GB2064335A - Breathing apparatus - Google Patents

Breathing apparatus Download PDF

Info

Publication number
GB2064335A
GB2064335A GB8037769A GB8037769A GB2064335A GB 2064335 A GB2064335 A GB 2064335A GB 8037769 A GB8037769 A GB 8037769A GB 8037769 A GB8037769 A GB 8037769A GB 2064335 A GB2064335 A GB 2064335A
Authority
GB
United Kingdom
Prior art keywords
oxygen
valve
breathing
flow rate
wearer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8037769A
Other versions
GB2064335B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coal Industry Patents Ltd
Original Assignee
Coal Industry Patents Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coal Industry Patents Ltd filed Critical Coal Industry Patents Ltd
Priority to GB8037769A priority Critical patent/GB2064335B/en
Publication of GB2064335A publication Critical patent/GB2064335A/en
Application granted granted Critical
Publication of GB2064335B publication Critical patent/GB2064335B/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

A breathing apparatus comprises a high pressure oxygen (or gas containing at least 50% oxygen) source (1), a reducing valve (2), set to give a constant flow rate of from 4 to 30 l/min of oxygen, personal gas supply means (8), with an inhalation valve (7) and an exhalation valve (9), a regenerative section (14) and a breathing bag (15) and a vent valve (13) which permits excess exhaled gas to be vented carrying with it sensible heat, moisture and carbon dioxide. The apparatus provides a more comfortable and useful apparatus especially suited to the requirements of underground rescue in mines. <IMAGE>

Description

SPECIFICATION Breathing apparatus This invention concerns breathing apparatus, more especially it concerns compressed oxygen breathing apparatus.
There are two types of compressed oxygen breathing apparatus in use in the British coal mining industry; one providing a constant flow of oxygen which can be supplemented when required by a manual by-pass valve, and the other, more modern apparatus, providing a tower constant flow in combination with a demand valve. It will be understood that only about 4% of the oxygen inhaled is used by the body and converted to carbon dioxide in the lungs.To conserve oxygen and to give the apparatus a long useful life for an underground rescue situation, the exhalation are purified in a regenerator containing a chemical absorbent and recycled, and the balance made up by a constant flow from a regulated oxygen cylinder of about I2 1/min. This make-up flow of oxygen is sufficient to cater for most activity while wearing the apparatus and during most circumstances is in excess of what is required (during walking, for example), so that excess oxygen accumulates in the system inflating the breathing bag and increasing breathing resistance A relief valve is provided on the breathing bag to vent excess oxygen.In cases where the breathing rate is abnormally high, for example if extreme efforts have to be made or in a very high stress situation, additional oxygen can be bled for short periods into the system by a manual self-return by-pass valve which by-passes the regulator on the cylinder. The alternative to the by-pass valve is a demand valve, actuated by the breathing requirements of the wearer.
The chemical absorbent, which may be either a caustic alkali or soda-lime, has certain unfortunate side-effects. Firstly, the chemical reaction involved is exothermic, with the result that the recycled oxygen is heated considerably by heat exchange as it passes through the absorbent. Breathing hot gas is exhausting, and therefore the apparatus normally requires a cooler on the inhalation side of the breathing circuit, through which the heated gas passes and gives up heat to a coolant which may be ice or a chemical such as disodium hydrogen phosphate dodecahydrate. An additional problem is that the gas breathed is normally fully saturated with water vapour.
It has always been realised that underground rescue work has a primary requirement for an extended useful life of breathing apparatus. This means that some form of closed circuit system is essential since an open circuit system, which vents exhalations to the atmosphere and thus requires no regenerative section, is extremely wasteful of air or oxygen. Open circuit breathing apparatus is used by fire brigades, where there is generally no need for lengthy rescue work of the type met with underground. Scuba divers also use open circuit apparatus; although the weight of full cylinder(s) for a 1s-2 hour life is excessive on land it is no problem in water.
It is current and past practice throughout the world for mine rescue breathing apparatus to conserve oxygen. Previously, the most modern compressed oxygen breathing apparatus has had a combination of a relative low constant flow of about 1 < 1 1/mien, that is sufficient for a "rest" or low work load situation and a demand valve which is actuated when the wearer requires extra "air". We have found that this system does indeed conserve oxygen but also retains heat within the system. Furthermore, it is found that in a conventional closed circuit system, it is necessary to eliminate as far as practicable inleakage during low pressure inhalation, or otherwise there is a risk of build-up of contaminant gases whetherinerts such as nitrogen or toxic such as carbon monoxide, which are not eliminated by the purifier.
This modern apparatus is complicated, expensive, and what is paramount importance in a mine rescue situation, requires lengthy and skilled servicing before re-use.
It is an aim of the present invention to provide an apparatus and method whereby breathing apparatus for use underground provides oxygen at a comfortable temperature, with humidity lower than in conventional closed circuit apparatus and which is capable of providing a useful life.
It is to be understood that throughout the description and claims, "oxygen" is to be understood as including mixtures of not less than 50% of oxygen with inert gases, for example oxygen-enriched air (such as air having a 50% oxygen content), oxygennitrogen mixtures (such as 50% oxygen/50% nitrogen) and oxygen/helium (such as 50% oxygen/50% helium).
The present invention provides a breathing apparatus for use in an irrespirable atmosphere, that is to say, an atmosphere containing insufficient oxygen to sustain life and/or containing noxious components and at substantially ambient pressure which apparatus provides, in use, a high constant flow rate of oxygen, comprising a high pressure oxygen source, a reducing valve set to give a substantially constant flow rate of from 4to 30 1/min of oxygen, personal gas supply means with an inhalation valve and an exhalation valve, a regenerative section and a breathing bag in which excess exhaled gas is vented, carrying with it sensible heat, moisture and carbon dioxide.
Although the apparatus is not a diving apparatus (which provides "air" at increased pressure with increase in depth) it is envisaged that a wearer may wish to swim underwater while wearing it, for example in an attempt to rescue a trapped person.
A preferred apparatus is a closed circuit apparatus having additionally a vent-to-atmosphere relief valve located between the exhalation valve and the regenerative section; the outward flow from the regenerative section being connected to the inhalation side of the personal gas supply means. A more preferred apparatus is one having the vent-toatmosphere relief valve and arranged so that the exhalations from the deeper recesses of the lungs are vented to the atmosphere and do not pass through the regenerative section.
The invention also provides a method of providing oxygen to the wearer of a breathing apparatus which comprises supplying oxygen from a high pressure source to the wearer at a rate of from 4 to 30 1/min.
Preferably, the initial part of each exhalation is recy cled through a regenerative section containing a carbon dioxide absorbent, to the wearer and the tat- ter part of each exhalation is vented to the atmos phere.
The high pressure oxygen source may be a tank, but is preferably a cylinderwhich is easily manportable as part of the breathing apparatus. More preferably the source is a large capacity lightweight cylinder, for example a light alloy seamless steel cylinder or a fibre-wrapped light metal (e.g.
aluminium) or steel cylinder. Such a cylinder for an oxygen supply is conveniently of 1500 1 capacity at a charging pressure of 200 bar. Of course, the apparatus may have more than one cylinder.
The reducing valve may be a piston or diaphragm type regulator known in the art. Conventional apparatus normally includes a by-pass valve in the event of failure of the reducing valve, and while a by-pass valve may form part of the apparatus of the invention, it is envisaged that two reducing valves in parallel would be provided. For example, each reducing valve may be set at 5 1/min, and in a light work or rest situation only one of the reducing valves would be necessary. The wearer will turn on the other reducing valve when he meets a high stress or high work situation. With two reducing valves in parallel, a by-pass valve is not essential. However, it is also possible to use a single reducing valve with two outlets, or a plurality of reducing valves.
The personal gas supply means may be a conventional mouthpiece which would have inlet and outlet supply tubes as well as an associated nose-clip.
Alternatively, a full face mask can be used which has the advantage that it can permit speech if fitted with a speech diaphragm or microphone. A full face mask does, however, suffer from the disadvantage of the risk of misting and loss of visibility, and this is accentuated by highly saturated oxygen supplies from closed-circuit systems. In addition, the wearer generally suffers facial sweating, especially on the forehead. Many methods have been used in attempts to reduce the misting but none has proved to be entirely satisfactory with closed circuit apparatus.
Modern full face masks may have an inflatable seal around the head contacting edge, which is intended to reduce the chance of leakage of contaminants from the atmosphere into the mask. It is found, however, that the seal may not be effective with abnor mally shaped heads, and is seriously disturbed if the wearer has more than about three days' growth of beard or attempts to wear spectacles. It is-envisaged that the present invention can be used with a full face mask with at least a part of the fresh oxygen from the cylinderortank piped directly into the space between an orinasal half mask and an outer full mask. This will reduce the tendency for in leakage, reduce the misting problem and also reduce the problems associated with facial sweating, espe cially if the fresh oxygen is directed onto the wearer's face.
The vent-to-atmosphere valve is suitably a simple pressure relief valve, preferably with the facility for manual override.
As has been stated, the vent-to-atmosphere valve is conveniently between the exhalation valve and the regenerative section. Preferably, the regenerative section is a radial flow type, in which the exhalations pass into a central core(s) and permeate outwards through a hollow cylinder(s) filled with absorbent. It has been found that with this position of the ventto-atmosphere valve, the initial part of each exhalation, from the uppertrachae and bronchial tubes, passes into the regenerative section and as it permeates through the absorbent, a back pressure builds up so that the vent-to-atmosphere valve actuates, venting the latter part of each exhalation to the atmosphere. The latter part of each exhalation is from the deeper recesses of the lungs and is fully saturated with water vapour and has the highest concentration of CO2.The consequences of this will be discussed below.
The breathing bag and regenerative section are conventional and in principle well known in the art.
The breathing bag may be of rubber or the like or may be a metal breathing bag with a diaphragm or bladder.
Preferably, the apparatus is constructed to run cool. For example, the breathing bag may be in thermal contact with the cylinder, which is cooled by adiabatic expansion of the compressed gas. Similarlythe breathing bag is preferably insulated from the regenerative section which is warmed by the heat of reaction.
A number of advantages follow from the apparatus and method of the invention. It will be instantly recognised that the invention runs counter to all progress in closed circuit breathing apparatus made over the last decades. A constant supply of oxygen is provided which is greatly in excess of that required and of that previously supplied by high pressure constant flow breathing apparatus. The use of a high pressure supply and a flow rate which in preferred apparatus is of the order of 10 1/min brings several advantages, primarily in convenience and comfortforthe wearer. The apparatus in its preferred embodiments provides oxygen at a temperature in all except possibly the most severe conditions at a comfortable temperature.This is believed to follow from a number of different effects: firstly, there is adiabaticcooling of the compressed gas as it leaves the high pressure source; secondly, since a relatively large amount of gas is vented to the atmosphere this carries a body heat with it; thirdly, because the latter part of each exhalation comes from the deeper recesses of the lungs and is vented to the atmos phere this latter part is warmed to body temperature and also containsthe highest concentrations of CO2, which if passed through the regenerative section would generate appreciable heat. In addition, and especially when a full face mask is used, the large flow of gas itself produces a physiological cooling effect on the wearer.
In the case of a high humidity and/or high temper ature environment, the wearer is subject to adverse effects. It is more than usually desirable to provide relatively cool and dry air to the wearer. The apparatus of the invention may be adapted for extremes in high temperature and humidity by increasing the constant flow rate up to 30 1/min with a corresponding reduced effective duration; alternatively, use may be made of a cooler, such as an ice cooler, a drier, such as silica gel, or a cool sult such as an ice-filled suit. The apparatus of the invention may include for such difficult conditions one or more of the following: a cooler, such as an ice cooler, a drier, such as one containing silica gel; and an enhanced flow rate, for example of 20 to 25 1/min.
As well as being relatively cool, the gas breathed is drier than with conventional compressed oxygen closed circuit apparatus because of the loss of body moisture in exhalations is not permitted to build and is vented to the atmosphere, and there is additionally a high input of fresh oxygen.
The apparatus of the invention may be split, with some components carried on the front of the body and some on the back, but is preferably carried in a compact pack on the back. Preferably a smooth outer cover is provided to minimise snagging whilst crawling.
It is envisaged that the apparatus may be constructed so as to provide for the resuscitation of persons found unconscious in an irrespirable atmosphere.
The apparatus of the invention is comparatively simple, and therefore can be expected to be more reliable and easier and quickerto service than the most modern breathing apparatus currently available. Reliability and ease of servicing is a major consideration at the time of a major incident when a rapid turn-round of apparatus is required. The alternative is the requirement of excessively large stocks of apparatus, which also necessitates a heavy servicing and testing load to maintain the stock in good order. The apparatus of the invention does not require the careful purging before use which is essential with most conventional closed circuit compressed oxygen apparatus, and also because of its inherent flexibility and comfort can be used by untrained men and also order or less fit men.
Exhaustive wearer trials of an apparatus according to the invention have shown a much improved degree of wearer comfort after work, compared to control trials with conventional apparatus.
The invention will now be described by way of example, with reference to the accompanying drawing, which is a schematic diagram of a breathing apparatus according to the invention.
Mounted on a support sheet or frame (not shown) which support sheet or frame has conventional shoulder straps, is a lightweight high capacity cylinder, 1, of oxygen. The cylinder feeds through two constant flow reducing valves, 2, 2'; valve 2 set to give 1/min of oxygen through feed pipe, 3, which can be augmented by the second reducing valve 2' which is pre-set to a convenient level according to the environment requirements, at from 4 to 25 1/min, for example also 5 1/min. The feed pipe 3 supplies fresh oxygen as near as practicable to the inhalation side of the mouthpiece (8) and is shown terminating adjacent the outlet of a breathing bag, 15 and held within a perforated frusto-conical diffuser, 4.
Mounted at the outlet of the bag is an inlet breathing tube, 6. The tube 6 is connected by means of inhalation valve, 7, to a conventional mouthpiece, 8, and an outlet breathing tube 11, is connected thereto by an exhalation valve, 8. Attached by a cord to the mouthpiece, is a noseclip, 10. The tube 11 feeds into a manifold 12 fitted with an automatic relief valve 13 and an inlet into a radial flow regenerative section or purifier, 14. The purifier is charged with an absorbent such as soda lime. The purifier is connected to breathing bag 15.
In use, a primary constant flow of 5 1/min of oxygen, augmented if required by a secondary flow of 5 1 /mien, issues from the end of pipe 3. During inhalation, valve 7 opens, and the fresh oxygen from pipe 3 feeds into the breathing tube 6, drawing with it oxygen from the breathing bag 15. The wearer has, of course, the mouthpiece 8, in his mouth and is wearing noseclip 10. When the wearer exhales, valve 9 opens and valve 7 closes, so that oxygen from pipe 3 passes into the breathing bag. The wearer's exhalation passes through breathing tube 11 and begins to pass through the purifier 14. As the back pressure builds up, valve 13 opens to vent the exhalation from the deeper recesses of the lungs to the atmosphere.
The part of the exhalation which permeates through the soda-lime in the purifier has its CO2 content absorbed therein and the remainder, that is purified oxygen, passes into the breathing bag, wherein it mixes with the cool dry fresh oxygen from the cylinder.

Claims (7)

1. A breathing apparatus for use in an irrespirable atmosphere providing, in use, a high constant flow rate of oxygen, comprising a high pressure oxygen source, a reducing valve set to give a sub stantially constant flow rate of from 4 to 30 1/min of oxygen, personal gas supply means with an inhalation valve and an exhalation valve, a regenerative section and a breathing bag, and means to vent the excess exhaled gas, whereby sensible heat, moisture and carbon dioxide can be removed from the apparatus.
2. An apparatus according to claim 1, wherein a vent-to-atmosphere relief valve is located between the exhalation valve and the regenerative section.
3. An apparatus according to claim 2, arranged so that the exhalations from the deeper recesses of the wearer's lungs are vented to atmosphere and do not passthroughthe regenerative section.
4. An apparatus according to any one of the preceding claims in which a first reducing valve provides a primary oxygen flow rate of approximately 5 1/min and a second reducing valve in parallel therewith is capable of being "off" or being turned "on" by the wearer, to give a secondary oxygen flow rate pre-setto from 4to 25 1/min.
5. An apparatus according to any one of the preceding claims, in which the personal gas supply means comprises a mouthpiece with an associated nose-clip.
6. An apparatus according to any one of claims 1 to 4, in which the personal gas supply means comprises a full face mask.
7. An apparatus according to claim 1, substan tially as hereinbefore described and as shown in the drawing.
GB8037769A 1979-11-27 1980-11-25 Breathing apparatus Expired GB2064335B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8037769A GB2064335B (en) 1979-11-27 1980-11-25 Breathing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7940867 1979-11-27
GB8037769A GB2064335B (en) 1979-11-27 1980-11-25 Breathing apparatus

Publications (2)

Publication Number Publication Date
GB2064335A true GB2064335A (en) 1981-06-17
GB2064335B GB2064335B (en) 1983-10-26

Family

ID=26273691

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8037769A Expired GB2064335B (en) 1979-11-27 1980-11-25 Breathing apparatus

Country Status (1)

Country Link
GB (1) GB2064335B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310761A1 (en) * 1982-03-26 1983-09-29 Coal Industry (Patents) Ltd., London BREATHING DEVICE
GB2188553A (en) * 1986-04-02 1987-10-07 Coal Ind Improved breathing apparatus
GB2299943A (en) * 1995-04-20 1996-10-23 Kikuchi Seisakusho Co Ltd Respirator and emergency oxygen generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310761A1 (en) * 1982-03-26 1983-09-29 Coal Industry (Patents) Ltd., London BREATHING DEVICE
GB2188553A (en) * 1986-04-02 1987-10-07 Coal Ind Improved breathing apparatus
EP0241169A1 (en) * 1986-04-02 1987-10-14 Coal Industry (Patents) Limited Improved breathing apparatus
GB2299943A (en) * 1995-04-20 1996-10-23 Kikuchi Seisakusho Co Ltd Respirator and emergency oxygen generator
GB2299943B (en) * 1995-04-20 2000-01-19 Kikuchi Seisakusho Co Ltd Oxygen respirator

Also Published As

Publication number Publication date
GB2064335B (en) 1983-10-26

Similar Documents

Publication Publication Date Title
US4362153A (en) Breathing apparatus
US5309901A (en) Individual protective equipment including a pressure suit and a self-contained breathing apparatus
EP0089285A2 (en) Self-contained breathing apparatus with provision for shared use
US20140261406A1 (en) Safety vest floatation system with oxygen supply
KR102544740B1 (en) Closed cycle individual self-contained breathing apparatus for underwater diving
CN104874135B (en) Self contained open and close road positive pressure respirator
JPS58500393A (en) Lifesaving systems and methods of supplying fresh air to confined spaces
US5040528A (en) Autonomous breathing system for underwater diver&#39;s headgear
US4503850A (en) Cold protection suit having a protective breathing device
GB2064335A (en) Breathing apparatus
AU580829B2 (en) Secondary life support system
AU2015201443B2 (en) Mine escape self-rescuer system and method
GB2233905A (en) Emergency escape breathing apparatus
GB2201602A (en) Closed circuit breathing/diving apparatus
US4020833A (en) Oxygen source for human respiration requirements
US3467094A (en) Oxygen-isolation and overboard-dumping system
US4450837A (en) Underwater breathing apparatus
EP0241169A1 (en) Improved breathing apparatus
WO1990002078A1 (en) Simplified respirator
US3308814A (en) Diving helmet with air regulating means
KR200315043Y1 (en) The Equipment breathe in the water
CN220877556U (en) Escape self-oxygen-supply breathing mask
RU2782046C1 (en) Diving helmet
GB2107992A (en) Face mask for closed circuit breathing apparatus
GB2213387A (en) Closed circuit breathing apparatus

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19931125