GB2053279A - Electroplating Small Elements - Google Patents

Electroplating Small Elements Download PDF

Info

Publication number
GB2053279A
GB2053279A GB8021233A GB8021233A GB2053279A GB 2053279 A GB2053279 A GB 2053279A GB 8021233 A GB8021233 A GB 8021233A GB 8021233 A GB8021233 A GB 8021233A GB 2053279 A GB2053279 A GB 2053279A
Authority
GB
United Kingdom
Prior art keywords
electrolyte
metal
electrodes
nickel
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8021233A
Other versions
GB2053279B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Priority to GB8021233A priority Critical patent/GB2053279B/en
Publication of GB2053279A publication Critical patent/GB2053279A/en
Application granted granted Critical
Publication of GB2053279B publication Critical patent/GB2053279B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The invention relates to depositing a metal on small-sized objects by electrolytic means. These elements are maintained in suspension in an electrolyte in a tank 1 containing the metal to be deposited and which flows in a closed circuit via pipes 3 and 4 and a storage tank 2 while passing between two electrodes which are alternately anode and cathode, the anode being protected by a mobile screen 10 able to assume two positions 10a and 10b. The temperature of the electrolyte and the concentration of ions of said metal therein are maintained constant. <IMAGE>

Description

SPECIFICATION A Process and Device for Coating Small-Sized Elements with a Metal Deposit The invention relates to the coating of smallsized elements, particularly fibres or flakes, made from carbon for example, with a metal deposit, especially nickel.
The applicant described, in his French patent No. 2.058.732 filed on 23 September 1969 and the first certificate of addition No 2.285.475 filed on 17 September 1974, a device formed from a drum whose axis slopes with respect to the vertical and comprising an anode and a cathode in an electrolyte bath, with a rake for putting into motion the carbon fibres to be coated with nickel.
This device, which gives excellent results, has however the disadvantage of limited dimensions because the fibres have a very large surface to be coated per kilogramme and because it is difficult to cool a large-sized fixed electrolyte bath to compensate for the heating due to the electrolysis conditions which provide the nickel deposit. The result is then a limitation in the capacity of production of fibres coated by the device.
There is known moreover (French patent application No. 2.352.077 filed on 17 May 1976 by Electroplating Engineers of Japan Limited) a device for nickel-plating parts comprising a depositing unit in which the workpiece to be coated is maintained in position, a storage reservoir and two pipes connecting said unit and said reservoir so as to form a flow loop for the electrolyte between the unit and the reservoir; the device comprises furthermore means for maintaining the active metal (nickel) content of the electrolyte constant by means of a pH-meter which measures the pH of the electrolyte in the reservoir and causes the addition of metal ions (nickel ions) to the bath to compensate for the metal deposited. In this device, only the electrolyte flows in a closed circuit.
The present invention relates to a process for coating small-sized elements with a metal coating by electrolysis from an electrolyte, whose temperature and ion content of the metal to be deposited are maintained substantially constant and in which the polarity of the electrodes is periodically inversed, characterised in that it consists in maintaining these elements in suspension in the electrolyte, in causing the electrolyte with the elements in suspension to flow in a closed loop while causing it to pass between two electrodes and in disposing a protecting screen in the vicinity of the positive maintained electrode.
The invention also relates to a device for coating small-sized elements with a metal coating by electrolysis from an electrolyte containing ions af the metal to be deposited, this device comprising an electrolysis tank, two electrodes, means for making alternatively positive ar negative one of the electrodes with respect to the other and means for maintaining substantially constant the temperature and the content in ions of the metal to be deposited of the electrolyte, characterized in that the electrolysis tank is connected to a storage tank by means of two pipes enabling a closed circuit with the tanks to be formed, in that means are provided for causing the electrolyte to flow containing in suspension the small-sized elements to be coated, in that it comprises means for disposing a protecting screen in the vicinity of the positive maintained electrode.
Advantageously, the device comprises control means which simultaneously move said screen and switch the electric supply to the electrodes to make positive the electrode in front of which said screen is brought with respect to the other electrode.
The invention will in any case be well understood with the help of the complement of description which follows, as well as with the accompanying drawing, in which the single figure represents schematically and in section an installation for electrolytically depositing a metal coating, especially of nickel, on small-sized elements, such as fibres or flakes, made from an electricity-conducting material, for example carbon.
To construct such an installation the following ar similar is the way to set about it.
The installation comprises essentially an electrolysis tank 1, a storage tank 2 for the electrolyte and the elements to be coated or covered and two pipes 3 and 4 connecting these two tanks and allowing closed-circuit flow in the direction of the arrows of the electrolyte with said elements in suspension.
The electrolyte 5 is formed for example essentially from an aqueous solution of nickel sulphate containing also boric acid and hydrochloric acid.
Electrolyte 5 with the elements to be coated or covered fills substantially the whole of tanks 1 and 2, the whole of the lower pipe 3 (connecting the lower parts of tanks 1 and 2) and a part of the upper pipe 4 (connecting the upper parts of tanks 1 and 2). The closed-circuit flow of electrolyte 5 is provided by a motor 6 which rotates a shaft 7 disposed in the axis of the lower pipe 3 and provided with blades 8.
The electrolysis tank 1 contains two insoluble electrodes 9a and 9b, made for example from graphite, and a mobile screen 10 which may occupy two positions 1 0a and 1 Ob; this screen made for example from polytetrafluoroethylene cloth is held vertical by a ballast weight 11. Each electrode 9a, 9b plays alternately the role of anode and cathode. To this end, a double switch 1 2 is provided which, in its first state (i.e. the one shown in the case illustrated of an electromechanical switch), connects electrode 9a to the negative terminal 1 3n of an electric DC source 13 and electrode 9b to the positive terminal 1 3p of this source and, in its second state, connects electrode 9a to the positive terminal 1 3p and electrode 9b to the negative terminal 13n.A control member 14 accomplishes simultaneously reversal of the state of double switch 12 and the movement from one position to another of mobile screen 10, so that this screen is in front of electrode 9a or 9b which is switched to the positive terminal 13p, i.e in front of the electrode which plays the role of anode. A timing device (or possibly a manual control) enables this switching to be effected at regular intervals, for example every thirty minutes.
The storage tank 2 contains: a stirrer 1 5 rotated by a motor 16 which drives the shaft 17 of the stirrer; a coil of tubing 18 in which there flows, when valve 1 9 is open, a fluid for cooling the bath of electrolyte contained in tank 2 and so the whole of the mass of moving electrolyte 5; and an element 20 able to determine the pH of the electrolyte 5 in tank 2, this element 20 being electrically protected by a Faraday cage 21.
The installation which has just been described comprises further: a discharge disposed at the lower part of pipe 3 and which enables the elements coated (with nickel) to be extracted with the electrolyte by opening the cock or valve 23; and a feed 24 for adding to the electrolyte 5 in tank 2 nickel ions for replacing the nickel ions deposited, in the electrolyte tank 1, on the elements to be coated; device 20, 21 which determines the pH of the electrolyte may control the opening of valve 25 of a reservoir 26 containing a nickel salt (advantageously nickel carbonate) when device 20,21 has established that the pH has reached a predetermined threshold.
In one preferred embodiment: the tank of electrolyte 1 is made from polypropylene and has the following dimensions: 300 mm x 200 mm, with a height of 500 mm; the electrodes 9a and 9b are formed from three parallelepipedic bars (450 mm x 50 mm x 50 mm) made from graphite, spaced 130 mm apart; screen 10 is made from polytetrafluoroethylene cloth; tank 2 is made from heat-insulated polyproplene; it is cylindrical (diameter 450 mm, height 1030 mm); the heat exchanger or coil of tubing 1 8 is formed from eight tubes 30 mm in diameter, connected end to end and made from polypropylene; pipes 3 and 4 are made from polypropylene and have a sectional diameter of 100 mm; the temperature fo the electrolyte in tank 2 is maintained at 600C by the tubing coil 18; control member 14 actuates switch 12 and moves screen 10 every thirty minutes; the electrolyte is formed from 300 litres of permuted water, 110 Kg of nickel sulphate Ni2S04,7H20, 11 Kg of boric acid H3BO3 and 1 litre of hydrochloric acid; nickel carbonate is introduced every fifty seconds (through the opening of valve 25) in a quantity depending on the pH of electrolyte 5 in tank 2; in a variation, a given amount of nickel carbonate may be introduced when the pH of the electrolyte exceeds 3.8; the elements to be coated are carbon fibres of the type designated in French patent No.
2.058.732 filed on 23 September 1969 by the applicant by the expression "conducting carbon skeleton".
The coating of these fibres with nickel takes place in the installation which has just been described as follows.
The carbonacious fibres are maintained in suspension in the electrolyte by means of circulating pump 8 and stirrer 1 5.
Screen 10 is in front of the anode; for example screen 10 is in position 1 Ob and switch 12 in the position shown in the drawing. Under these conditions electrode 9b is the anode protected by screen 10 and electrode 9a is the cathode. The tubing coil 1 8 maintains the temperature at approximately 600C by cooling the electrolyte which tends to heat up under the effect of the electrolysis which takes place in tank 1 , the carbonacious fibres which pass between anode 9b and cathode 9a being coated with nickel deposited electrolytically. The result is nickel improverishment of the electrolyte. System 20, 21,24, 25, 26 maintains the desired amount of nickel ions in the electrolyte.
After a certain period of time, of the order of a few minutes to several hours, for example thirty minutes, member 14 moves screen 10 which is brought into the position 1 0a and causes switch 1 2 to change over, which reverses the polarity of the electrodes, electrode 9a becoming the anode protected by screen 10 and electrode 9b becoming the cathode. The operation for coating the fibres passing between the electrodes 9a and 9b continues; furthermore, the metal nickel which was deposited on electrode 9a during the preceding phase (during which this electrode was the cathode) is almost completely redissolved in the electrolyte because this electrode 9a is now the anode (which is a soluble electrode as long it is covered with metal nickel).
Then, after further period of a few minutes to a few hours, for example thirty minutes, member 14 causes movement of screen 10 towards position 1 Oa and return of switch 12 to its first state (that shown in the drawing); a new cycle begins, the nickel deposited on electrode 1 0b (while it was the cathode) being redissolved in the electrolyte 5 of tank 1 for this electrode 1 Ob is now the anode (anode soluble at the beginning).
the invention presents a large number of advantages, particularly the following.
A large number of fibres or flakes may be treated at one and the same time, for there is no limitation insofar as the size of the tanks is concerned.
The reversal of polarity of the electrodes enables a nickel efficiency very close to 100% to be obtained.
Maintaining the workpieces to be treated in suspension prevents their caking together and consequently enables coatings to be obtained of a greater thickness than with prior process and devices.
Thus, in the case of treating carbon fibres in accordance with the patent and the addition already cited, we end up with the formation of tubular metal fibres having a much greater wall thickness.
Finally, coated fibres are obtained, of an excellent quality, with a nickel efficiency close to 100% and in large batches at each operation.
So that the invention may be bettter understood, examples of application will be given hereafter, the treatment having been carried out in the installation which has been described with reference to the single figure.
Example 1 Manufacture of Nickel Flock There is fed into the installation at 24: 300 litres of deionized water, 11 Kg of boric acid, 110 Kg of nickel sulphate SO4Ni2,7H20, 1 litre of technical hydrochloric acid, 1 Kg of carbon flock obtained by pyrolysis, in nitrogen, of carded cotton and having been subjected to a pyrolytic carbon deposit in saturated xylene nitrogen so as to obtain the required electrical conductivity (see above-mentioned patent No. 2.057.732).
Pump 8 and stirrer 7 were operated. Deionized water was added to the contents of tank 2 so that the level in the upper pipe 4 was 5 cm at the outlet af tank 2. The flow of liquid was then set at 1.6 litres/per second, which corresponds to an average flow speed of 4 cm per second in the electrolysis tank 1. Electrodes 9a, 9b were connected to the 15-volt DC source 13 and the teflon cloth screen 10 was placed in front of the anode. The weave of the cloth of the teflon screen prevented the smallest particles in suspension from passing into the bath.
The intensity of the current was then 1 50 A.
When the temperature reached 600C, valve 19 was opened supplying exchanger 18 so as to remove the surplus heat.
Every thirty minutes, the polarity of electrodes 9a, 9b was reversed, as well as the position of screen 10, so as to protect the new anode. This latter, which had previously been a cathode and had become coated with nickel, was gradually freed of it, the metal returning in solution into the bath. The nickel yield thus reached 100%.
During the operation, care was taken to maintain the following constant: the level in tank 2 by adding deionized water; the temperature of the bath at 600C by adjusting the flow of cooling water; the pH of the electrolyte solution at 3.8 by periodic automatic addition of nickel carbonate by means of the feed regulating pump 25, 26 whose operation was controlled by the pH-meter 20.
After about a hundred hours of operation, the electric supply was cut off, the tank was emptied by actuating valve 22.
The nickel-coated carbon fibres were collected on a screen. They were washed and the few agglomerates which had possibly formed were removed by sedimentation; they were oven-dried and 7.5 Kg of flock was obtained comprising 85% nickel and 15% carbon (C/N = 0.17).
This raw material may be used for manufacturng nickel felts, as described in the above-mentioned patent No. 2.058.732, or for any other application, for forming catalyser walls, for example.
The average flow speed of the electrolyte and of the particles in suspension may be advantageously modulated during the nickeldepositing operation; for example it may be slow at the beginning, then become more rapid depending on a chosen programme.
Example 2 Manufacture of Nickel Flock The same procedure was carried out as in example 1, but the operation was stopped after two-hundred hours. There were then obtained, all other conditions being equal, fibres with a C/Ni ratio = 0.07.
It will be noted that the same result may be obtained in the case of example 1 by increasing the supply current to the electrodes providing the efficiency of the heat exchanger 1 8 is adjusted accordingly.
It will also be noted that the flow rate of the particles in front of the electrodes is equal to the flow rate of the electrolyte increased by the sedimentation rate. It follows that the fibres less charged with nickel travel more slowly and so are in contact with the cathode for a longer period of time. This is a factor favourable to the homogeneity of the deposit.
Example 3 Manufacture of Cobalt Flock The same procedure was carried out as in example 1, but the nickel sulphate was replaced by cobalt sulphate CO2SO4,7H20- Example 4 Manufacture of Copper Flock The same procedure was carried out as in example I, but there was fed into tank 2: 300 litres of deionized water, 75 Kg of copper sulphate S04Cu, 5H20, 30 Kg of sulphuric acid SO4H2 at 660 BaumB.
The flow rate of the water-cooling circuit of exchanger 1 8 is adjusted so that the temperature of the bath does not exceed 250C.
It is preferable, because of the very low pH (less than 1) to compensate for the loss of copper from the bath by periodic addition of copper carbonate at the rate of 2.3 g per ampere-hour.
About 8 Kg of flock were obtained comprising 85% Cu and 15% C.
Example 5 Graphite-flake Copper Plating The same procedure was carried out as in example 4, but the carbon flock was replaced by 5 Kg of graphite flakes of a diameter of about 500 microns and a thickness of 10 to 2Q microns.
After thirty hours operation, 7.5 Kg of copperplated flakes were obtained comprising 33.3% Cu and 66.7% graphite.
The product obtained may be advantageously used for manufacturing, by hot compression, electric generator brushes.
As is evident and as it follows moreover from what has gone before, the invention is in no wise limited to those of its modes of application and embodiments which have been more specially considered; it embraces, on the contrary, all variations thereof.

Claims (7)

Claims
1. A process for coating small-sized elements with a metallic coat by electrolysis from an electrolyte, the temperature and the ion content of the metal to be deposited of which are maintained substantially constant and in which the polarity of the electrodes is periodically reversed, characterised in that it consists in maintaining these elements in suspension in the electrolyte, in causing the electrolyte with the elements in suspension to flow in a closed loop while causing it to pass between two electrodes and in disposing of protecting screen in the vicinity of the positive maintained electrode.
2. The process as claimed in claim 1, characterized in that the metal ta be deposited is nickel.
3. A device for coating small-sized elements with a metal coat by electrolysis from an electrolyte containing ions of the metal to be deposited, this device comprising an electrolysis tank, two electrodes, means for causing one of the electrodes to be alternately positively or negative with respect to the other and means for maintaining substantially constant the temperature of the electrolyte and its ion content of the metal to be deposited, characterized in that the electrolysis tank is connected to a storage tank by two pipes allowing a closed circuit with these tanks to be formed, in that means are provided for causing the electrolyte to flow containing, in suspension, the small-sized elements to be coated and in that it comprises means for disposing in the vicinity of the positive maintained electrode a protecting screen.
4. The device as claimed in claim 3, characterized in that it comprises control means which simultaneously move said screen and switch the electric supply to the electrodes so as to make the electrode, in front of which said screen is brought, positive with respect to the other electrode.
5. The device as claimed in claim 3 or 4, characterized in that the metal to be deposited is nickel.
6. A process for coating small-sized elements substantially as hereinbefore described with reference to any of the examples.
7. Elements coated with a metallic coat by a process according to any of claims 1, 2 or 6.
GB8021233A 1980-06-27 1980-06-27 Electroplating small elements Expired GB2053279B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8021233A GB2053279B (en) 1980-06-27 1980-06-27 Electroplating small elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8021233A GB2053279B (en) 1980-06-27 1980-06-27 Electroplating small elements

Publications (2)

Publication Number Publication Date
GB2053279A true GB2053279A (en) 1981-02-04
GB2053279B GB2053279B (en) 1983-01-12

Family

ID=10514394

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8021233A Expired GB2053279B (en) 1980-06-27 1980-06-27 Electroplating small elements

Country Status (1)

Country Link
GB (1) GB2053279B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2182055B (en) * 1985-10-28 1989-10-18 Baj Ltd Improvements relating to electrodeposited coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2182055B (en) * 1985-10-28 1989-10-18 Baj Ltd Improvements relating to electrodeposited coatings

Also Published As

Publication number Publication date
GB2053279B (en) 1983-01-12

Similar Documents

Publication Publication Date Title
US4292144A (en) Process and device for coating small-sized elements with a metal deposit
US7666283B2 (en) Insoluble anode
EP0415876B1 (en) Continuous electroplating of conductive foams
CN109576734A (en) A method of recycling metal from sophisticated electronic waste
JP7259389B2 (en) Method for producing sulfuric acid solution
US4906340A (en) Process for electroplating metals
CN1210153A (en) One-step process of nickle hydroxide electrolysing
CN110010856A (en) Anodic oxidation co-electrodeposition method prepares the ti-supported lead dioxide electric pole of conductive polyaniline modification
Anani et al. Dispersion deposition of metal—Particle composites and the evaluation of dispersion deposited nickel—Lanthanum nickelate electrocatalyst for hydrogen evolution
GB2053279A (en) Electroplating Small Elements
CN105040032A (en) Method of preparing transition metal and alloy thereof through low temperature molten salt electro-deposition
CN112661324A (en) Diamond wire electroplating liquid purification system and purification method thereof
CN1373818A (en) Method for producing nickel hydroxides
US20180171488A1 (en) Method and apparatus for producing hydrogen having reversible electrodes
NO127304B (en)
NO166306B (en) FIREFIGHTING DEVICE IN A BUILDING.
USRE34191E (en) Process for electroplating metals
JP7211143B2 (en) Method for producing sulfuric acid solution
US4214964A (en) Electrolytic process and apparatus for the recovery of metal values
RU2766336C1 (en) Method for producing sulfuric acid solution and electrolyser used therein
EP0005007B1 (en) Electrolytic process and apparatus for the recovery of metal values
Sheela et al. Electrodeposition of iridium
US4916098A (en) Process and apparatus for manufacturing an electrocatalytic electrode
JPS6152239B2 (en)
JP7211144B2 (en) Method for producing sulfuric acid solution

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19920627