GB2060552A - Transport vehicles for transporting large structural members - Google Patents

Transport vehicles for transporting large structural members Download PDF

Info

Publication number
GB2060552A
GB2060552A GB8032806A GB8032806A GB2060552A GB 2060552 A GB2060552 A GB 2060552A GB 8032806 A GB8032806 A GB 8032806A GB 8032806 A GB8032806 A GB 8032806A GB 2060552 A GB2060552 A GB 2060552A
Authority
GB
United Kingdom
Prior art keywords
support arm
cylinder
vehicle
piston
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8032806A
Other versions
GB2060552B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walter Bau AG
Original Assignee
Dyckerhoff and Widmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19762633683 external-priority patent/DE2633683C2/en
Priority claimed from DE19792941611 external-priority patent/DE2941611A1/en
Application filed by Dyckerhoff and Widmann AG filed Critical Dyckerhoff and Widmann AG
Publication of GB2060552A publication Critical patent/GB2060552A/en
Application granted granted Critical
Publication of GB2060552B publication Critical patent/GB2060552B/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/161Handling units comprising at least considerable parts of two sides of a room or like enclosed space

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Handcart (AREA)

Description

<Desc/Clms Page number 1>
SPECIFICATION Transport vehicles for transporting large structural members The present invention relates generally to transport vehicles particularly for transporting large structural members or spatial cells which are usually open at least at one end thereof such as, for example, prefabricated reinforced concrete enclosures.
In certain known transport vehicles a lifting device for a large structure member is provided comprising a support arm in the form of a single lever arm which may be swung about an axle which is arranged immediately behind the driver's cabin of the vehicle. The swinging movement is effected by means of a hydraulic unit having a vertical direction of action and arranged behind the axle for swinging the lever in the longitudinal direction of the vehicle (see German Offenlegungsschrift 26 33 683). The support device for the prefabricated structural enclosure consists of a transverse rod arranged at the end of the support arm. The transverse rod is provided with heads at its end faces. Ropes fastened at the heads may be fastened to holders at the bottom of the structural enclosure to be transported. The support device may be swung about an axis extending transversely of the vehicle axis.
Aside from the suspension of the prefabricated structural member at the bottom thereof, it is also known to arrange a support device at the end of the support arm of such a vehicle, which support device bears against the underside of the upper wall of the prefabricated structural member (see German Offenlegungsschrift 21 41 522). This support device may also be swung about an axis which extends transversely to the longitudinal direction of the vehicle.
In prior art transport vehicles of the types mentioned above, the prefabricated structural enclosure is raised and lowered by swinging the support arm in a vertical plane. When the support device which effects connection to the prefabricated structure is supported in an articulated manner at the end of the support arm, the prefabricated structure maintains its parallel position relative to the vehicle frame and relative to the ground only if it is supported exactly at the center of gravity thereof. Experience has shown that this is very difficult to achieve and, as a result, the swinging movement of the structure to be transported must be positively controlled or prevented. In this case, it is practically impossible to achieve synchronization of the swinging movement of the support device with swinging movement of the support arm.
The invention is directed toward the task of enabling the prefabricated structural member which is to be transported to be guided and supported by the support arm so that it will be maintained in a desired orientation, e. g., parallel to the vehicle frame, regardless of the swinging movement of the support arm.
The invention provides a vehicular assembly for transporting large structural loads, such as prefabricated concrete enclosures, comprising vehicle means, a longitudinal support arm having a first and a second end and pivotally mounted at said first end for pivotal movement relative to said vehicle means about a first axis extending transversely to the longitudinal direction of the support arm, a support mechanism for engaging a load to be transported pivotally mounted at said second end of said support arm for pivotal movement about a second axis parallel to said first axis, actuating or drive means operatively engaged between the vehicle means and the support arm for driving the support arm about the first axis to transport a load, first fluidic piston-cylinder means pivotally interconnected between the support arm and the vehicle means at the first end of the support arm, second fluidic piston-cylinder means pivotally interconnected between the support arm and the support mechanism at the second end of the support arm, and means operatively interconnecting the first and second fluidic piston- cylinder means in fluid communication with each other to maintain the support mechanism in a desired orientation relative to the vehicle means during operative movement of the support arm about the first pivot axis.
The first and second fluidic piston-cylinder means may comprise cylinder-piston units having the same displacement and arranged with a certain leverage with the corresponding working volumes of both cylinder-piston units being connected to each other in fluid communication.
In a preferred embodiment of the invention, the cylinder-piston units are advantageously arranged in mirror-inverted relationship relative to each other.
The support arm may be pivotally connected to the vehicle means at the first end thereof by a bearing bracket and each of the cylinder-piston units is connected by pivotal joints at opposite ends thereof. The distances of the joints which connect the cylinder-piston unit to the bearing bracket or to the support arm taken relative to the swing axle of the support arm are equal to the distances of the joints by means of which the cylinder-piston unit is connected to the projection or the support arm from the swing axis of the support device.
The support device may comprise a lifting table which is formed of two longitudinal support members connected by means of a cross bar.
Advantageously, the lifting table is supported so as to be vertically adjustable relative to the swing axis and it may be supported on telescoping posts.
A further advantage may be provided in the structure of the present invention if the second end of the support arm which carries the support mechanism is adapted to be rotated about the longitudinal axis of the support arm. An eccentrically arranged cylinder-piston unit may be provided for actuation of this swing movement.
During the swing movement of the support arm, the piston of the first cylinder-piston unit, which is connected to the support arm and to the
<Desc/Clms Page number 2>
vehicle frame, will be positively guided. Due to the fact that the second cylinder-piston unit, which is connected between the support arm and the support mechanism, has the same displacement as the first unit, and since it is hinged with the same lever arms, with the corresponding cylinder volumes being connected in fluid communication with each other, it is possible to achieve a result wherein the hydraulic medium which is displaced during the piston stroke of the first unit is forced into the cylinder volume of the second unit so that the support mechanism performs a corresponding swinging movement about its axis whereby the prefabricated construction member or other load will always be guided parallel with the loading surface of the vehicle even during swinging movements of the support arm.
The various features of novelty which characterize the invention are pointed out with particularity in the ciaims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
In the drawings: Figure 1 is a side view partially in section of a transport vehicle with a structural member in the form of a prefabricated garage loaded thereupon for transportation; Figure 2 is a side view showing the load mounted on an extended support arm of the transport vehicle prior to being unloaded; Figure 3 is a side view showing the support arm of the transport vehicle in a position where the load is deposited at a desired location; Figure 4 is a side view of the transport vehicle shown during retraction of the support arm; Figure 5 is a top view showing the support arm and the load arranged in an angular position ; Figure 6 is a top view showing the support arm and the load in a laterally offset position; Figure 7 is a side view showing in greater detail the lifting table at the end of the support arm; Figure 8 is a top view of the lifting table depicted in Figure 7; Figure 9 is a schematic view partially in section showing the load being deposited on inclined terrain; and Figures 10 and 11 are schematic diagrams illustrating automatic control of the lifting mechanism in two different positions.
Referring now to the drawings wherein similar reference numerals are used to identify like parts throughout the various figures thereof, there is shown a vehicle identified generally with reference numeral 1 which may operate to transport large structural members or spatial cells such as prefabricated garages made of reinforced concrete. In the drawings, an example of such a prefabricated garage 2 is shown as provided with a continuous bottom plate 3, a top plate 4, side walls 5 and a rear wall 6. The garage or load which is to be transported by the vehicle of the present invention includes a door 8 arranged in the region of a door opening 7.
The vehicle 1 is composed in its basic structure of a vehicle frame 9 with a driver's cabin 10 arranged in the forward region thereof. A pair of rails 11 are fastened parallel to each other in the longitudinal direction of the vehicle frame 9 and two extensible hydraulic support jacks 12 are arranged at the rearward end of the vehicle frame.
The basic element of the mechanism of the invention is a support arm 13 which is arranged on the vehicle so as to be movable along the rails 11. The support arm 13 may be swung about a first swing axis or axle 14 which is arranged horizontally and which extends transversely to the longitudinal axis of the vehicle. The swing axle 14 is supported on a bearing bracket 1 5 which is attached on a turning ring 16 mounted on the vehicle. The turning ring 16 is connected to a carriage which may be moved horizontally by means of moving gear on the rails 11. The carriage and the moving gear whereby the turning ring 16 may be moved longitudinally along the rails 11 are not part of the essential features of the invention and they are therefore not illustrated in detail. The carriage is preferably moved by means of a hydraulically actuated chain hoist (not shown).
The support arm 13 may be driven for pivotal movement about the axle 14 in order to raise and lower a load by driving or actuating means which may be comprised of a hydraulically operated cylinder-piston unit 17 mounted on the turning ring 16 and spaced a distance from the bearing bracket 15. By operation of the unit 17, the support arm may be rotated in a vertical plane about the axle 14.
In addition to the unit 17, a pair of fluidic cylinder-piston units 18 and 27 are also provided in operative engagement with the support arm 13 in order to effect a control function whereby a support mechanism T of the assembly of the invention may be retained in a particular orientation relative to the vehicle frame 9 during pivotal movement of the arm 13 about the axle 14.
The support device T upon which the load or prefabricated garage 2 is supported at the end of the support arm 13 consists essentially of a lifting table 19 with a pair of longitudinal support plates 21. The longitudinal support members 20 are supported at a second end 25 of the support arm 13 by a cross bar 22 and telescoping posts 23 so as to be rotatable about a swing axle 24. The lifting table 19 has a projection 26 extending from the bottom thereof with the piston rod of the second cylinder-piston unit 27 being fastened to the projection 26, with the other end of the cylinder-piston unit 27 being connected in an articulated manner to the end portion 25 of the support arm 13.
The end portion 25 of the support arm 13 is connected to the main portion of the arm 13 by means of a pivot pin 28 so that the portion 25
<Desc/Clms Page number 3>
may be rotated about the longitudinal axis of the arm 13, as best seen in Figures 7 and 8. In order to perform rotational movement about the axis of the pin 28, a cylinder-piston unit 29 is arranged eccentrically upon a bracket 30. As a result of this rotative capability, a load such as the prefabricated garage 2 may be placed upon a ground location with a horizontal bottom surface even if the vehicle itself is stopped on sloping terrain extending transversely to the axis of the vehicle. This condition is depicted in Figure 9.
The individual stages for transporting and depositing a load by means of the transport vehicle 1 are illustrated in Figures 1 through 6.
Figure 1 shows the load in the form of a prefabricated garage 2 during transporting thereof from one location to another. The prefabricated garage 2 rests upon the vehicle on the rails 11. By means of retractable and at least partially driven rollers 31, the prefabricated garage 2 may be moved in the longitudinal direction of the vehicle and it may be brought into a position at which the lifting table 19 may act at least approximately at the center of gravity thereof.
The prefabricated garage 2 may be raised with the lifting table 19 upwardly extended and with the support jacks 12 extended downwardly and it may be held rearwardly suspended behind the transport vehicle by extending the support arm 13, as shown in Figure 2. By swinging the support arm 13 downwardly by operation of the drive means comprised of the cylinder-piston unit 17, the garage 2 may be placed upon the ground at a desired location, as shown in Figure 3. The effect of the intercommunicating cylinder-piston units 18,27 will cause the garage 2 to be guided in an orientation wherein it will be maintained parallel to the loading surface of the vehicle 2, i. e., parallel to the rails 11. In order to be able to subsequently retract the support arm 13, the lifting table 19 may be lowered relative to the support arm 13 so that the arm 13 may be moved outwardly beneath the door 8 of the garage 2, as shown in Figure 4.
As a result of the arrangement of the mechanism of the invention whereby the support arm 13 is rotatably mounted relative to the vehicle by means of the turning table 16, and further in view of the fact that the lifting table 19 is mounted for rotation about a vertical axis, the garage 2 may be angularly moved relative to the vehicle through an angular displacement which will include the sum of two angles and , as best seen in Figure 5. Additionally, it will be clear that the garage or load 2 may be laterally displaced relative to the vehicle through a distance L, as shown in Figure 6.
The control of the parallel guidance of the load during swinging movements of the support arm 13 is schematically illustrated in Figures 10 and 11. As seen therein, the cylinder-piston unit 18 includes a piston rod 32 which is pivotally fastened at a joint 34 on the bearing bracket 15. A cylinder 35 of the unit 18 is pivotally connected at a joint 36 to the support arm 13.
In the same manner, the cylinder-piston unit 27 includes a piston rod 37 which is pivotally connected at a joint 38 upon the projection 26 of the lifting table 19. The unit 27 also includes-a cylinder 39 which is pivotally connected at a joint 40 to the support arm 13.
In order. to ensure that the lifting table 19 will always be maintained in a position parallel to the loading surface of the vehicle 1, an angle a, between the support arm 13 and a connecting line between the joints 14 and 34 must be maintained equal to an angle o between the support arm 13 and the projection 26 of the lifting table 19.
Accordingly, if the support arm 13 is pivoted by means of the cylinder-piston unit 17, as shown in Figure 11, a piston 33 of the cylinder-piston unit 18 will be moved accordingly. As a result, a certain fluid volume V of the oil or hydraulic fluid in the unit 18 will be displaced from a cylinder volume V, of the unit 18 and it will be passed under pressure through a line 41 into a corresponding cylinder volume Vs of the cylinder- piston unit 27.
The cylinders 35 and 39 of the cylinder-piston units 18 and 27, respectively, are arranged to have the same displacement. Accordingly, a certain hydraulic fluid or oil volume V will correspond to a certain relative shift S between the cylinder and piston of each of the cylinder- piston units 18,27. In a cylinder volume Vs of the cylinder-piston unit 27, the oil volume V entering through the line 41 will correspond to the volume displaced from the cylinder-piston unit 18. In the unit 27, the oil will act upon a piston 42 and will cause the piston to travel a distance corresponding to the distance S. Since the lever lengths L, and L, as well as the lever lengths L3 and H, are each equal, the angle a, will always correspond to the angle a2. Accordingly, the lifting table 19 will always be maintained parallel to the support surface of the vehicle.
Of course, it should also be noted that the units 18 and 27 also include volumes V3 and V4 on opposite sides of their respective pistons which are analogously connected to each other through a line 43.
In the example depicted in Figures 10 and 11, it is assumed that the plane of the lifting table 20 will always extend parallel to a surface formed by the rails 11 of the vehicle 1. If for certain reasons, for example when the vehicle does not stand parallel to the surface upon which the load is to be deposited, this parallel arrangement is not desired or maintained or if, in other words, the angle a, should not correspond to the angle and a selected angular difference must be maintained during the swinging or pivotal movement of the support arm 13, it is possible by supplying hydraulic fluid into the appropriate piston and cylinder unit to change the positions of the pistons 33 and 42 relative to the positions illustrated in Figure 10. However, the preselected position will then always be maintained during swinging of the support arm 13 by operation of the mechanism in the manner described above.
While specific embodiments of the invention
<Desc/Clms Page number 4>
have been shown and described in detail to illustrate the application of the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
CLAIMS 1. A vehicular assembly for transporting large structural bodies such as prefabricated concrete enclosures comprising : vehicle means ; a longitudinal support arm having a first and a second end and pivotally mounted at said first end for pivotal movement relative to said vehicle means about a first axis extending transversely to the longitudinal direction of said support arm ; a support device for engaging a load to be transported pivotally mounted at said second end of said support arm for pivotal movement about a second axis parallel to said first axis ; actuating means operatively engaged between said vehicle means and said support arm for driving said support arm about said first axis to transport a load ; first fluidic piston-cylinder means pivotally interconnected between said support arm and said vehicle means at said first end of said support arm ; second fluidic piston-cylinder means pivotally interconnected between said support arm and said support device at said second end of said support arm ; and means operatively interconnecting said first and said second fluidic piston-cylinder means in fluid communication with each other to maintain said support device in a desired orientation relative to said vehicle means during operative movement of said support arm about said first axis.
2. An assembly according to claim 1 wherein

Claims (1)

  1. said first and said second fluidic piston-cylinder means each comprise a cylinder-piston unit arranged mirror-inverted relative to each other.
    3. An assembly according to claim 1 or claim 2 wherein the distances between said first axis and joints connecting said first cylinder-piston unit to said support arm and to said vehicle means are equal to the distances between said second axis and joints connecting said second piston-cylinder means to said support arm and to said support device.
    4. An assembly according to any of claims 1 to 3 wherein said support device comprises a lifting table formed of two longitudinal support members connected by a cross bar.
    5. An assembly according to claim 4 wherein said lifting table is vertically adjustably supported relative to said second axis.
    6. An assembly according to claim 5 wherein said lifting table is supported upon telescoping posts.
    7. An assembly according to any of the preceding claims wherein said second end of said support arm carrying said support device is mounted on said support arm for rotative movement relative thereto about the longitudinal direction thereof.
    8. An assembly according to claim 7 further comprising an eccentrically arranged cylinderpiston unit for actuating rotative movement of said second end of said support arm about said longitudinal direction.
    9. A transport vehicle having a lift arm for a large structural load substantially as described with reference to and as illustrated in the accompanying drawings.
GB8032806A 1976-07-27 1980-10-10 Transport vehicles for transporting large structural members Expired GB2060552B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19762633683 DE2633683C2 (en) 1976-07-27 1976-07-27 Transport vehicle for prefabricated garages and the like
DE19792941611 DE2941611A1 (en) 1979-10-13 1979-10-13 TRANSPORT VEHICLE FOR SPACE CELLS, ESPECIALLY REINFORCED CONCRETE GARAGES

Publications (2)

Publication Number Publication Date
GB2060552A true GB2060552A (en) 1981-05-07
GB2060552B GB2060552B (en) 1983-05-05

Family

ID=25770743

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8032806A Expired GB2060552B (en) 1976-07-27 1980-10-10 Transport vehicles for transporting large structural members

Country Status (2)

Country Link
FR (1) FR2359725A1 (en)
GB (1) GB2060552B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108891337A (en) * 2018-08-14 2018-11-27 中铁工程机械研究设计院有限公司 Prefabricated assembled pipe gallery transport overturning vehicle and its construction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941611A1 (en) * 1979-10-13 1981-04-23 Dyckerhoff & Widmann AG, 8000 München TRANSPORT VEHICLE FOR SPACE CELLS, ESPECIALLY REINFORCED CONCRETE GARAGES

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2322657C2 (en) * 1973-05-05 1982-02-11 Bernhard Dipl.-Ing. 1000 Berlin Leuschner "Vehicle, especially truck, with a structure that is used to transport reinforced concrete cells, especially prefabricated garages"
DE2342158C2 (en) * 1973-08-21 1983-06-30 KFB-Bausysteme AG, Chur Vehicle with a structure for loading, transporting and unloading prefabricated buildings, in particular prefabricated reinforced concrete garages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108891337A (en) * 2018-08-14 2018-11-27 中铁工程机械研究设计院有限公司 Prefabricated assembled pipe gallery transport overturning vehicle and its construction

Also Published As

Publication number Publication date
GB2060552B (en) 1983-05-05
FR2359725A1 (en) 1978-02-24
FR2359725B1 (en) 1983-08-12

Similar Documents

Publication Publication Date Title
US5049026A (en) Refuse collection and loading system
CN103832310B (en) Wheel supporting mounting assembly
USRE34292E (en) Refuse collection and loading system
US3552557A (en) Lifting apparatus
US4087007A (en) Cargo platform system
US3589540A (en) Forklift attachments
US6799935B1 (en) Lifting apparatus for user in the bed of a pickup truck
US3737055A (en) Storable elevating platform
US5547332A (en) Top mounted container handling apparatus
US3253716A (en) Crane having articulated boom
US4150754A (en) Utility crane
US5967735A (en) Loading and recovery apparatus
US3454175A (en) Apparatus for loading and unloading containers
US2706061A (en) Material handling equipment for industrial trucks
US3338438A (en) Refuse collecting vehicle with front end container lifting and dumping mechanism
US2503181A (en) Trussed track tower vehicle
US4611968A (en) Lifting and towing apparatus for large vehicles
US4378192A (en) Vehicular lift mechanism for transporting large structural members
US3198359A (en) Reaching type loader
US4067245A (en) Lever transmission particularly for lifting means
US20090115238A1 (en) Truck Bed Lifting Device and Method
US3650421A (en) Hydraulic unloader
EP0906241B1 (en) A straddle carrier
US3173549A (en) Material handling device
US5613822A (en) Device for hooking, lifting and unloading a dustbin for use on side loading garbage truck

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee