GB2078089A - Filters and a method of producing such filters - Google Patents

Filters and a method of producing such filters Download PDF

Info

Publication number
GB2078089A
GB2078089A GB8117295A GB8117295A GB2078089A GB 2078089 A GB2078089 A GB 2078089A GB 8117295 A GB8117295 A GB 8117295A GB 8117295 A GB8117295 A GB 8117295A GB 2078089 A GB2078089 A GB 2078089A
Authority
GB
United Kingdom
Prior art keywords
layer
tube
ensheathing
smoke
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8117295A
Other versions
GB2078089B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British American Tobacco Investments Ltd
Original Assignee
British American Tobacco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British American Tobacco Co Ltd filed Critical British American Tobacco Co Ltd
Priority to GB8117295A priority Critical patent/GB2078089B/en
Publication of GB2078089A publication Critical patent/GB2078089A/en
Application granted granted Critical
Publication of GB2078089B publication Critical patent/GB2078089B/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/04Tobacco smoke filters characterised by their shape or structure
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/025Final operations, i.e. after the filter rod forming process
    • A24D3/0258Means for making grooves

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

The filter comprises a tobacco smoke filtration tube 1 ensheathed in a layer 3 of smoke previous thermoplastic material. The layer 3 is encased in a plugwrap 4. The layer 3 has a transverse cross-section rendered impervious to tobacco smoke by means of an annular sealing groove 5 formed by heatable formers 54. The tube 1 is closed at a location spaced longitudinally from the groove 5 by a V-shaped annular groove 7. The grooves 5, 7 may be sealed by means of an applied barrier material 63', 63'' respectively. <IMAGE>

Description

SPECIFICATION Filters and a method of producing such filters This invention concerns improvements relating to filters for cigarettes and other smoking articles.
For the removal of particulate phase constituents from tobacco smoke it is common to provide a cigarette with a filter comprising a generally cylin drical plug of filtration material, cellulose acetate or paper for example. Another type of filter which has been proposed for the removal of particulate phase tobacco smoke constituents comprises an elongate hollow member of smoke filtration material which is disposed within a smoke impervious casing. There is provision in such latter type of filter to ensure that, at a longitudinal location of the hollow member, smoke is prevented from passing between the member and the surrounding casing, and further provision at a location of the hollow member longitudinally spaced from the aforesaid location for the purpose of obturating the interior of the hollow member.Thus smoke passing from the tobacco rod either first enters the interior of the hollow member and then flows in a generally radial direction through the wall of the hollow member and exits from the filter via the space between the hollow member and the cas ng, or, if the filter is reversed, the smoke flows in the opposite direction through the wall of the hollow member. In either case, the smoke in passing through the wall of the hollow member is subjected to a filtration action to remove particulate phase constituents of the smoke.
Filters of this latter type, which may be termed "tubular cross4low filters", are useful in that for a given pressure drop experienced by the tobacco smoke passing through the filter, the filtration efficiency of the filter is higher than that obtainable with the first mentioned form of particulate phase filter.
Tubular cross-flow filters are disclosed in, for example, United Kingdom Patent Specification Nos.
1,319,862 and 1,360,612 and United States Patent Specifications Nos. 3,533,416 and 4,022,222.
Previously proposed tubular cross-flow filters present a variety of problems which make their manufacture difficult and/or costly. An object of the present invention is to provide a tubular cross-flow filter which is simple and economical to manufacture.
The present invention provides a tobacco-smoke filter comprising a smoke-filtration diaphragm of tubular form ensheathed in a smoke-pervious layer of fibrous material, of which layer a transverse cross section thereof has been rendered impervious to the passage of tobacco smoke, the tubular diaphragm being closed, art a location spaced longitudinally from said cross section of said layer.
The present invention further provides a method of, and apparatus for, producing tobacco-smoke filters, wherein a continuous tube of smoke-filtration material is fed to ensheathing means, fibrous material is fed to said ensheathing means whereby at exit from said ensheathing means said tube is ensheathed in a smoke-pervious layer of said fibrous material, the ensheathed tube is cut into discrete lengths and in each of said lengths a cross section of the layer of material is rendered impervious to the passage of tobacco smoke, and the tube of said length is closed at a location spaced longitudinally from said cross section of said ensheathing material.
The tube is preferably formed of a fibrous material of a thermoplastic character, in which case the closure thereof can be effected by heat and pressure, preferably after, but possibly before, the tube is ensheathed.
The tube may be formed wholly or substantially wholly of a synthetic material such as cellulose acetate or polypropylene, or regenerated cellulose.
The ensheathing material is also advantageously a fibrous material of thermoplastic character and is rendered impervious to the passage of tobacco smoke at the transverse cross section thereof by the application of heat which may be, suitably, accompanied by the application of pressure. The ensheathing material mayforthis purpose be subjected to a heat moulding process whereby an annular groove is produced, which groove is deep enough to extend at least to the outer surface of the underlying tube.
The surfaces of the groove may if required be sealed by the application thereto of a barrier material.
In order that the invention may be clearly understood and readily carried into effect, reference will now be made, by way of example, to the accompanying diagrammatic drawings, in which: Figure 1 shows in axial section a portion of a filter rod; Figure 2 shows in transverse cross section a tubular diaphragm for use in a filter rod as shown in Figure 1; Figure 3 shows apparatus for use in the manufacture of filter rod; Figure 4 shows further apparatus for use in association with the apparatus shown in Figure 3; and Figure 5 shows parts of a filter rod as per figure 1 and parts of the apparatus of Figure 4.
The filter rod shown in Figure 1 comprises a tubular smoke-filtration diaphragm 1 formed of cellulose acetate and polypropylene fibers. At spaced locations (only one of which is shown) the tube 1 is closed by means of the walls therefore having been fused together. The region of fusing is denoted by reference numeral 2. The method of causing the fusing of the tube 1 is described below. The tube 1 is ensheathed in a layer 3 of cellulose acetate tow which in turn is wrapped in a substantially smoke impervious plugwrap 4 of a thermoplastic character.
The plugwrap 4 may, for example, be composed of a mixture of cellulose acetate and polypropylene fibers. The filter rod is provided with a number of annular grooves, only one of which, denoted 5, is shown, which grooves are disposed intermediate the regions 2 at which the tube 1 has been closed. Each of the grooves 5 is formed by a spin-moulding technique, further described below, and the layer 3 of cellulose tow is sealed, as further described below, at cross sections 6, forming side surfaces of the groove 5, whereby at these cross sections the cellulose acetate tow is rendered impervious to the passage of tobacco smoke.
The filter rod of Figure 1 is after manufacture cut into discrete filter elements. Thus the rod may be cut at planes, such as planes A and B, disposed centrally of the fused regions and the grooves 5 respectively.
Each filter element thus obtained may be attached to a cigarette tobacco rod by the use of tipping in the usual manner. If the filter element is so attached to the tobacco rod that the closed end of the tube 1 is further from the tobacco rod, then smoke drawn from the tobacco rod will first enterthe interior of the tube 1, passage directly into the ensheathing layer 3 being prevented by the sealing thereof at the cross section 6 constituting the upstream and of the layer 3. The closure of the downstream end of the tube 1 prevents any, or substantially any, smoke from passing axially out of the tube 1, and thus the smoke is induced to flow generally radially through the wall of the tube 1 into the layer 3, from which the smoke finally exits from the filter element at the unsealed downstream annular end surface, designated 7, of the layer 3.
The tube 1 can be formed with various cross sections. One possible alternative to a simple circular cross section is shown in Figure 2. The tube 8 there depicted is of pleated form, which has the advantage of presenting to the smoke a larger tube wall area.
Reference will now be made to Figures 3 and 4 which show apparatus by means of which filter rod such as above described can be produced. A web of thermoplastic smoke-filtration material 10, of cellulose acetate and polypropylene fibres for example, which may be of a thickness of 0.5 my to 1 mm for example, is fed from a bobbin 11 around a pulley 12 to a pre-heater 13 which serves to preheat the web 10 before the web 10 enters a forming means 14. In its passage through the forming means 14, which means comprises a series of rollers provided with peripheral grooves, the web 10 is brought to a tubular form with the opposed edges of the web 10 in butting relationship. Thetubiform web 10 next pas sesthrough a heated die 15 from which it emerges as self-sustaining tube stock 16.The butt joint of the tube stock 16 is then eased open by contact with a nozzle 17 of an adhesive applicator 18. Adhesive, which may be hot melt adhesive, issuing from the nozzle 17 is coated onto the opposed butt faces of the tube stock 16. After travelling a short distance onwards from the nozzle 17 the opposed butt faces are brought together again by virtue of the resilience of the wall of the tube stock 16. Reference numeral 19 designates a cooling device which serves, when hot melt adhesive is used, to promote fast setting of the adhesive. A coolant, chilled water four example, is circulated through the cooler 19 by circulator means (not shown). This method of tube formation is generally similar to that described in United Kingdom Patent Specification No. 1,311,437.
Continuous filamentary tow 20 formed of cellulose acetate, polypropylene or other tow material passes, from a bale 21 thereof, through an air banding jet device 22, around guide rollers 23,24 to a blooming device comprising first and second pairs of rollers 25 and 26. As is well known in the art, in such blooming devices the first encountered rollers (25) are driven at a rotary speed which is less than that of the second encountered rollers (26). After being bloomed, the tow 20 is passed through a cabinet 27 in which the tow 20 is sprayed with a suitable plasticiserfor the tow. From the cabinet 27 the tow is trained about guide rollers 28, 29 and then passes into a conical guide 30, of a guide means 31.
The guide means 31 also comprises a guide tube 32 axially disposed of the conical guide 30, through which guide tube is fed the tube stock 16 emerging from the cooling device 19. Thus, when the tube stock 16 passes out of the downstream end of the guide tube 32, it becomes enveloped in tow 20 passing out of the downstream end of the conical guide 30. The tube stock 16 and the tow 20 are then together fed through a garniture 33 through which passes an endless garniture tape 34 which exteriorly of the garniture 33 is trained about pulleys 35, 36 and 38. Pulley 35 is rotatable by drive means (not shown). Fed onto the garniture tape 34 is plugwrap web 39 supplied from a bobbin 40 and trained about a pulley 37. The garniture 33 is provided with a seam-adhesive applicator 41 which is operative to apply adhesive at an edge margin of the plugwrap web 39.The garniture 33 and the garniture tape 34 are operative in the usual manner so that wrapped filter rod 42 issued from the garniture.
As an alternative to plugwrap being supplied to the garniture 33 for the production of wrapped rod, the garniture 33 may be fitted with a steam pipe 43 communicating with a source of steam 44, the arrangement being such that steam supplied to the garniture 33 via the pipe 43 passes through the garniture tape 34 (which obviously must be of a material able to withstand the effects of steam) into tow 20.
By use of such a modified garniture and of an appropriate tow/plasticiser combination, the tow 20 may be rendered selfsustaining.
The filter rod 32, wrapped or self-sustaining, is cut into discrete lengths 45, each a multiple of the length of a single filter element, by a cutting device 46. A fluted take-off drum 47 serves to receive the rod lengths 45 and to deposit them on an endless band 48 trained about rollers 49-52-see Figure 4.
The upper run of the band 48 extends over a flat metal support plate 53. A number of elongate, heatable formers 54 are disposed above the upper run of the band 48 and extend in the direction of travel of the band 48. The take-off drum 47 and the endless band 48 are driven by drive means (not shown).
Travel of the upper run of the band 48 causes the rod lengths thereon to be rolled in contact with the heated formers 54. This results in the formation of annular sealing grooves in the tow, exemplified by groove 5 of Figure 1, and in the production of fused regions of the tube stock 16 as per the region 2 of Figure 1. the tube stock 16 is of a thermoplastic character, the sealing grooves may be of such depth as to extend into, but not through, the wall of the tube stock 16. This is illustrated in Figure 1 in that the groove 5 extends into the tube 1. The heated formers 54 which serve to deform the tube stock in the formation of the fused regions thereof; which formers may be termed "fusing formers", extend nearer to the upper run of the band 48 then do those of the heated formers 54 which serve to form the sealing grooves, which latter may be termed "grooving for mers". Moreover, the cross sectional profile of the fusing formers 54 is of V form. Thus the deformation of the tube stock 16 brought about in the formation of each fused region thereof results in an annular groove of V-section in the tube stock 16, the side faces of the groove being extended through the ensheathing tow 20 and, of course, the plugwrap 39.
One such groove is shown at the right hand end of the rod portion of Figure 1.
There is disclosed in the specification of our United Kingdom Patent No. 1,507,765 an alternative form of apparatus suitable for forming the annular sealing grooves and the fused regions.
The grooved rod lengths pass from the band 48 onto a conveyor drum 55 of an applicator unit 56.
Mounted around the periphery of the drum 55 are small diameter driven support rollers 57 the axes of which are parallel to the axis of the roller 55. Arcuate retaining members 58, 59 are provided to ensure that each rod length 45 is held in contact with a pair of the rollers 57, whereby the rod length is caused to rotate. The applicator unit 56 further comprises a bath 60, a number of applicator discs 61 only an end of which is shown in Figure 4. The applicator discs 61 are of two forms 61' and are fixedly mounted alternately on a common shaft 62 (see Figure 5). The conveyor drum 55, the support rollers 57 and the shaft 62 are driven by drive means (not shown).
As may be observed from Figure 5, rotation of the drum 55 brings each filter rod length 45, supported in contact with a pair of the support rollers 57 of the drum 55, into a position in which an upper portion of each of the applicator discs 61' enters a respective one of the sealing grooves of the rod length 45 and similarly an upper portion of each of the applicator discs 61 " enters a respective one of the grooves formed in the rod length 45 by the fusing formers 54.
As the applicator discs 61 61" rotate, lower portions thereof are immersed in molten barrier material in the bath 60 and thus the barrier material is deposited in each of the grooves of the rotating rod lengths 45.
The barrier material solidifies to form annular seals as indicated by hatched zones 63' and 63". An applicator unit similar two unit 56 is described in United Kingdom Patent Specification No. 2033207.
The rod lengths 45 pass from the drum 55 of the applicator unit 56 to a fluted transfer drum 64 which serves to transfer the rod lengths to an endless band 65 which is trained about pulleys 66, 67. The drum 64 and the band 65 are drivable by drive means (not shown). From the band 65 the rod lengths may be passed to further machinery for incorporation of individual filter elements in cigarettes.
Although in the process described above barrier material is deposited to form annular seals 63' and 63" it may be found in some circumstances that the spin moulding process results in a sufficient degree of sealing to render one or both of these annular seals unnecessary.

Claims (17)

1. Atobacco-smoke filter comprising a smoke filtration diaphragm oftubularform ensheathed in a smoke-pervious layer of fibrous material, of which a layer a transverse cross-section thereof has been rendered impervious to the passage of tobacco smoke,thetubulardiaphragm being closed ata location spaced longitudinally from said cross-section of said layer.
2. A filter according to claim 1 wherein the location at which the tubular diaphragm is closed is at or adjacent one end of the filter, said transverse crosssection at which the layer is rendered impervious being located at or adjacent the opposite end of the filter.
3. A filter according to claim 1 or 2 wherein the tubular diaphragm is formed of a fibrous thermoplastic material.
4. Afilter according to claim 3 wherein thetubular diaphragm is formed wholly of cellulose acetate, polypropylene or regenerated cellulose.
5. A filter according to any one of claims 1 to 4 wherein the ensheathing layer of smoke-pervious material is formed of a thermoplastic material.
6. A filter according to claim 5 wherein said layer is formed of cellulose acetate.
7. A method of producing tobacco smoke filters wherein a continuous tube of smoke filtration material is fed to ensheathing means, fibrous material is fed to said ensheathing means whereby at exit from said ensheathing means said tube is ensheathed in a layer of smoke-pervious layer of said fibrous material, the ensheathed tube is cut into discrete lengths, and in each of said lengths, a cross-section of the ensheathing material is rendered impervious to the passage of tobacco smoke and the tube of said length is closed at a location spaced longitudinally from said cross section of said ensheathing material.
8. A method according to claim 7 wherein, the tube is formed of a thermoplastic material and the closure thereof is effected by heat or by heat and pressure.
9. A method according to claim 8 wherein the closure is effected after the tube is ensheathed.
10. A method according to any one of claims 7 to 9 wherein the layer of ensheathing material is formed of a thermoplastic material and is rendered impervious to the passage of tobacco smoke at the cross-section therof by the application of heat, or the application of heat and pressure.
11. A method according to claim 10 wherein the layer of ensheathing material is subjected to a heat moulding process whereby an annular groove is produced, which groove is deep enough to extend at least to the outer surface of said tube.
12. A method according to claim 11 wherein said groove is sealed by the application thereof of a barrier material.
13. Apparatus for producing tobacco smoke filters including means to form a continuous tube of smoke filtration material, ensheathing means, feeding means to feed fibrous material to said ensheathing means, said ensheathing means ensheathing the tube in a layer of smoke pervious material, cutting means to cut the ensheathed tube into discrete lengths, means to render a cross section of the ensheathing layer impervious to the passage of tobacco, and means to close the tube at a location spaced longitudinally from said cross section of the ensheathing layer.
14. Apparatus according to claim 13 wherein the means to render said cross section of the layer impervious comprises at least one heatable former along which said lengths are rolled, said at least one former being shaped to form an annular sealing groove in said layer and at least one further former shaped to close said tube is provided spaced laterally relative to.
15. Atobacco smoke filter substantially as described herein with reference to, and as illustrated in Figures 1 and 2 or Figures 1 and 2 as modified by Figure 5 of the accompanying drawings.
16. A method of producing a tobacco smoke filter substantially as described herein with reference to and as illustrated in the accompanying drawings.
17. Apparatus for producing a tobacco smoke filter substantially as described herein with reference to and as illustrated in Figures 3,4 and 5 of the accompanying drawings.
GB8117295A 1980-06-18 1981-06-05 Filters and a method of producing such filters Expired GB2078089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8117295A GB2078089B (en) 1980-06-18 1981-06-05 Filters and a method of producing such filters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8019887 1980-06-18
GB8117295A GB2078089B (en) 1980-06-18 1981-06-05 Filters and a method of producing such filters

Publications (2)

Publication Number Publication Date
GB2078089A true GB2078089A (en) 1982-01-06
GB2078089B GB2078089B (en) 1983-10-12

Family

ID=26275927

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8117295A Expired GB2078089B (en) 1980-06-18 1981-06-05 Filters and a method of producing such filters

Country Status (1)

Country Link
GB (1) GB2078089B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128070A (en) * 1982-09-02 1984-04-26 Imp Group Plc Improvements in or relating to tobacco smoke filters
GB2134365A (en) * 1983-01-26 1984-08-15 British American Tobacco Co Improvements relating to tobacco-smoke filters
US4795411A (en) * 1984-03-01 1989-01-03 Philip Morris Incorporated Apparatus for forming annular grooves or slits in rod-shaped articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492238A (en) 1981-09-30 1985-01-08 Philip Morris Incorporated Method and apparatus for production of smoke filter components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128070A (en) * 1982-09-02 1984-04-26 Imp Group Plc Improvements in or relating to tobacco smoke filters
GB2134365A (en) * 1983-01-26 1984-08-15 British American Tobacco Co Improvements relating to tobacco-smoke filters
US4795411A (en) * 1984-03-01 1989-01-03 Philip Morris Incorporated Apparatus for forming annular grooves or slits in rod-shaped articles

Also Published As

Publication number Publication date
GB2078089B (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US4388934A (en) Filters
US3637447A (en) Method of making filter means by crimping and overwrapping a tubular element
US4149546A (en) Production of tobacco-smoke filters
US3648711A (en) Tobacco smoke filter
CA1059401A (en) Tobacco smoke filter and method
US3752166A (en) Tobacco smoke filter
CN109090705B (en) Novel low-suction-resistance groove filter stick and preparation method
US3371000A (en) Method and apparatus for making integral multiple tobacco smoke filters
US2828752A (en) Fibrous tobacco smoke filters
US3826177A (en) Apparatus for making filter means
US3910166A (en) Method and apparatus for the manufacture of filter rods containing particulate material from a split web of filter material
US3079930A (en) Process and apparatus for manufacturing filters
PL83654B1 (en) Method of making webs of filter material[us3849526a]
US3943832A (en) Method and apparatus for the handling of tow in the manufacture of tobacco smoke filters containing particulate material
SE437463B (en) TOBACCO ROCK FILTER
US3106501A (en) Process for manufacturing filters
US4480644A (en) Manufacture of cigarettes
US3079978A (en) Apparatus for manufacturing filters
US3774508A (en) Apparatus for making filter means
US3703429A (en) Apparatus for making filter means
US2954773A (en) Cigarette filters and method of making same
CA1043214A (en) Production of tobacco-smoke filters
CA1291916C (en) Fiber separator
GB2078089A (en) Filters and a method of producing such filters
US3413698A (en) Filter tow treatment

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20000605