GB2055465A - Determining Gold Content - Google Patents

Determining Gold Content Download PDF

Info

Publication number
GB2055465A
GB2055465A GB8018366A GB8018366A GB2055465A GB 2055465 A GB2055465 A GB 2055465A GB 8018366 A GB8018366 A GB 8018366A GB 8018366 A GB8018366 A GB 8018366A GB 2055465 A GB2055465 A GB 2055465A
Authority
GB
United Kingdom
Prior art keywords
neutrons
auriferous
determining
deuteron
kev
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8018366A
Other versions
GB2055465B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Atomic Energy Authority
Original Assignee
UK Atomic Energy Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Atomic Energy Authority filed Critical UK Atomic Energy Authority
Priority to GB8018366A priority Critical patent/GB2055465B/en
Publication of GB2055465A publication Critical patent/GB2055465A/en
Application granted granted Critical
Publication of GB2055465B publication Critical patent/GB2055465B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/221Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis
    • G01N23/222Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis using neutron activation analysis [NAA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/074Investigating materials by wave or particle radiation secondary emission activation analysis
    • G01N2223/0745Investigating materials by wave or particle radiation secondary emission activation analysis neutron-gamma activation analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/635Specific applications or type of materials fluids, granulates

Abstract

A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of ???-rays having an energy of 279 keV arising from the reaction <179>Au (nn') <179>@Au->279 keV. The apparatus has means for conveying the materials 4 past assembly 6, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. <IMAGE>

Description

SPECIFICATION Improvements in or Relating to the Analysis of Gold-containing Materials The present invention relates to the determination of the gold content of auriferous materials, and in particular to the determination of the gold content of auriferous rock samples.
Gold may occur at depth in thin bands of mineralisation which when mined together are accompanied by substantial quantities of barren rock. In order to prevent the expensive and time consuming treatment of all mined material, it is necessary that some pre-selection process be applied to the mined material. A number of methods of selecting rocks for processing have been proposed but to date no entirely satisfactory method of selection has been found.
Some methods have failed because they are secondary methods and the correlation between the secondary property measured and the gold content is either variable or inaccurate; others have not been able to cope with the throughput of samples necessary in a production environment.
The present invention provides a method of determining the gold content of mined rock which is both capable of coping with the required throughput of rock samples, and utilises a property of the gold itself to determine its concentration in the rock samples.
According to the present invention there is provided a method for determining the gold content of an auriferous material, comprising the operations of irradiating a body of the material with neutrons and determining the intensity of yrays having an energy of 279 keV arising from the reaction 179 Au (nn') 179m Au ) 279 keV.
If the method is being used for the determination of the gold content of auriferous rock, then it is necessary to use a neutron source which does not produce neutrons which have an energy above the neutron reaction thresholds of elements such as Al, Si, Ca, Fe and 0 which are iikely to be present in high concentrations. For example, suitable neutron sources are tube sources which utilise the deuteron-deuteron or deuteron-beryllium reaction to produce neutrons.
The invention will now be described, by way of example, with reference to the accompanying drawings in which, Figure 1 is a schematic diagram of a rocksorting apparatus embodying the invention, and Figure 2 is a diagrammatic cross-section of a neutron radiation assembly for use in the apparatus of Figure 1.
Referring to the drawings, auriferous rock 1 is fed to a hopper 2 which supplies it to a rock crusher 3 in which it is crushed into lumps 4 corresponding to a mesh size of some 5 cm. The stream of crushed rock leaving the crusher 3 is divided into a number of ,streams 5 only one of which is shown, which pass through a neutron irradiation assembly 6, to be described more fully later. Having been irradiated by neutrons generated within the assembly 6, each of the streams of lumps 4 of rock is caused to pass a ray detector assembly 7 which is arranged to detect any y-rays having an energy of 279 keV arising from the nuclear reaction '97 Au (nn') l97mAu, occurring in any gold contained in the lumps 4 of rock.Each lump 4 of rock is interrogated individually to establish whether its gold content lies above or below some predetermined concentration. For example, the critical concentration might be 5 ppm. In general it might be in the range 1 to 10 ppm.
Downstream of the y-ray detector assembly 7 is a sorter 8 of a type which is well known in the art of material sorting, and which will not be described further. The sorter 8 is arranged to respond to signals from the y-ray detector assembly 7 to accept or reject for further processing each lump 4 of rock passing through it.
Referring to Figure 2, the neutron irradiation assembly 6 consists of a cylindrical body 21 made of lead which is surrounded by a biological radiation shield 22 which is made to be impervious to neutrons and to y-rays. In the body 21 there is a central bore 23 around the periphery of which there are positioned six tubes 24 made of boron. The tubes 24 extend throughout the length of the body 21. Each of the tubes 24 has a bore which is such that only a single stream of lumps 4 of rock can pass through the relevant tube. In the central region of the bore 23 in the body 21 there is a target 25 made of a material which will produce neutrons in response to bombardment by a beam of deuterons from a source which is not shown. Suitably, the target 25 can be made of a material which contains deuterons, or beryllium.The important thing is that the neutron source should be made of a material which does not produce neutrons which are energetic enough to excite fast neutron reactions in the constituent elements of the rock in which the gold is contained, i.e. aluminium, silicon, calcium, iron and oxygen. The target 25 will emit neutrons over a solid angle of 411, but as the lumps 4 of rock pass through the maximum neutron field at 90 to the direction of the neutrons, it can be arranged that while the neutron source energy equates to the maximum energy of the reaction 197Au (nn') l97mAu, the neutron energy is below the threshold energies of (n,p) reactions in such as those previously mentioned which are likely to be present in the rock in high concentrations.In particular care should be taken to ensure that the neutron energy is below the threshold of the fluorine reaction
This reaction generates y-rays having energies of 6.1 and 7.2 Mev. Although these are considerably greater than the 0.279 Mev from the l97mAu, the half-life is the same, and the reaction could be the source of low-energy collided y-rays which would have the same decay pattern as those to be detected, and so interfere with the estimation of the gold content of the lumps 4 of rock, particularly if the fluorine is present in concentrations which are relatively high when compared to that of the gold.
The y-ray detector assembly 7, which is not illustrated in detail, has six linear arrays of y-ray detectors, one for each stream of lumps of rock.
The signals which operate the sorter 8, which again has six input channel, are derived from the combined output signals from each of the individual y-ray detectors appropriate to each channel.
A neutron output of some 1011 n/s from the neutron source enables a lump of rock having a gold concentration of 1 ppm to be differentiated from one having a gold concentration of 2 ppm in one of three measurements, and a lump having a gold concentration of 2 ppm to be differentiated from one having a gold concentration of 5 ppm in 99 in 100 measurements.

Claims (9)

Claims
1. A method for determining the gold content of an auriferous material, comprising the operations of irradiating a body of the material with neutrons and determining the intensity of yrays having an energy of 279 keV arising from the reaction of 179Au (nn') '9mAu ) 279 keV.
2. A method according to Claim 1, wherein there is used a neutron source which does not produce neutrons which have an energy sufficient to excite fast neutron reactions in non-auriferous constituents of the auriferous material.
3. A method according to Claim 2, wherein there is used a neutron source which produces neutrons by means of the deuteron-deuteron or deuteron-beryllium reaction.
4. Apparatus for determining the gold content of an auriferous material, comprising means for passing discrete samples of auriferous material past a source of neutrons, and means for determining the intensity of y-rays having an energy of 279 keV arising from the reaction 179Au (nn') l79rnAu 279 keV.
5. Apparatus according to Claim 4, wherein there is included means responsive to the means for determining the intensity of y-rays arising from the reaction 179Au (nn') l79rnAu 279 keV to separate those samples of auriferous material having a gold content above a predetermined value from those which do not.
6. Apparatus according to Claim 4 or Claim 5, wherein the neutrons are provided by a tube source utilising the deuteron-deuteron or deuteron-beryllium reaction to generate the neutrons.
7. Apparatus according to any of Claims 4 to 6, wherein the means for passing discrete sources of auriferous material past a source of neutrons comprises a plurality of tubes regularly disposed parallel to one another around the periphery of a central tube adapted to contain a source of neutrons having energies which are insufficient to excite fast neutron reactions in non-auriferous constituents of the samples of auriferous material, and means for directing the samples of auriferous material into the said tubes.
8. Apparatus according to Claim 7, wherein there is a separate y-ray detector channel and responsive sorter associated with each of the said tubes.
9. A method of determining the gold content of an auriferous material substantialiy as hereinbefore described with reference to the accompanying drawing.
1 0. An apparatus for determining the gold content of an auriferous material substantially as hereinbefore described with reference to the accompanying drawing.
GB8018366A 1979-06-14 1980-06-04 Determining gold content Expired GB2055465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8018366A GB2055465B (en) 1979-06-14 1980-06-04 Determining gold content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7920667 1979-06-14
GB8018366A GB2055465B (en) 1979-06-14 1980-06-04 Determining gold content

Publications (2)

Publication Number Publication Date
GB2055465A true GB2055465A (en) 1981-03-04
GB2055465B GB2055465B (en) 1983-10-19

Family

ID=26271837

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8018366A Expired GB2055465B (en) 1979-06-14 1980-06-04 Determining gold content

Country Status (1)

Country Link
GB (1) GB2055465B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004393A1 (en) * 1983-04-22 1984-11-08 Atomic Energy Authority Uk Ore irradiator
FR2555750A1 (en) * 1983-11-30 1985-05-31 Gen Mining Union Corp METHOD AND DEVICE FOR ACTIVATION OF A SELECTED SUBSTANCE IN A MATERIAL IN THE FORM OF PARTICLES
GB2193312A (en) * 1986-07-29 1988-02-03 Atomic Energy Authority Uk Flint-in-chalk sorting
WO1994006963A1 (en) * 1992-09-23 1994-03-31 A. Ahlstrom Corporation Continuous elemental analysis of process flows
WO2004033117A1 (en) * 2002-10-11 2004-04-22 Force Technology A system and a method of automatically sorting objects

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004393A1 (en) * 1983-04-22 1984-11-08 Atomic Energy Authority Uk Ore irradiator
US4898709A (en) * 1983-04-22 1990-02-06 United Kingdom Atomic Energy Authority Ore irradiator
FR2555750A1 (en) * 1983-11-30 1985-05-31 Gen Mining Union Corp METHOD AND DEVICE FOR ACTIVATION OF A SELECTED SUBSTANCE IN A MATERIAL IN THE FORM OF PARTICLES
US4696782A (en) * 1983-11-30 1987-09-29 United Kingdom Atomic Energy Authority Ore irradiator
GB2193312A (en) * 1986-07-29 1988-02-03 Atomic Energy Authority Uk Flint-in-chalk sorting
WO1994006963A1 (en) * 1992-09-23 1994-03-31 A. Ahlstrom Corporation Continuous elemental analysis of process flows
WO2004033117A1 (en) * 2002-10-11 2004-04-22 Force Technology A system and a method of automatically sorting objects

Also Published As

Publication number Publication date
GB2055465B (en) 1983-10-19

Similar Documents

Publication Publication Date Title
US4090074A (en) Analysis of coal
US3781556A (en) Neutron activation analysis system
US5020084A (en) Ore analysis
US4884288A (en) Neutron and gamma-ray moisture assay
US3404275A (en) Method of assaying and devices for the application of said method
US4428902A (en) Coal analysis system
US5162095A (en) Method and installation for the analysis by neutron activation of a flow of material in bulk
US4045676A (en) Determining element concentrations in samples
US4830193A (en) Gold ore sorting
US11927553B2 (en) Rapid ore analysis to enable bulk sorting using gamma-activation analysis
US4340443A (en) Analysis of gold-containing materials
US3710104A (en) Method and apparatus for x-ray interrogation of a sample
GB2055465A (en) Determining Gold Content
CA1193371A (en) Neutron method for elemental analysis independent of bulk density
EP0059033A1 (en) Ore sorting
EP3811066B1 (en) System and method for moisture measurement
CA1218474A (en) Ore irradiator
AU680962B2 (en) Method and apparatus for the classification of particulate matter
GB2101304A (en) Gold ore sorting
EP0064810A1 (en) Sorting particulate material
RU2623692C2 (en) System and method for detecting diamonds in kimberlite and method for pre-beneficiating diamonds with their use
Clayton et al. Determining gold content
JPH028654B2 (en)
NL8006566A (en) Determining gold content of mined rock - by irradiation with neutrons and measurement of intensity of resultant gamma rays produced by gold reaction
RU2003082C1 (en) Method of identification of gold-bearing rocks

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee