GB2077769A - Method for removing a scale from a surface - Google Patents
Method for removing a scale from a surface Download PDFInfo
- Publication number
- GB2077769A GB2077769A GB8111714A GB8111714A GB2077769A GB 2077769 A GB2077769 A GB 2077769A GB 8111714 A GB8111714 A GB 8111714A GB 8111714 A GB8111714 A GB 8111714A GB 2077769 A GB2077769 A GB 2077769A
- Authority
- GB
- United Kingdom
- Prior art keywords
- scale
- solution
- autoclave
- hydroxide
- reaction product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/20—Other heavy metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
A method for removing scale, particularly oxide scale, from a surface of a high temperature Fe, Co or Ni based alloy, the surface having been exposed to high temperature conditions, employs an at least 20% solution of an aqueous alkaline hydroxide (e.g. NaOH) in contact with the scale in an autoclave. The solution is heated in the autoclave in a non- oxidizing atmosphere at a temperature in the range of about 200-340 DEG C while providing relative movement between the solution and the scale. Thereafter, the scale reaction product is flushed from the surface to remove the alkaline solution. The alloy may be provided with an aluminide coating.
Description
SPECIFICATION
Method for removing a scale from a surface
This invention relates to removal of a scale from the surface of an article and, more particularly, to the removal of oxide from internal passages within an article.
As improved performance in modern gas turbine engines was achieved by increasing the temperatures experienced in the turbine section, it was found desirable by designers to change from solid components such as turbine blades to air cooled configurations. Generally included in the interior of such air cooled or hollow components is a serpentine cooling fluid path and a plurality of openings in interior walls as well as in exterior walls to provide for the passage and efflux of cooling fluid within and from the interior of such article. One typical fluid-cooled airfoil for use in high temperature conditions is shown in U.S.
Patent 3,628,885-Sidenstick et al. As can be seen from the complexity of design, such a component is costly to manufacture.
Because such components as turbine airfoils are intended to operate under strenuous environmental conditions at elevated temperature, oxide, silicate and sulfide scales can collect on external surfaces as well as on internal passage surfaces. Such scales are particularly critical on internal surfaces because they can adversely affect the flow of cooling fluid, particularly through the relative narrow openings or passages in internal and external walls, and thus can adversely affect heat transfer characteristics of the component.
Repair processes for such costly fluid-cooled components as turbine blades and vanes have attempted to remove such scale from external surfaces through use of mechanical means such as grit blasting, abrasive rotating tools and ultrasonic vibration for external surfaces. Such mechanical methods are virtually ineffective on internal surfaces such as cooling passages. Acid leachants have been evaluated with the result that excessive attack on the metal of the component enlarged cooling passages, particularly fine openings, beyond acceptable limits and adversely affected the cooling characteristics of the component. In addition, fluoride vapor treatment for oxide removal can result in removal of some aluminum from the surface being treated.
Briefly, one form of the method associated with the present invention for removing oxide, silicate, sulfide or their combined reaction product or scale from a surface of an article, particularly from the surface of an internal passage or opening within an article which has been exposed to high temperature operating conditions comprises the steps of providing an aqueous solution of an alkaline hydroxide, perferably one selected from Na0H, KOH and their mixtures. The hydroxide comprises from about 20 weight percent to an amount which provides a saturated aqueous solution at a temperature of about 3400C.The scale on such surface is contacted, in the presence of a non-oxidizing atmosphere, with the aqueous solution in an autoclave in which it is heated at a temperature range of about 200-3400C for a time sufficient to react the solution with the scale to form a scale reaction product soluble in the solution. Relative movement between the solution and scale is provided to enable continuation of the reaction. Thereafter, such reaction product is flushed with the solution from the surface, such as the internal passage. Because retention of alkali in an internal passage can enhance hot corrosion of the article in subsequent high temperature operation, it is preferable to neutralize the alkaline hydroxide by flushing the passage with a dilute, neutralizing acid, although repeated water flushing can be used.The autoclave caustic method is particularly useful in a method for repairing a wall of an internal passage or opening in an article made of an alloy of the type used in gas turbine engines and based on at least one element selected from Fe, Co and Ni. If an internal coating is desired, it can then be applied after such scale removal.
Acid leaching as a means for cleaning or removing scale from internal passages in gas turbine engine hardware which has experienced operation can result in ineffective internal cleaning and excessive flow of cooling fluid due to enlargement of cooling holes or passages. The result has been rejection of otherwise serviceable articles. The method of the present invention provides a means for cleaning scale, particularly from internal passages and openings in components, coated or uncoated, without substantial effect on the substrate alloy or on any residual coating which may be deposited on such alloy.
Described in U.S. Patent 4,073,662-Borom, is a method for removing a ceramic core material from a casting formed about the core material.
Described is the use of an aqueous hydroxide solution selected from NaOH and KOH in a heated autoclave for the leaching of the core. The present invention uses that same type of aqueous hydroxide solution heated in an autoclave.
However, it has been recognized, unexpectedly, that specific criticalities exist in connection with the removal of a scale of an oxide or sulfide or silicate or their combinations from walls of an internal passage of an article in order to effectively remove such scale and, at the same time, avoid a relatively unstable pressure condition within the autoclave. For example, the present invention has recognized that the range of about 20-75 weight percent, and preferably 30-40 weight percent, of the hydroxide is required for practical removal of the scale.Below about 20 weight percent, the reaction is too sluggish, whereas about 75 weight percent represents virtually a saturated aqueous solution at the intended maximum operating temperature of about 3400 C. That temperature is one at which the solution is approaching a critical regime or relationship between vapor and liquid.
Greater than about 3400C results in very rapid pressure increases with increasing temperature and, therefore, unstable, very high pressures in the autoclave vessel. Thus, the present invention has established the range of about 200-3400C in order to avoid such catastrophic increase in pressure. Evaluation of the present invention has shown that a significant increase in scale removal occurs when the temperature is maintained at
least at about 2300C. Therefore, the preferred temperature for use in the present invention is 230--3300C. In addition, because the scale removal
rate double as the percentage of hydroxide increases from 20 to 40 weight percent, the range of 30-40 weight percent hydroxide is preferred.
The time of exposure, generally about 2-10 hours, depends upon the type and thickness of the
scale to be removed as well as the concentration
of caustic and temperature of the bath.
The present invention is particularly useful in connection with the removal of oxide, sulfide, silicate or their combined reaction product of scale from the internal surfaces of high temperature superalloys used in gas turbine engines and
generally based on one or more of the transition triad elements Fe, Co and Ni. In particular, Nibase and Co-base superalloys are used as a
material of construction in turbine blades and vanes of gas turbine engines. Therefore, the
present invention was evaluated particularly in
connection with the turbine blades from a commericaliy used aircraft gas turbine engine and
made of a material sometimes referred to as Rene'
80 alloy. This alloy is described more particularly in U.S. Patent 3,615,376-Ross.After being exposed to operation in a gas turbine engine, it was observed that there was a two mil corrosion scale deposited on internal surfaces of a blade having a configuration similar to that of the above described U.S. Patent 3,628,885-Sidenstick et al.
EXAMPLE 1
Such engine-run turbine blades were placed in an autoclave in which they were immersed in a solution of 40 weight percent NaOH with the balance essentially water. After sealing, the autoclave was flushed with argon gas and then heated at a temperature of about 3050C (6000F) for about 2 hours. The solution was agitated through the blades, although it should be understood that any relative movement between the blade interior and the solution would be adequate. After exposure in the autoclave, the turbine blades were removed and the solution, which at this point included the dissolved product resulting from reaction of the solution with the scale, was flushed from the internal surfaces using a dilute aqueous solution of either a mineral, or organic acid, for example, about 2 vol. % HCI solution, and then water.The dilute acid flush is perferable to neutralize and aid the removal of alkaline solution retained in internal passages, thus to avoid hot corrosion of the article in subsequent use. Subsequent inspection disclosed that the scale had been removed cleanly from the surface of internal portions of the blade with substantially no effect on the substrate alloy or the size of internal passages or openings.
An analysis identified Al2O3 and Cr2O3 to be the predominant component of that portion of the oxide scale which had been removed, according to the present invention, from internal surfaces of the article. Other less reactive and non-reactive oxides and sulfides, if present, were carried away with the dissolved product. This is possible due to encapsulation of such oxides within the Al2O3 and
Cr203 scale.Therefore, practice of the method of the present invention for removing the scale resulting from exposure of superalloys to high temperature operating conditions is based on a careful balance of maintaining the aqueous hydroxide solution, preferably of NaOH or KOH, or their mixtures, in the range of 20-40 weight percent hydroxide with the balance of water, for use in an autoclave in a non-oxidizing atmosphere at a temperature in the range of about 200-3400C. The non-oxidizing atmosphere, for example argon, is required and is an important feature of the present invention to avoid stress corrosion cracking of such engine-run components. Such cracking could result from the presence of residual stresses in the components and contact at autoclave temperatures with oxygen if an oxidizing atmosphere were present during scale removal.
EXAMPLE 2
In another evaluation, tubine blades of the above-described Rene' 80 nickel base superalloy were processed according to the method of the present invention described above in Example 1.
These gas turbine engine blades had been exposed to operation under desert conditions and included heavy silicate deposits. In this example, the time of exposure was about 5 hours with the same successful results as in Example 1. After cleaning, the blades were aluminided in a pack process of the type described in U.S. Patent 3,540,878-Levine et al.
The method of the present invention also has been found to be useful in removing the oxide scale predominantly Al2O3, from the aluminide coated surface of articles such as the abovedescribed Rene' 80 superalloy, as well as from the surface of cobalt base alloys such as a commercially available cobalt base superalloy sometimes referred to as X-40 alloy. Unlike acid leaching or fluoride vapor treatment, practice of ,- the method of the present invention does not affect the residual, unoxidized aluminide coating on such surfaces. Acid leaching, which has been evaluated in some scale removal or cleaning type methods, tends to remove such residual, protective coatings. In addition, the acid can attack the substrate metal resulting in enlarged openings and damage to the article. Acid leaching is very difficult to control in such a method because of the depth of the reaction product formed and intergranular attack on the metal substrate.
Claims (8)
1. A method for removing scale from a surface of an article of a high temperature alloy based on at least one element selected from the group consisting of Fe, Co and Ni, the surface having been exposed to high temperature conditions, characterized by the steps of:
providing an aqueous alkaline hydroxide solution, the hydroxide comprising from 20 weight percent up to an amount which provides a saturated aqueous solution at a temperature of about 3400C; contacting the scale with the aqueous solution in an autoclave in the presence of a non-oxidizing atmosphere;
heating the solution in the autoclave at a temperature in the range of 200-3400C for a time sufficient to react the solution with the scale to form a scale reaction product while providing relative movement between the solution and the scale; and then
flushing the scale reaction product from the surface ro remove the alkaline solution.
2. A method as claimed in claim 1 in which:
the scale predominantly is a reaction product selected from a group of compounds consisting of oxides, silicates, fulfides, and their mixtures; and
the hydroxide comprises 20-75 weight percent of the aqueous solution, the hydroxide being NaOI, KOH or a mixture thereof.
3. A method as claimed in claim 2 in which: the hydroxide comprises 30 40 weight percent of the aqueous solution; and the temperature in the autoclave is in the range of 230--3300C.
4. A method as claimed in any one of the preceding claims in which the scale reaction product is flushed from the surface with a dilute aqueous acid solution.
5. The use of the method as claimed in claim 4 for repairing a surface of an internal passage within the article, the surface having deposited thereon a protective coating which includes aluminium, the coating having predominantly an aluminium oxide scale thereon, in which, after the scale is removed and the alkaline solution is neutralized, a metallic coating is applied to the surface.
6. The use of the method of claim 5 in which the metallic coating is an aluminide coating.
7. A method of removing scale as claimed in claim 1, substantially as hereinbefore described in any one of the Examples.
8. A method of repairing a surface as claimed in claim 5, substantially as hereinbefore described in
Example 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8111714A GB2077769B (en) | 1981-04-13 | 1981-04-13 | Method for removing a scale from a surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8111714A GB2077769B (en) | 1981-04-13 | 1981-04-13 | Method for removing a scale from a surface |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2077769A true GB2077769A (en) | 1981-12-23 |
GB2077769B GB2077769B (en) | 1985-01-09 |
Family
ID=10521136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8111714A Expired GB2077769B (en) | 1981-04-13 | 1981-04-13 | Method for removing a scale from a surface |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2077769B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7018965B2 (en) | 2003-09-03 | 2006-03-28 | General Electric Company | Aqueous compositions for cleaning gas turbine compressor blades |
-
1981
- 1981-04-13 GB GB8111714A patent/GB2077769B/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7018965B2 (en) | 2003-09-03 | 2006-03-28 | General Electric Company | Aqueous compositions for cleaning gas turbine compressor blades |
Also Published As
Publication number | Publication date |
---|---|
GB2077769B (en) | 1985-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4317685A (en) | Method for removing a scale from a superalloy surface | |
US5643474A (en) | Thermal barrier coating removal on flat and contoured surfaces | |
US5813118A (en) | Method for repairing an air cooled turbine engine airfoil | |
JP4681733B2 (en) | Method for removing a thermal barrier coating from a substrate | |
US6146692A (en) | Caustic process for replacing a thermal barrier coating | |
US7008553B2 (en) | Method for removing aluminide coating from metal substrate and turbine engine part so treated | |
US6863738B2 (en) | Method for removing oxides and coatings from a substrate | |
US6833328B1 (en) | Method for removing a coating from a substrate, and related compositions | |
US6758914B2 (en) | Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions | |
EP1795629A2 (en) | Oxide cleaning and coating of metallic components | |
US20050035086A1 (en) | Upgrading aluminide coating on used turbine engine component | |
CN105473821A (en) | Methods for removing barrier coatings, bondcoat and oxide layers from ceramic matrix composites | |
CN100392152C (en) | Method for removing a layer area of a component | |
EP1076114B1 (en) | Method for removing a dense ceramic thermal barrier coating from a surface | |
GB2257395A (en) | Etching solution for removing metallic hot gas corrosion protective layers and hot gas reaction coatings from engine blades | |
US20020074017A1 (en) | Cleaning of internal passages of airfoils | |
GB2077769A (en) | Method for removing a scale from a surface | |
JPH11131206A (en) | Powder material for thermal spraying coating and high temperature member using the same | |
Lin et al. | Influence of hot corrosion on the creep strength of the nickel-base superalloy GH37 | |
JPH10195629A (en) | Gas turbine blade and method for forming film thereon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 19970413 |