd. Pipe fitting mechanism and heat exchanger using same
EP0984241A1 (en) 1998-09-03 2000-03-08 Genebrev S.A. Radiator for heating system with fluid circulation
GB2365114A (en) * 2000-07-25 2002-02-13 Dahll Ltd A modular towel rail

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138124A (en) * 1983-03-16 1984-10-17 Norcros Investments Ltd Ventilator
GB2147383A (en) * 1983-09-29 1985-05-09 Toyoda Gosei Kk Hose fixture
BE1006570A5 (en) * 1993-06-22 1994-10-18 Genebrev Sa Device for assembly heat exchangers.
EP0631101A1 (en) * 1993-06-22 1994-12-28 Genebrev S.A. Connecting device for heat exchanger and heat exchanger provided with such a device
US5538076A (en) * 1993-12-17 1996-07-23 Nippondenso Co., Ltd. Pipe fitting mechanism and heat exchanger using same
GB2294754A (en) * 1994-11-01 1996-05-08 Balvinderjit Singh Nagi Radiator coupling
GB2294754B (en) * 1994-11-01 1999-11-17 Balvinderjit Singh Nagi Improvements in radiators
EP0984241A1 (en) 1998-09-03 2000-03-08 Genebrev S.A. Radiator for heating system with fluid circulation
GB2365114A (en) * 2000-07-25 2002-02-13 Dahll Ltd A modular towel rail

Also Published As

Publication number Publication date
GB2082749B (en) 1984-04-18

Similar Documents

Publication Publication Date Title
US4531575A (en) Radiators
US4712812A (en) Universal fittings
EP1859193B1 (en) Manifold for fluids
US3473833A (en) Plastic pipe coupling
US3831983A (en) Plumbing connection
EP0351155B1 (en) Expandable manifold for water delivery system
US5553902A (en) Leak-proof coupling
US2342425A (en) Pipe coupling
JPH0371594B2 (en)
JPH086848B2 (en) Pipe joint coupling system
GB2082749A (en) Improved Radiator
CA3114775C (en) Multi-port transition tee drain valve
JPH03140695A (en) Pipe joint
US6203074B1 (en) Duct system and method
US2249469A (en) Orifice element for joints
US5398981A (en) Self-centering, self-seating, double-sealing, intereference fit tube joint
US6062608A (en) Coaxial flue-system for direct-vent fireplaces
US3301576A (en) Flanged joint
US3264012A (en) Tube coupling
US1803577A (en) Sectional pipe coupling
US2930590A (en) Radiator
NO813846L (en) ROVER EQUIPMENT
CA3097170C (en) Double vented transition elbow
GB2102090A (en) Connecting device for pipes
JPH045827Y2 (en)

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Effective date: 20010820