GB2066843A - A process for the continuous production of fermentation alcohol - Google Patents

A process for the continuous production of fermentation alcohol Download PDF

Info

Publication number
GB2066843A
GB2066843A GB8038307A GB8038307A GB2066843A GB 2066843 A GB2066843 A GB 2066843A GB 8038307 A GB8038307 A GB 8038307A GB 8038307 A GB8038307 A GB 8038307A GB 2066843 A GB2066843 A GB 2066843A
Authority
GB
United Kingdom
Prior art keywords
reaction column
fermentation
biomass
mixture
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8038307A
Other versions
GB2066843B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sim Chem Ltd
Original Assignee
Sim Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sim Chem Ltd filed Critical Sim Chem Ltd
Priority to GB8038307A priority Critical patent/GB2066843B/en
Publication of GB2066843A publication Critical patent/GB2066843A/en
Application granted granted Critical
Publication of GB2066843B publication Critical patent/GB2066843B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A process for the continuous production of fermentation alcohol, includes the steps of effecting fermentation of a continuous or substantially continuous supply of the liquid substrate by a dense suspension of a suitable micro-organism in a reaction column (A) wherein the suspension is maintained in a well mixed state, causing the mixture to pass from the upper region of the reaction column into a degassing zone (B) where less turbulent conditions readily permit degassing of the mixture, causing part of the degassed mixture to flow into a settling zone (S) wherein quiescent conditions permit the biomass to settle out, returning the settled biomass to the bottom of the reaction column (A) to assist in the continuation of the fermentation process, removing evolved gases from the top of the reaction column (A) and from the tops of the degassing and settling zones (B, S), re-introducing at least a portion of the evolved gases into the bottom of the reaction column (A) to maintain the well mixed state therein, and removing from the top of the settling zone (S) clarified liquor containing product alcohol. <IMAGE>

Description

SPECIFICATION A process for the continuous production of fermentation alcohol This invention relates to a process for the continuous production of fermentation alcohol.
The process requires little or no oxygen and maintains the treatment liquor in a uniformly mixed condition thus promoting the continuous growth of active biomass in the treatment system.
The process is particularly, though by no means exclusively, concerned with the fermentation of glucose solutions by yeasts to give ethanol and carbon dioxide.
According to the present invention there is provided a process for the continuous production of fermentation alcohol, including the steps of effecting fermentation of a substantially continuous supply of a liquid substrate by a dense suspension of a suitable micro-organism in a reaction column wherein the suspension is maintained in a well mixed state, causing the liquid-biomass mixture in an upper region of the column to pass into a degassing zone wherein less turbulent conditions readily permit degassing of the mixture, causing at least a part of the degassed mixture to flow from the degassing zone into a settling zone wherein quiescent conditions permit the biomass to settle out, returning the settled biomass to a lower region of the reaction column to assist in the continuation of the fermentation process, removing evolved gases from the upper end of the reaction column and from the degassing zone, reintroducing at least a portion of said evolved gases into the lower region of a reaction colum thus to maintain said well mixed state therein, and removing from the settling zone clarified liquor containing product alcohol.
An embodiment of the invention will now be described,by way of example only, with reference to the apparatus used for carrying out the process as illustrated schematically in the accompanying drawings.
Of the drawings: Fig. lisa diagrammatic illustration of one form of apparatus to carry out the process; and Fig 2 is a modified form of such apparatus.
The apparatus generally comprises a reaction vessel A of high aspect ratio connected near its upper end to a degassing vessel B which is similar in cross-section to the vessel A.
The reaction vessel A is equipped with a gas diffuser or sparge C in the lower region of the vessel, and a gas input line D beneath the sparge C. The upper ends of the vessels A and B communicate with gas or vapour lines A and B which join together and, via a pressure regulator G1 lead either to waste or to a compressor G2.
The output of the compressor G2 is connected via an adjustable valve G3 to the line D feeding gas to the base of the reaction vessel A. A feed line E is also connected to the valve G3 to permit the introduction into the line D of air or other treatment gas, whereby the resultant gas mixture is arranged to pass into the reaction vessel A.
A settling vessel S is connected to the degassing vesselB at its lower end, and the lower end of the vessel S is connected by a line S2 to the lower end region of the reaction vessel A above sparge C. A line S is provided for the removal from vessel S of evolved gases and/or vapours, and this is connected to lines A and B. A line B2, shown in broken lines, connects the bottom end of vessel B to line S2. A valve G4 is preferably connected between vessel B and the vessel S, allowing adjustment of the proportion of the stream flowing through B which passes to the vessel S. Alternatively, the line B2 may be omitted altogether so that the entire return flow to vessel A is by way of vessel S.
An input line I is connected near the base of the reaction vessel A to introduce the substrate for the process. An output 0 is provided near the upper end of the vessel S to permit liquor containing product alcohol to be taken from the system. An output line 02 for a purpose to be described is connected to the lower region of vessel A.
The method in accordance with the invention can be carried out using the described apparatus in the following manner. In the particular instance of an ethanol/yeast fermentation, the process is initiated by filling the system with a process medium such as water and glucose, and this medium is inoculated with a yeast suspension, for example, by way of line I. Initially, a supply of air alone is introduced at line E via valve G3 and into line D for injection into the reaction vessel A.
Fermentation commences, and the culture is maintained in this manner until an adequate population of aerobically grown yeast has developed in the vessel A, at which time the valve G3 is adjusted so that the air supply is largely replaced by carbon dioxide being recycled by the compressor G2 from the upper ends of vessels A, B and S. A small proportion of air is advantageously retained, since the ethanol/yeast fermentation is, strictly, microaerobic rather than truly aerobic. In cases where the fermentation is effected with a strictly anaerobic microorganism, a different procedure will be necessary in which the initial supply of gas is of some inert gas such as nitrogen or carbon dioxide, or a mixture of such, from an external source, and this will be replaced as soon as possible by the recycled gases generated in the fermentation process.
Once the system is running as described, then a continuous supply and removal of media at an appropriate rate may be established.
As will be seen, therefore, in operation of the process the introduction of substrate at line I into the vessel A is continuous, and the liquid/biomass mixture passes progressively into the degassing vessel B. In the degassing stage of the process, conditions exist which are less turbulent than those in the reaction vessel A, and there is present a relatively low availability of the original substrate, so that the production of carbon dioxide by the biomass is reduced and the conditions permit the residual gas to be given off thus promoting separation of the degassed biomass from the fermented liquor owing to the relative specific gravities thereof.
Thus a part or the whole of the descending degassed biomass, and the liquid phase surrounding same, passes into the settling vessel S where the direction and magnitude of the liquor flow towards the outlet 0 permits the suspended biomass to settle out and so return via line S2 to the reaction vessel A to assist in maintaining the fermentation process. Adjustment of the valve G4 allows the proportion of mixture flowing through B2 and S2 to be varied, thus providing the optimum velocity through S for biomass separation.
The provision of the settling vessel S in addition to the degassing vessel B enables a substantially complete separation of the degassed biomass from the fermented liquor. In some cases, the efficiency of biomass return is so high that the biomass in the system accumulates to an unmanageable level, and a controlled continuous or intermittent removal thereof can be effected via line 02.
The recycling of the biomass in the system together with the continuous introduction of the substrate, and the reintroduction of fermentation gases at line D serve to maintain the treatment media in the vessel A, in a well mixed state thus promoting the growth of active biomass, as well as the fermentation process as a whole.
Referring now to Fig. 2 where parts having a like function are denoted by the same reference characters as those used in Fig. 1, it will be seen that there is provided a common vessel V in which is disposed a cylindrical reactions column A and a concentric cylindrical baffle X surrounding the column A, an annular weir Y surrounding the baffle X and attached to the inner surface of the wall of the vessel V. In this example, the liquidbiomass mixture in the upper region of the column A is caused to flow down through the annular degassing zone B where less turbulent conditions permit the degassing of the mixture, and the gas is removed via line Z connected to the top of the vessel V. Of the mixture passing downwardly in zone B a portion flows upwardly into the annular settling zone S and is removed via weir Y to outlet line 0.The increased volume of settling zones with respect to zone B permits the biomass to settle out leaving relatively clear liquor to pass over the weir Y. The descending stream of liquid/biomass mixture re-enters the base of the column A to maintain the process, this being assisted by the introduction of recycled gas at line D introduced by the controlling effects of valves G1 and G3 and compressor G2. The embodiment of Fig. 2 whilst functionally similar to that of Fig. 1, is constructed in a more suitable manner in the interest of economy and space.
In cases where the product alcohol is itself inhibitory to the progress of the fermentation it may be necessary for the inhibitory product to be continuously, and selectively, removed from the fermentation liquor in the system.
It will be seen that the process according to the invention enables substantial productivity benefits to be achieved by the increased concentration of biomass in the fermentation system and this is attained by simple means in an enclosed system, without the use of pumps or centrifuges or other mechanical devices and without the dangers of excessive solids accumulation in so-called 'dead spots' where liquid flow might otherwise be impeded. It is expected that considerable biomass concentrations can be achieved yet still maintained in a well mixed condition so far as the main body of the fermentation liquor is concerned.

Claims (9)

1. A process for the continuous production of fermentation alcohol, including the steps of effecting fermentation of a substantially continuous supply of a liquid substrate by a dense suspension of a suitable microorganism in a reaction column wherein the suspension is maintained in a well mixed state, causing the liquid/biomass mixture in an upper region of the column to pass into a degassing zone wherein less turbulent conditions readily permit degassing of the mixture, causing at least a part of the degassed mixture to flow from the degassing zone into a settling zone wherein quiescent conditions permit the biomass to settle out, returning the settled biomass to a lower region of the reaction column to assist in the continuation of the fermentation process, removing evolved gases from the upper end of the reaction column and from the degassing zone, reintroducing at least a portion of said evolved gases into the lower region of the reaction column thus to maintain said well mixed state therein, and removing from the settling zone clarified liquor containing product alcohol.
2. A process according to claim 1, wherein the liquid substrate is introduced into the reaction column in the lower region thereof, and the degassed mixture enters the settling zone in the lower region thereof.
3. A process according to claim 1 or claim 2, wherein evolved gases are removed from the settling zone.
4. A process according to any preceding claim, wherein the proportion of the degassed mixture from the degassing zone which enters the settling zone is variable and controlled, any mixture not entering the settling zone, being returned to the reaction column together with said settled biomass.
5. A process according to any preceding claim, wherein a further treatment gas is introduced into the lower region of the reaction column together with said evolved gases.
6. A process according to claim 5, wherein said other treatment gas is air, and the proportion thereof is adjustable.
7. Apparatus according to any preceding claim, wherein biomass is continuously or intermittently removed at a controlled rate from said reaction column.
8. A process according to any preceding claim, wherein any product such as product alcohol which is inhibitory to the process, is continuously or selectively removed from the fermentation liquor in the system.
9. A process for the continuous production of fermentation alcohol, substantially as hereinbefore described with reference to the accompanying drawings.
GB8038307A 1979-12-13 1980-11-28 Process for the continuous production of fermentation alcohol Expired GB2066843B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8038307A GB2066843B (en) 1979-12-13 1980-11-28 Process for the continuous production of fermentation alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7943065 1979-12-13
GB8038307A GB2066843B (en) 1979-12-13 1980-11-28 Process for the continuous production of fermentation alcohol

Publications (2)

Publication Number Publication Date
GB2066843A true GB2066843A (en) 1981-07-15
GB2066843B GB2066843B (en) 1983-07-06

Family

ID=26273869

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8038307A Expired GB2066843B (en) 1979-12-13 1980-11-28 Process for the continuous production of fermentation alcohol

Country Status (1)

Country Link
GB (1) GB2066843B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092697A1 (en) * 1982-04-26 1983-11-02 Societe Des Produits Nestle S.A. Process and fermentation apparatus for alcohol production
EP0114161A2 (en) * 1983-01-13 1984-07-25 VOEST-ALPINE Aktiengesellschaft Process for the preparation of ethanol out of fermentable sugar solutions
AT383827B (en) * 1982-01-26 1987-08-25 Hitachi Shipbuilding Eng Co METHOD FOR THE CONTINUOUS PRODUCTION OF FERMENTATION ALCOHOL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT383827B (en) * 1982-01-26 1987-08-25 Hitachi Shipbuilding Eng Co METHOD FOR THE CONTINUOUS PRODUCTION OF FERMENTATION ALCOHOL
EP0092697A1 (en) * 1982-04-26 1983-11-02 Societe Des Produits Nestle S.A. Process and fermentation apparatus for alcohol production
EP0114161A2 (en) * 1983-01-13 1984-07-25 VOEST-ALPINE Aktiengesellschaft Process for the preparation of ethanol out of fermentable sugar solutions
EP0114161A3 (en) * 1983-01-13 1986-06-25 Voest-Alpine Aktiengesellschaft Process for the preparation of ethanol out of fermentable sugar solutions

Also Published As

Publication number Publication date
GB2066843B (en) 1983-07-06

Similar Documents

Publication Publication Date Title
EP0648191B1 (en) Reactor for the biological treatment of water
US4954257A (en) Biological purification loop device and method having deflector plate within guide pipe
US4329433A (en) Process for continuous fermentation
GB1527731A (en) Sewage treatment-flotation apparatus
US5158890A (en) Fermenter for the production of alcohol
DK0964831T3 (en) Process for producing granular growth of a microorganism in a reaction vessel
US4357424A (en) Process for the continuous production of fermentation alcohol
CA1243471A (en) Process for carrying out reactions and mass transfer processes in heterogeneous fluid systems
US4069149A (en) Continuous fermentation process and apparatus
US4892818A (en) Bioreactor
US4267050A (en) High solubility gas flotation in liquid-solid separation
SU967278A3 (en) Method and apparatus for contacting gas and liquid
JPH0373357B2 (en)
GB2066843A (en) A process for the continuous production of fermentation alcohol
US5032515A (en) Hydrolysis process of fat or oil
US4342835A (en) Fermentation process and apparatus
GB2077712A (en) Process for aerobic biotreatment
US5849191A (en) Wastewater treatment method, method of suspensions separation and method of saturation of liquid with gas
US4983517A (en) Reacting materials
EP0325337B1 (en) Process for reducing the hysteresis effect in a gaslift loop reactor with suspended solid particles
US4534864A (en) Process and device for the regeneration of a group of solid particles having a coating of a biological material
US3219319A (en) Concentration control apparatus for a continuous flow system
US4904600A (en) Bioreactor for continuous processing of a reactant fluid
WO1992001779A1 (en) Fermentation vessel
JPH0343070A (en) Apparatus for practicing biocatalytic process accompanying solid phase biocatalyst

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19921128