GB2056709A - Method and apparatus for controlling the energisation of an electric motor - Google Patents

Method and apparatus for controlling the energisation of an electric motor Download PDF

Info

Publication number
GB2056709A
GB2056709A GB8021405A GB8021405A GB2056709A GB 2056709 A GB2056709 A GB 2056709A GB 8021405 A GB8021405 A GB 8021405A GB 8021405 A GB8021405 A GB 8021405A GB 2056709 A GB2056709 A GB 2056709A
Authority
GB
United Kingdom
Prior art keywords
motor
speed
mark
field strength
space ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8021405A
Other versions
GB2056709B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cableform Ltd
Original Assignee
Cableform Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cableform Ltd filed Critical Cableform Ltd
Priority to GB8021405A priority Critical patent/GB2056709B/en
Publication of GB2056709A publication Critical patent/GB2056709A/en
Application granted granted Critical
Publication of GB2056709B publication Critical patent/GB2056709B/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supply
    • H02P7/2985Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supply whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0077Characterised by the use of a particular software algorithm

Abstract

An electric motor has its energisation controlled to provide optimum efficiency by using a controller 5 which adjusts the mark/space ratio of the current supplied through switch 4 and the field strength through bypass control 6. A ROM 9 contains information relating the mark/space ratio and field strength for various speed and torque demands which are set into microprocessor controller 5 by demand pedal 7 and tachogenerator 8. <IMAGE>

Description

SPECIFICATION Method and apparatus for controlling the energisation of an electric motor The present invention relates to a method and apparatus for controlling the energisation of an electric motor.
It is known to supply power to an electric motor from a D.C. source such as a battery through an electronic switch such as a thyristor. The switch can be turned on and off at a high rate to apply pulses of current to the motor, the mark/space ratio of the pulses determining the acceleration and speed of the motor.
One known method for controlling a series D.C. traction motor is to vary the mark/space ratio and hence the effective voltage applied to the motor in response to an accelerator pedal generated demand signal representative of the desired motor acceleration. A maximum motor current or motor output power limiting system is often provided to avoid damage to the motor or components driven thereby. One such limiting system is described in our U.S.
Patent No. 3,914,671 which sets a maximum value for the mark/space ratio for a given value of motor current. The limiting system thus automatically prevents a mark/space ratio being selected which would result in the motor current exceeding permissible limits.
Such a limiting system can be used with both series and shunt motors.
It is well known that the top speed of an electric series motor can be effectively increased by reducing the current through the field winding and thereby weakening the generated motor field. Conventionally this has been achieved by diverting a proportion of the armature current along a current path in parallel with the field winding. One such field weakening circuit is described in British Patent No. 1,136,253.
Although as indicated above it has been known for a considerable time to provide control circuits in which the mark/space ratio and field strength are varied automatically to avoid motor overload or to increase motor speed, these control circuits have not directly interrelated the control of the mark/space ratio and field strength except in limiting conditions. As an example of such a limiting condition, in the circuit of British Patent No.
1,136,253 field weakening occurs when the mark/space ratio reaches its maximum and a further increase in speed is demanded.
It is becoming increasingly important to improve the efficiency of electric systems, particularly those of motors driven by batteries. It has now been appreciated that power losses within such systems are dependent to an extent upon the relationship between the mark/space ratio and the field strength. This is because the power losses in the field increase relatively rapidly with increases in field strength, whereas power losses due to the battery and motor resistances decrease relatively gradually with increases in field strength. For a given motor power output requirement, a range of mark/space ratio versus field strength relationships can be selected. By selecting the relationship which minimises power losses the efficiency of the system can be increased.
According to the present invention there is provided a method for controlling the energisation of an electric motor, wherein pulses of current are supplied to the motor from a power source, the mark/space ratio of the pulses and the motor field strength being controlled to determine the output speed and torque of the motor, characterised in that information representative of the speed of the motor and the torque required to be developed by the motor at that speed is derived, information is determined which is representative of the motor field strength and the pulse mark/space ratio necessary to provide the required torque at said derived speed such that power losses are minimised, and the motor field strength and mark/space ratio are controlled in accordance with the determined information.
The invention also provides an apparatus for controlling the energisation of an electric motor, comprising means for supplying pulses of current to the motor from a power source, and means for controlling the pulse mark/ space ratio and the motor field strength to determine the output speed and torque of the motor, characterised in that means are provided for deriving information representative of the speed of the motor and the torque required to be developed by the motor at that speed, and means are provided for determining information representative of the pulse mark/space ratio and the motor field strength necessary to provide the required torque at the said derived speed such that power losses are minimised, said controlling means being operative to control the motor field strength and mark/space ratio in accordance with the determined information.
Preferably the motor speed and torque requirement are monitored at predetermined intervals to enable periodic adjustment of the mark/space ratio and field strength. A microprocessor may be provided to determine the most efficient mark/space ratio versus field strength relationship. The microprocessor may be programmed to calculate the necessary information from the derived motor speed and torque information and from the known characteristics of the motor. Alternatively, the microprocessor may be programmed to read out previously calculated information stored in a memory, each memory address corresponding to a particular motor speed and torque requirement.
An embodiment of the invention will now be described by way of example with reference to the accompanying drawings, in which: Figure 1 is a schematic diagram of a control circuit for a series electric motor embodyjng the invention; Figure 2 shows curves representative of the variation with respect to time of the speed of the motor of Fig. 1 for a series of different accelerator pedal settings; Figure 3 shows curves representative of the variation with respect to field strength of power losses for the motor of Fig. 1 resulting from various factors; and Figure 4 schematically illustrates a field weakening circuit which may be used in embodiments of the invention.
Referring to Fig. 1, the illustrated circuit comprises a series motor having an armature 1 and a field winding 2 connected across a battery 3. A D.C. switch 4 in series with the motor is controlled so as to be either on or off by pulses from a controller 5. A field weakening circuit 6 is controllable by controller 5 to divert current passing through the motor armature away from the field 2.
The Controller 5 is responsive to the output of an operator controlled accelerator pedal 7, the output of which effectively demands a motor output torque which decreases with increasing speed, and to the output of a tachometer 8. The controller 5 is also connected to a programmable read only memory 9, as is described below.
Knowledge of the motor speed makes it possible to determine the motor torque. The controller 5 determines the field strength and the mark/space ratio.
The memory 9 contains pre-calculated information relating to the most efficient mark/ space ratio versus field strength relationships for various motor speeds and torque demands. The derivation of this information is described below. For example, the accelerator 7 can be arranged to provide any one of ten demand signals depandent upon the pedal position, and the motor speed can be divided into ten ranges. The memory will then be provided with one hundred addresses, each corresponding to one pedal position/speed range condition.
The controller 5 comprises a microprocessor which determines which of the ten blocks of memory is being indicated by the accelerator panel. The microprocessor is effective periodically to measure the motor speed from the output detector 8 and to extract the information contained in the memory address specific to the determined speed and torque requirement, and to control the switch 4 and field weakening circuit 6 in accordance with the extracted information.
Referring now to Fig. 2, a speed versus time graph is given for the motor of Fig. 1.
The full line 10 indicates the performance of the motor from rest with a first constant accelerator output, broken lines 11 and 1 2 showing the performance for two different accelerator pedal outputs. The gradient of the curves represents acceleration. Obviously in practice the accelerator pedal will often be moved during a driving sequence but at any given instant if the speed and pedal setting are known the acceleration requirement can be deduced from the gradient of the curve correspondint to the pedal position at that speed. Thus the output of the accelerator pedal represents a demanded acceleration or motor output power P which is equal to torque T multiplied by speed S.
i.e. P=TS (1) The power output is equal to the motor armature current la multiplied by armature voltage Va. Va is equal to the fixed battery voltage Vb multiplied by the mark/space ratio D.
i.e. DVbla = TS (2) For a given accelerator pedal position and speed TS must be a constant as otherwise the motor would not meet its performance requirements. Thus: Vb Dla = constant (3) D can be varied by suitable control of the switch 4. Ia can be varied by suitable control of the field weakening circuit 6. Thus the switch 4 and circuit 6 can be controlled to obtain maximum efficiency whilst maintaining the desired motor performance.
Power losses P due to the battery resistance Rb and motor resistance Rm are proportional to current squared. Current flows through the motor continuously via the free-wheel diode shown in Fig. 1 but only flows through the battery when the switch 4 is on.
Thus: Pr = 12a (Rm + DRb) (4) Power losses Pf due to the motor field are dependent upon motor constants but to a first approximation are proportional to ampere turns A squared.
G Thus: P, = (constant) A2 (5) The value of expression (5) increases relatively rapidly with increases in field current for a fixed power output. The value of expression (4) decreases rapidly until saturation is reached: it then decreases relatively slowly with increases in field current for a fixed power output.
Referring to Fig. 3, curves 13 and 14 respectively illustrate the variation with re spect to field strength expressed as ampere turns of power losses due to the motor field and due to the battery and motor resistances for a given demanded power output and speed. Curve 1 5 represents the sum of curves 13 and 14.
It will be seen that curve 1 5 defines a minimum power loss at an intermediate field strength Fi. Accordingly for the demanded power output and speed the field strength should be set at Fi and the mark/space ratio set at the level Ds appropriate to the demanded power output. Thus, referring again to Fig. 1, the memory address relating to the speed and power output to which Fig. 3 relates should contain the information: set field strength at Fj, and mark/space ratio at Ds. The controller will then use this information to provide the desired maximum operating efficiency.
Referring now to Fig. 4, a further diagram of a portion of the circuit of Fig. 1 is shown with components 4 and 6 being illustrated in greater detail.
The switch 4 comprises a thyristor (SCR) the gate of which receives control pulses in known manner. The gate pulse generating circuit could be of the type described in U.S.
Patent 3,914,671 for example.
The field weakening circuit comprises a transistor 1 6 in series with a resistor 1 7. The base of the transistor receives a series of pulses such that the transistor is alternately switched fully on and fully off. The mean impedance of the field weakening circuit defined by transistor 1 6 and resistor 1 7 can be controlled down to a minimum defined by the resistance of resistor 1 7 by controlling the mark/space ratio of the pulses applied to the base of transistor 1 6.
In the abovedescribed embodiment, the system operates by measuring the speed, considering the speed versus time curve set by the position to which the first pedal has been depressed, determining the torque appropriate to the speed and pedal position from that curve, and then selecting the appropriate N mark/space ratio and field strength. Other schemes of operation are of course possible.
For example, it is possible to directly measure torque, consider a torque versus time curve selected by the position to which the first pedal has been depressed, (the integral of this curve being equal to speed), determine the speed from the curve, and then select the appropriate mark/space ratio and field strength.
The described embodiment of the invention comprises a series motor in which a circuit is provided for controlling the field strength by diverting current away from the series field and for controlling the armature current by adjusting the mark/space ratio of current pulses applied to the motor. The invention is however also applicable to shunt motors in which the field winding is separately excited, the armature and field currents being separ ately controlled by respective circuits for controlling the mark/space ratio of current pulses supplied to them. In addition, the invention is applicable to compound motors which comprise both series and separately excited field windings. In the case of compound motors field control may be effected simply by appropriate control of the separately excited windings and it is thought that such an arrangement will prove to be the most efficient.

Claims (8)

1. A method for controlling the energisation of an electric motor, wherein pulses of current are supplied to the motor from a power source, the mark/space ratio of the pulses and the motor field strength being controlled to determine the output speed and torque of the motor, characterised in that information representative of the speed of the motor and the torque required to be developed by the motor at that speed is derived, information is determined which is representative of the motor field strength and the pulse mark/space ratio necessary to provide the required torque at said derived speed such that power losses are minimised, and the motor field strength and mark/space ratio are controlled in accordance with the determined information.
2. An apparatus for controlling the energisation of an electric motor, comprising means for supplying pulses of current to the motor from a power source, and means for controlling the pulse mark/space ratio and the motor field strength to determine the output speed and torque of the motor, characterised in that means are provided for deriving information representative of the speed of the motor and the torque required to be developed by the motor at that speed, and means are provided for determining information representative of the pulse mark/space ratio and the motor field strength necessary to provide the required torque at the said derived speed such that power losses are minimised, said controlling means being operative to control the motor field strength and mark/space ratio in accordance with the determined information.
3. An apparatus according to claim 2, characterised by means for monitoring the motor speed and torque requirements at predetermined intervals, and means responsive to the monitoring means for making periodic adjustments to the mark/space ratio and field strength.
4. An apparatus according to claim 2 or 3, characterised by a microprocessor for determining the most efficient mark/space ratio versus field strength relationship.
5. An apparatus according to claim 4, characterised in that the microprocessor is programmed to calculate the necessary infor mation from the derived motor speed and torque information and from the known characteristics of the .motor.
6. An apparatus according to claim 4, characterised n that the mic.roprocessor.is ,programmed -to read out previously calculated information stored in a memory, each memory address corresponding to a particular motor speed and torque requirement.
7. A method for controlling the energisation of an electric motor substantialiy as bere- iobefore described -with reference to the accompanying drawings.
8. An apparatus for controlling the energisation of an electric motor substantially as hereinbefore described with reference to the accompanying .drawings.
GB8021405A 1979-07-05 1980-06-30 Method and apparatus for controlling the energisation of an electric motor Expired GB2056709B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8021405A GB2056709B (en) 1979-07-05 1980-06-30 Method and apparatus for controlling the energisation of an electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7923499 1979-07-05
GB8021405A GB2056709B (en) 1979-07-05 1980-06-30 Method and apparatus for controlling the energisation of an electric motor

Publications (2)

Publication Number Publication Date
GB2056709A true GB2056709A (en) 1981-03-18
GB2056709B GB2056709B (en) 1984-04-04

Family

ID=26272084

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8021405A Expired GB2056709B (en) 1979-07-05 1980-06-30 Method and apparatus for controlling the energisation of an electric motor

Country Status (1)

Country Link
GB (1) GB2056709B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089204A2 (en) * 1982-03-16 1983-09-21 Jonathan Gabel Method and apparatus for high efficiency operation of electromechanical energy conversion devices
EP0177770A1 (en) * 1984-09-14 1986-04-16 Siemens Aktiengesellschaft Driving system for electric driven vehicles
EP0449543A1 (en) * 1990-03-28 1991-10-02 Trinova Limited Digital pulse-width-modulation generator for current control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089204A2 (en) * 1982-03-16 1983-09-21 Jonathan Gabel Method and apparatus for high efficiency operation of electromechanical energy conversion devices
EP0089204A3 (en) * 1982-03-16 1985-01-23 Jonathan Gabel Method and apparatus for high efficiency operation of electromechanical energy conversion devices
EP0177770A1 (en) * 1984-09-14 1986-04-16 Siemens Aktiengesellschaft Driving system for electric driven vehicles
EP0449543A1 (en) * 1990-03-28 1991-10-02 Trinova Limited Digital pulse-width-modulation generator for current control

Also Published As

Publication number Publication date
GB2056709B (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US4378517A (en) Method and apparatus for controlling the energization of an electric motor
GB1574509A (en) Motor control
US4496897A (en) Variable voltage control for self-excited self-regulated synchronous alternator
EP0289362B1 (en) A control system for brushless motors
US4639657A (en) Electrical control apparatus and methods
US4119898A (en) Pulse controllers
GB2056709A (en) Method and apparatus for controlling the energisation of an electric motor
US2447654A (en) Torque control system for electric reel motors
US4181875A (en) Drive circuit for a DC motor
US3197688A (en) Motor control system with cross-over circuit
GB2100943A (en) Method of operating a shunt-wound dc motor as well as controlling device for the execution and application thereof
US3105186A (en) Horsepower limit control and function generator therefor
US3007099A (en) Motor control systems
CA1124781A (en) Control circuit for discharging the field winding of a synchronous motor
US2454165A (en) Regulating system
SU788284A1 (en) Device for improving switching of dc commutator machines
US2512322A (en) Wide speed range control
US2775728A (en) Adjustable voltage drive controller
US1965606A (en) Dynamo-electric machine regulation
US2494516A (en) Acceleration control for direct-current motors
US2313931A (en) Electrical regulating system
US3466521A (en) Control system for universal motors
US2516599A (en) Generator fed motor control system
SU435854A1 (en) DEVICE FOR REGULATING THE WORK OF A CORE CRUSHER
RU2065364C1 (en) Method of and device for regulating field current of vehicle diesel-generator set

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee