GB2066798A - Production of purified lead and antimony oxide - Google Patents

Production of purified lead and antimony oxide Download PDF

Info

Publication number
GB2066798A
GB2066798A GB8000049A GB8000049A GB2066798A GB 2066798 A GB2066798 A GB 2066798A GB 8000049 A GB8000049 A GB 8000049A GB 8000049 A GB8000049 A GB 8000049A GB 2066798 A GB2066798 A GB 2066798A
Authority
GB
United Kingdom
Prior art keywords
slag
lead
oxide
antimony
antimony oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8000049A
Other versions
GB2066798B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NL Industries Inc
Original Assignee
NL Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NL Industries Inc filed Critical NL Industries Inc
Priority to GB8000049A priority Critical patent/GB2066798B/en
Publication of GB2066798A publication Critical patent/GB2066798A/en
Application granted granted Critical
Publication of GB2066798B publication Critical patent/GB2066798B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/004Oxides; Hydroxides; Oxyacids
    • C01G30/005Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Purified lead and antimony oxide are produced from antimonial lead alloys by oxidation of the molten alloy to form purified metallic lead and a slag of lead oxides and antimony oxides, separation of the metal and slag, and subsequent partial reduction and fuming of the slag to produce pure antimony oxide.

Description

SPECIFICATION Production of purified lead and antimony oxide This invention generally pertains to the production of purified lead and antimony oxide from lead-antimony alloys through controlled preferential oxidation of the alloy to produce purified lead and a lead oxide-antimony oxide slag, separation of the lead and slag, and subsequent partial reduction and fuming of the slag to form antimony oxide. This invention has special significance at the present time because of the availability of large quantities of lead antimony scrap which must be ultimately processed to lead battery grid alloys containing little antimony.
Hence, an efficient technique for removal and reclamation of the excess antimony content is of substantial significance to the secondary lead industry.
The purification or softening of lead alloyed with antimony with use of various oxidation techniques is well known in the art as exemplified by United States Patent Numbers 50,800; 786,581; 1,640,486; 1,640,487; 1,950,388; 2,062,838; and 3,335,569. In addition, it is well known in the art to produce various forms of antimony oxide by fuming techniques such as shown in United States Patent Numbers 1,504,685; 1,534,743; 1,726,346; 2,035,453; 2,035,454; 2,177,551; 2,278,134; and 2,062,838; and in French Patent Number 1,491,728. In addition, aforesaid United States Patent Number 2,062,838 produces lead and antimony oxide by a technique considered to be significantly different and less efficient than that of this invention.The ability to efficiently produce both materials is extremely desirable in view of the current availability of large quantities of antimonial lead scrap from storage batteries.
The process of the invention starts with a feed material comprising a lead alloy containing substantial amounts of antimony, e.g. about 0.1 to 10 weight percent, and small amounts of contaminant materials such as arsenic and tin which are typically present in amounts of about 0.5 percent. It is desirable but not essential to remove such contaminant metals by partial oxidation of the lead alloy. Since both arsenic and tin oxidize preferentially to both the lead and antimony, the alloy can be purified by an initial oxidation which develops a powdery dross containing the oxides of tin and arsenic. This reaction goes readily and in many cases simply stirring the alloy in an air atmosphere wiil be sufficient to produce the dross.If the arsenic level is not reduced to the desired level, it can be reduced further by the addition of other agents, as is known in the art. The removal of arsenic can be accomplished as a first step and the dross removed before oxidation of the antimony as shown in the sole Figure. Alternatively, the oxidation can be a single stage and the arsenic and tin dross removed as a prelude to producing antimony oxide rich slag.
In accordance with the process of this invention, the lead-antimony alloy is oxidized to form purified lead containing a maximum of about 0.1% antimony and a relatively high antimony slag, e.g., typically on the order of 30 weight percent antimony oxide, balance essentially lead oxide. Upon separation of the lead and slag, a preferential reduction of the lead oxide in the slag is effected, thereby increasing its antimony oxide content to from about 40 to 80 weight percent.
Simultaneous fuming and additional preferential reduction are then conducted to maintain the desired antimony oxide content and thereby produce high quality antimony trioxide at high efficiencies. Lead containing small quantities of antimony is formed during the reduction reactions and may be removed continuously or permitted to accumulate and removed periodically.
The sole Figure is a schematic representation of a suitable embodiment of the overall process of the invention.
The lead-antimony alloy, following arsenic and tin removal, is subjected to partial oxidation whereupon the antimony is preferentially oxidized to form antimony trioxide. This step may be typically accomplished by bubbling air through the molten alloy to directly oxidize the antimony. Air is bubbled through the metal in as large a quantity as possible without ejecting material or entraining material in the air stream. This typically causes surface agitation which assists in the oxidation.
The molten alloy is maintained at a relatively high temperature, e.g., about 1 2000F to 18000 F, to increase the rate of oxidation. When the antimony level of the molten alloy reaches about 0.10/0, the slag is removed.
An alternate oxidation technique comprises stirring litharge (PbO) into the molten alloy at a temperature on the order of 1 2000F until the fluid black slag commences to thicken. At this point the antimony content of the molten alloy is approximately 0.1% and the antimony trioxide content of the slag is from about 20% to 40%. The slag is then separated from the molten alloy.
The separated lead has an antimony content of about 0.1% and may be further purified if desired by methods well known to those skilled in the art.
Following its separation from the purified lead, slag from the oxidation step is cooled to a temperature sufficient to solidify the slag, e.g., about 9500 F. Any lead entrained on the slag remains molten and can be poured off.
Reduction of the slag containing a high concentration of antimony trioxide is accomplished through partial reduction with the addition of a reductant such as carbon black, carbon monoxide, graphite, coal fines or petroleum coke. The reductant is added in an amount sufficient to reduce much of the lead oxide but little of the antimony trioxide. A slag rich in antimony trioxide is produced, along with lead metal which contains a small amount of antimony and settles to the bottom of the container. The partial reduction of the slag increases the concentration of the antimony oxide in the slag from about 20% to 40% antimony oxide to from about 40% to 80%. Antimony oxide contents in excess of about 80% lead to the formation of undesirable grey colored fumes and thus should be avoided.On the other hand, antimony oxide contents below about 40% should be avoided because of yellowing and low fuming rates. At such increased antimony trioxide concentrations, the slag readily fumes off antimony trioxide.
Accordingly, after the antimony oxide level of the slag has been increased the desired amount, the temperature of the slag is adjusted to a point where the antimony trioxide fumes at the desired rate. Because the vapor pressures of antimony trioxide and lead oxide are very different, the enriched slag compositions can be fumed easily at 1 4000F to 1 8000F with negligible amounts of lead oxide contained in the fume. It is preferred to use a fuming temperature of about 1 5000F to 1 7000F to optimize fuming rate and color. This temperature is especially compatible with slag containing about 60% to 70% antimony oxide. The fumed antimony oxide may be collected by simply passing a carrier gas across the surface of the slag and passing into suitable collection apparatus.
In accordance with the invention, as the slag starts fuming, additional ,eductant is added to offset the build-up of lead oxide in the slag and to maintain the concentration of antimony trioxide between about 40% to 80%, which maintains rapid and easy fuming. It is preferred to maintain the concentration between about 60% and 70% to optimize fuming rate and color. Although adequate fuming rates may be obtained at slag temperatures of on the order of 1 2500F, it is preferred to maintain the slag at a temperature in excess of about 14000 F to further maximize fume production. Slag temperatures in excess of about 1 8000F lead to fume discoloration and should be avoided. As the antimony trioxide fumes, lead oxide builds up in the slag.The addition of reductant during fuming reduces this lead oxide by reducing it to lead metal which sinks to the bottom and does not fume. Accordingly, in the present invention additional reductant is added during fuming in an amount to control the lead oxide build-up in the slag and prevent fuming of lead oxide. In accordance with the present invention substantially all of the slag can be fumed and processed and the heel of lead metal produced, which contains a minor amount of antimony, e.g., about 5%, may be recycled to the initial oxidation step, if desired, or used directly.
The recovery of antimony, in the form of antimony tricxide, is essentially 95 percent overall of the starting quantity of antimony metal and typically is about 90% per cycle. A substantial advantage of the present process is that the energy requirement to recover the antimony trioxide is substantially less than required for processes which reduce antimony oxide to the metal and then fume the metal.
The following example illustrates a typical manner of practicing the invention.
A lead-antimony alloy melt was treated by known methods to produce a softening slag containing 70% PbO, 30% Sb203 with negligible amounts of tin and arsenic. A sample of the slag weighing 200 pounds was melted with about 1 pound of coke in a vessel. Additionai coke, about 5 pounds, was added as the charge was heated to about 15500 to 16000. The melt was maintained at this temperature until the reaction was essentially completed. Pb metal containing about 5% antimony was formed and collected at the bottom. Analysis of the slag indicated that the Sb203 content was 6065% by weight. A carrier gas was blown across the melt surface to sweep away the Sb203 vapor. The hot gas was cooled to about 2000F and the condensed Sb203 was collected in a baghouse. Samples of the Sb203 fume were found to be white and to contain less than 0.1% Pb. Small amounts of coke were added periodically to the melt to maintain the slag composition at 6065% weight percent Sb203 during fuming. This operation was continued until most of the slag was consumed.

Claims (11)

1. A method for producing purified lead and antimony oxide, comprising: a. oxidizing a molten lead alloy containing more than 0.1% antimony to the extent that purified molten lead containing a maximum of 0.1% antimony and a first slag consisting essentially of lead oxide and antimony oxide are formed; b. separating said purified lead and said first slag; c. adding a reducing agent to said first slag to reduce a sufficient quantity of lead oxide to lead to thereby create a second slag consisting essentially of about 40% to 80% antimony oxide, balance essentially lead oxide; d. maintaining said second slag at a temperature above about 12500F to permit antimony oxide to fume from said second slag;; e. periodically adding a reducing agent to said second slag to reduce a sufficient quantity of lead oxide to lead thereby maintaining said second slag at a composition of about 40% to 80% antimony oxide, balance essentially lead oxide during antimony oxide fume formation; and f. collecting said antimony oxide fume.
2. The method of Claim 1 which further includes: removing tin, arsenic, copper, and sulfur from said molten lead alloy prior to formation of said purified lead and said first slag.
3. The method of Claim 1, wherein: said second slag is maintained at a temperature of from about 14000to 18000F.
4. The method of Claim 3, wherein: said second slag consists essentially of about 60% to 70% antimony oxide, balance essentially lead oxide and said second slag is maintained at a temperature of from about 1 5000F to 17000 F.
5. A method for producing antimony oxide, comprising: a. producing a first slag consisting essentially of lead oxide and antimony oxide; b. adding a reducing agent to said first slag to reduce a sufficient quantity of lead oxide to lead to thereby create a second slag consisting essentially of about 40% to 80% antimony oxide, balance essentially lead oxide; c. maintaining said second slag at a temperature above about 12500to permit antimony oxide to fume from said second slag; d. periodically adding a reducing agent to said second slag to reduce a sufficient quantity of lead oxide to lead to maintain said second slag at a composition of about 40% to 80% antimony oxide, balance essentially lead oxide during antimony oxide fume formation; and e. collecting said antimony oxide fume.
6. The method of Claim 5, wherein: said second slag is maintained at a temperature of from about 14000to 18000F.
7. The method of claim 6, wherein: said second slag consists essentially of about 60% to 70% antimony oxide, balance essentially lead oxide and said second slag is maintained at a temperature of from about 1 5000F to 1 7000 F.
8. A method of producing antimony oxide substantially as hereinbefore described.
9. A method of producing purified lead substantially as hereinbefore described.
10. Antimony oxide whenever produced by the method claimed in any one of Claims 1 to 8.
11. Purified lead whenever produced by the method claimed in any cne of Claims 1 to 7 and 9.
GB8000049A 1980-01-02 1980-01-02 Production of purified lead and antimony oxide Expired GB2066798B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8000049A GB2066798B (en) 1980-01-02 1980-01-02 Production of purified lead and antimony oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8000049A GB2066798B (en) 1980-01-02 1980-01-02 Production of purified lead and antimony oxide

Publications (2)

Publication Number Publication Date
GB2066798A true GB2066798A (en) 1981-07-15
GB2066798B GB2066798B (en) 1983-07-06

Family

ID=10510397

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8000049A Expired GB2066798B (en) 1980-01-02 1980-01-02 Production of purified lead and antimony oxide

Country Status (1)

Country Link
GB (1) GB2066798B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626358A (en) * 2020-12-19 2021-04-09 湖南安化渣滓溪矿业有限公司 Method for recovering antimony from blast furnace slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626358A (en) * 2020-12-19 2021-04-09 湖南安化渣滓溪矿业有限公司 Method for recovering antimony from blast furnace slag

Also Published As

Publication number Publication date
GB2066798B (en) 1983-07-06

Similar Documents

Publication Publication Date Title
EP0453151A1 (en) Process for recovering valuable metals from a dust containing zinc
US4489046A (en) Method for working-up arsenic-containing waste
US4194904A (en) Production of purified lead and antimony oxide
CN106834707A (en) A kind of method of arsenic-containing material synthetical recovery and arsenic recycling
US8500845B2 (en) Process for refining lead bullion
US4519836A (en) Method of processing lead sulphide or lead-zinc sulphide ores, or sulphide concentrates, or mixtures thereof
US5467365A (en) Process for the recovery of lead arising especially from the active material of spent batteries, and electric furnace intended especially for the use of the process
US3902890A (en) Refining silver-bearing residues
US4164416A (en) Metal recovery process
US3847595A (en) Lead smelting process
CA1157665A (en) Low temperature, non-so.sub.2 polluting, kettle process for separation of lead from lead sulfide- containing material
US4707185A (en) Method of treating the slag from a copper converter
CN111020206A (en) Method for comprehensively recovering lead-antimony-bismuth-containing materials such as Kaldo furnace smelting slag
RU2091496C1 (en) Method of preparing volatile metals such as zinc, lead, and cadmium from sulfide raw material
GB2066798A (en) Production of purified lead and antimony oxide
US4333762A (en) Low temperature, non-SO2 polluting, kettle process for the separation of antimony values from material containing sulfo-antimony compounds of copper
EP0099475B1 (en) Separation of elemental lead from blast furnace bullion
EP0007890B1 (en) A method of manufacturing and refining crude lead from arsenic-containing lead raw-materials
US3052535A (en) Recovering lead from by-product lead materials
EP1721021B1 (en) Recycling of hot-dip zinc galvanizing bath
US2113643A (en) Process for treating metals
US2365177A (en) Process for refining lead or lead alloys
US4427629A (en) Process for metal-enrichment of lead bullion
US2040825A (en) Treating mixed oxides of lead, tin, and zinc
US2043573A (en) Process for recovering tin

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee