GB2030232A - Floating breakwater and energy collecting system - Google Patents
Floating breakwater and energy collecting system Download PDFInfo
- Publication number
- GB2030232A GB2030232A GB7838348A GB7838348A GB2030232A GB 2030232 A GB2030232 A GB 2030232A GB 7838348 A GB7838348 A GB 7838348A GB 7838348 A GB7838348 A GB 7838348A GB 2030232 A GB2030232 A GB 2030232A
- Authority
- GB
- United Kingdom
- Prior art keywords
- floating
- energy
- pressure
- breakwater
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007667 floating Methods 0.000 title claims abstract description 39
- 241000577457 Lestidae Species 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005188 flotation Methods 0.000 claims description 6
- 238000012432 intermediate storage Methods 0.000 claims 1
- 230000005484 gravity Effects 0.000 description 8
- 210000001331 nose Anatomy 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000005065 mining Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 210000000887 face Anatomy 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B9/00—Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
- E02B9/08—Tide or wave power plants
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/20—Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/141—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
- F03B13/142—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
A combination floating breakwater and wave energy collecting system comprises floating platform means containing a plurality of wave energy collection means, the collection means comprising collection chambers 20 open at the bottom and each having a relatively vertical back wall 20L and a sloped front wall 20F the collection chambers being arranged in a plurality of rows located side by side. Converting means on the platform converts the wave energy collected in the collection chambers into a transmittable form of energy. The floating platform comprises a pair of elongated floating spread wings (not shown) and the spread of the wings can be adjusted. The collection chambers may be arranged as pressure chambers and vacuum chambers and may be associated with air turbines driving electric generators. <IMAGE>
Description
SPECIFICATION
Floating breakwater and energy collecting system
The present invention relates to wave energy collection systems and to a combined floating breakwater and energy collecting system for use offshore (including large inland bodies of water) to provide a protected moorage for tankers, fishing fleets and other vessels and to provide a protected work area for offshore mining, oil and gas drilling and other offshore operations.
It has long been recognized that waves are a significant potential source of energy. Various devices for relatively large scale wave energy collection have been suggested from time to time, but have not met with any real degree of commercial success. Many of these devices have been based on compressing and storing air as collected or after stepping up the air pressure by mechanical means. In the first instance, once the pressure of the storage tank has been raised an initial increment, small waves are no longer a contributor. In the second case, the means for stepping up the pressure consumes much of the energy.
It is believed that large scale wave energy collection systems suggested in the past have not only been inefficient, but have not shown economic justification because no other function was performed as a consequence of the energy collection or in conjunction therewith. Hence, the entire initial cost of the supporting structure for the energy collecting system had to be amortized against energy production. The present invention looks to the problem of safe water transport and transfer of oil as one means of economic justification for wave energy collection.
The risk of oil spills from tanker vessels has caused mounting opposition to the bringing of tankers into protected harbors and waterways. At the same time the ever increasing demands for oil and the dependence of most of the world for its oil on a relatively few oil producing regions, has resulted in a relatively rapid buildup of tanker fleets and larger vessels. For the United States, the problem of oil transport by water will shortly be compounded with the start-up of the Alaska pipeline and the need to move the oil by water from the sourthern terminal of the pipeline to West Coast points.
Offshore ocean oil terminals have been suggested as a possible solution including the building of islands by rock fill or in the form of structural platforms rigidly fixed to the ocean floor at relatively shallow offshore sites. This proposed island solution is estimated to be not only extremely expensive, but to present major design difficulties in terms of providing protected moorage for all wind directions and wave conditions. It also requires that energy be supplied to the island by underwater cable or that the island have a fuel consuming generating plant. The latter necessitates a fuel storage facility and a fuel delivery operation.
The present invention aims to provide a more efficient system for wave energy collection and for converting wave energy into electrical energy.
Another object is to provide a wave energy system which together with its supporting structure performs another function.
The present invention also aims to provide a float ing offshore facility which provides a protected moorage for most wave conditions encountered and which normally can be self-sufficient as respects its energy requirements.
The invention further aims to provide such a facility in a form which is economically feasible when adapted to serve as an oil tanker terminal.
In carrying out the objectives of the present invention there is provided a combination floating breakwater and wave energy collector. The breakwater comprises a pair of joined floating spread wings between which a vessel can be moored. The spread angle of the wings is adjustable and the wings can be jointly swung about their juncture so as to extend from the juncture generally in the direction of wave and wind travel so that the vee-shaped area between the wings is on the lee side. The wings have rows of improved wave energy collecting cells used to drive air turbines coupled to electric generators without intermediate compressed air storage and this energy conversion assists in dampening the wave action in the moorage zone between the wings. The wave energy collecting cells vary in depth for various wave sizes.An underwater pipeline is used to carry oil unloaded from a moored tanker from the breakYv- ater site to shore. Likewise a cable can transmit any surplus electrical energy for use on shore.
In the accompanying drawings:
Fig. lisa plan view of a typical installation of the combined floating breakwater and energy collecting system of the present invention;
Fig. 2 is a side elevational view of the installation;
Fig. 3 is a vertical cross-sectional view taken as indicated by line 3-3 of Fig. 1;
Fig. 4 is a partially exploded perspective view illustrating two rows of typical hull modules;
Figs. 5 and 6 are schematic views of the pressure and vacuum phases of the energy collectors;
Fig. 7 is a detail view of one of the gravity valves used in the energy collectors;
Fig. 8 is a plan view of a modified installation changing the location of the monobuoy;
Fig. 9 is a plan view of a second modified installation.
Fig. 10 is a third modification showing a side elevational view of a typical mooring and loading column.
Fig. 10A is a plan view of the same column of Fig.
10 together with a platform and protective boom enclosing an oil tanker.
Fig. 11 is a plan view of a mobile fourth modified installation; and
Fig. 12 is a fragmentary perspective view of a modified front hinge arrangement for the breakwater.
The invention embodies a pair of elongated floating platforms 10-11 arranged as adjustable breakwa
ter wings. In the embodiment of Fig. 1 the wings
swing from a central juncture 12 and mooring lines
13a, 13b connect both end portions of the wings to a
turntable monobuoy 14 held in position by cables 15
extending to an array of bottom anchors 16. The
mooring lines are connected to cable winches on the
platforms and the length of the lines 13a, 13b can be varied to adjust the wing spread. Near their outer
ends the platform wings 10-11 may be provided with suitable propulsion means for assisting in adjust
ment of the wing spread. This propulsion means can take the form of tunnel thrusters, water jets, steerable propellers or the like, and is designated 17 in the drawing.
The inner nose portions of the wings 10-11 are shaped as shown in Fig. 1 to provide abutting curved bearing surfaces 12a-12a and opposing stop faces 18-18 and 19-19 adjoining the front and lea sides, respectively, of the wings. The front stop faces 18 determine the maximum spread angle and the lee stop faces 19 establish the minimum spread angle of the wings. The minimum spread angle is intended for use in heavy seas and it is intended that in normal sea conditions the spread angle will be about halfway between the minimum and 180 degrees.
Basic to the present invention is the use of energy collecting cells 20 for converting wave energy to a useable form of energy to thereby assist in quieting the wave action on the lee side of the breakwater and make the breakwater self-sufficient as far as its energy requirements are concerned. It is contemplated that in some instances the power generated may be sufficient to warrant being transmitted to shore, in which case underwater electrical cables can be connected to the bottom anchored component of the turntable buoy 14 and be electrically connected to terminals in the upper turntable component of the buoy to which cables from the breakwater are joined. Energy generated on the breakwater can of course also be utilized by ships moored on the lee side of the breakwater by mooring lines to the platforms 10-11 or independently anchored.
The energy collecting cells 20 are arranged in side-by-side rows extending lengthwise of the breakwater wings and function as a consequence of the rise and fall of the waves therein. The bottom of the breakwater wings is sloped so that the draft increases toward the lee side where a deep keel 23 is provided. The keel is intended to stop waves and provide reflected waves to create standing waves for increased efficiency. The collector cells become increasingly deeper as the breakwater draft increases and they are also made increasingly wider from one row to the next in the direction of the lee side as can be seen in Fig. 3. It will also be noted in
Fig. 3 that the front wall 20F of each cell is sloped upwardly in the lee direction and that the lee wall 20L of each cell is generally vertical. Hence, in lateral cross section the collector cells have an inverted vee shape.As a consequence, generally vee-shaped flotation /storage ballast chambers 21 are also formed in the hull. These compartments can be partially and selectively flooded for energy tuning or for maximum stability.
It is preferred to utilize both positive (pressure)
and negative (vacuum) collectors in the system and
to link both types to a common turbine. The valving
arrangement for accomplishing this result is shown
in Figs. and 6 wherein collector 20a is a negative collector and 20b is a positive collector. A conventional low pressure air turbine 22, shown schematically, is coupled to an electric generator 24 and has its intake and exhaust ports designated 26 and 28, respectively. Gravity balanced valve 30 controls the intake for port 26 so that intake comes from the positive collector 20b via pressure duct 32 during the pressure phase, and is drawn in from the atmosphere at 33 during the vacuum phase.Similarly, a gravity balanced valve 34 controls the exhaust for port 28 so that exhaust discharges to the atmosphere at 35 during the pressure phase and is drawn to the negative collector 20a through vacuum duct 36 during the vacuum phase.
At the positive collector 20b a gravity balanced valve 38 at the lower end of duct 32 is arranged to open during the pressure phase and a gravity balanced valve 40 is arranged to connect the positive collector to the atmosphere at port 39 during the vaccum phase. The valves for the positive collector are complemented by a gravity balanced valve 42 at the lower end of vacuum duct 36 which is arranged to open during the vacuum phase, and a gravity balanced valve 44 arranged to connect the negative col lectorto the atmosphere at port 45 during the pressure phase.
As shown in Fig. 7, for valve 30 for example, each of the valves 30,34,38 and 42 is hinged at46 and has a screw extension 47 on which weights 48 are threaded to act as an adjustable counterbalance for the valve proper. The screw extensions 47 may be positioned to slope downwardly at a slight angle relative to the respective valve to favor the closed position. This can also be accomplished by having the center of gravity of the weights 48 slightly below the longitudinal axis of the extensions 47. By such means the valves can be adjusted to swing open or close with minimal pressure change.
On a rising wave (Fig. 5) air is vented from collector 20a through valve 44 which lifts open while valve 42 lifts closed responsive to the increase in air pressure as the air in the collector is compressed by the rising water. At the same time the increase in air pressure in collector 20b causes valve 40 to close and valve 38 to open whereupon air is forced into the pressure duct 32 and flows past a wave blocking float valve 50 to the intake valve 30 as the pressure builds, and the valve 30 responsively swings upwardly into a closed position blocking the port 33.
As the pressure phase continues the compressed air from the pressure chamber 20b drives the air turbine 22 and discharges to the atmosphere through port 34.
It will be noted that since the vacuum collectors 20a vent to the atmosphere during the pressure phase and hence normally provide less resistance to the rising water than is the case in the pressure collectors 20a, the water level achieved in the vacuum collectors may be higher than in the pressure collectors. This may be of assistance in maximizing performance during the vacuum phase which com mences as the water starts to drop in the collectors.
The resulting pressure drop in the vacuum collector causes valve 44 to drop closed and valve 42 to drop open as indicated in Fig. 6 and likewise, the valves 38 and 40 drop closed and open, respectively, responsive to the pressure drop in the pressure collector.
As a consequence, valve 30 drops open exposing the intake port 26 to the atmosphere, and valve 34 drops closed. Accordingly, the increasing vacuum condition in vacuum collector 20a causes air to be drawn in past valve 30 and through the air turbine whereupon it flows through the duct 36 to the vacuum collector.
From the foregoing description it is seen that the turbine 22 is driven through both the rising and falling phases of a wave cycle. Although for purposes of example only one pressure collector and one vacuum collector have been shown operatively connected to each turbine 22 in detail, it will be apparent that additional ducts 32', 32" can feed from several pressure collectors and that additional ducts 36', 36" can feed to a like number of vacuum collectors. Also, because the wings will generally not be parallel to wave fronts, there may be a continuous rather than intermittent air flow.
Instead of a common turbine linked to both positive and negative air collectors, for some erratic sea conditions it may be preferable to use separate turbines for the vacuum and pressure phases. This can be accomplished by using suitable valves to redirect the air flow.
Rather than having the floating platforms 10-11 coupled together directly, an intermediate floating hub may be provided which is coupled to the platforms. For example, as shown in Fig. 8, the monobuoy 14' can be coupled at opposite bearing surfaces 12a, 12a' of floating platforms 10a-11a instead of being spaced forwardly of the platforms and connected thereto by mooring lines.
Fig. 9 illustrates a ring of anchor blocks 16 providing multiple anchoring points via lines 15' for the floating platforms 10, 11. When the wave direction, indicated by arrow W, changes toW' the anchoring points can be repositioned on the floating platforms to head into the waves as shown in dotted lines and better protect the drilling rig S, or other vessel behind the platforms.
Figs. 10 and 10A illustrate still a further embodiment in which a conventional mooring column 70 is anchored to the ocean bottom by lines 15 and anchors 16 and is coupled at its upper end to the floating platforms 10, 11 by mooring lines 13.
Winches on the platform wings control hausers to the single mooring column. A floating boom 71 encircles the rest of the oil tanker or other vessel S to confine any spilled oil.
As shown in Fig. 11, as a further alternative the
hub between the floating platforms can comprise a
self-propelled vessel 60 hinged at its sides to plat
forms 10owl 1c at pivots 12c-12c' on suitable outrig
gers on the vessel. Such an arrangement is intended
for use, for example, in ocean mining operations
where a relatively quiet mooring area is desirable for
support vessels and barges and the mining site is
changed from time to time. When the vessel 60 is underway to move to or from port, orto another mining location, the platform wings can be folded against the vessel hull so as to generally parallel the longitudinal axis of the vessel.In this case the prop ulsion means at the stern of the wings is preferably of the steerable type so that it can be used to sup plementthe propulsion system of the vessel to forwardly propel the vessel and the platform wings as a unit. Outrigger hausers 88 can hold the wing positions.
Fig. 12 illustrates a modified front pivot for platforms 10d, Ild comprising a rounded convex nose 55 on the platform 1 0d and a matching rounded concave nose 56 on the platform 11 d. A twin-spool cable winch 57 on the platform 10d has one cable 58a dead ended on a top center post 59a on the nose 56 and has a second cable 58b passing down through a pipe in the center of the nose 55 and passing across to a dead end on a bottom center post 59b on the nose 56.
Tensioning of the cables 58a, 58b keep the noses 55, 56 snubbed together. Additional crossed cables may of course be provided. Opposed stops 19'-19' can be provided to limit the amount of inward swinging travel of the platforms.
Standard ship construction techniques may be utilized to build the breakwater wings. For economic reasons it is preferred that a modular construction system be utilized such as indicated, for example, in
Fig. 4 Each module may comprise a row of progressively larger flotation chambers and energy collecting cells covered by suitably cross-braced plates at the front, back, sides and top. The cells are subdivided by respective braced sloped baffle walls 20F dividing the cells into the energy collectors 20 and flotation chambers 21. At their upper ends the cells are closed to provide the deck surface 61, and access to the flotation chambers is provided by standard marine hatches. A manifold system 62 on the deck can be utilized to interconnect the various cells, modules and air turbines as desired and suitable isolation and bypass valves (not shown) are provided.It is preferred to have a raised central walkway 49 which may be provided on a permanent deck scaffold 47 along the floating platforms and connect by ladders to the deck proper for access to deck hatches and the manifold valves.
Energy storage aboard the breakwater may take a variety of forms. Banks of batteries may be charged from the electrical generators and banks of air bottles may be charged with compressed air. Kinetic energy can be stored by driving flywheels. On large installations hydrogen and oxygen may be generated. The necessary equipment can be housed in the flotation chambers 21.
It has been known that wave action can be dam
pened by injecting compressed air at depth. Accord
ingly air ejection nozzles 48,48' connecting to an
output manifold from the ducts 32 of a bank of pres
sure cells 20b or from air compressors driven by
electric motors or the air turbines 22, are placed
underwater to the front and lee, respectively, of the
floating platforms 10-11 to further assist in dampen
ing the wave action. Compressed air lines can also
follow the anchor lines for greater effectiveness in
attenuating large waves.
Claims (9)
1. Acombination floating breakwater and energy
collector comprising:
floating platform means having a front side and a
lee side, and containing a plurality of wave energy
collection means arranged to receive waves advanc
ing generally toward said front side;
said collection means comprising collection chambers open to the bottom and each having a
relatively vertical back wall and a sloped front wall sloping in the lee direction from the bottom for receiving waves, said collection chambers being arranged in a plurality of rows located side-by-side from said front side to the lee side of the floating platform means;
converting means on said platform means for converting the wave energy collected at said cells into a transmittable form of energy; and
positioning means for selectively positioning said floating platform means so that its front side will be generally directed toward the oncoming waves whereby the wave action on the lee side of the platform is reduced as a consequence of wave deflection by said floating platform means and of the wave energy collected by said cells.
2. Acombination floating breakwater and energy collector according to claim 1 in which said floating platform means comprises a pair of elongated floating spread wings, and center means for interconnecting the inner ends of said wings whereby the spread of the wings can be varied by said positioning means.
3. A combination floating breakwater and energy collector according to claims 1 or 2 in which said positioning means includes an array of bottom anchors and floating turntable means connected to said anchors and to the floating platform means whereby the latter can be turned in the water relative to said anchors.
4. A combination floating breakwater and energy collector according to claim 1 in which the draft of said floating platform means increases from its front side to its lee side.
5. A combination floating breakwater and energy collector according to claims 1 or 2 in which the collection chambers are progressively larger in width and depth from the front-most row to the lee-most row.
6. A combination float breakwater and energy collector according to claims 1 or 5 in which said rows are separated by flotation chambers having a generally vertical front outer wall and an upwardly sloped lee back wall formed by the vertical back wall and sloped front wall of adjoining said collection chambers.
7. A combination floating breakwater and energy collector according to claim 1 in which said wave energy collection means comprises a plurality of pressure cells and a plurality of vacuum cells operating, respectively, in pressure and vacuum phases of an operating cycle, said converting means compris
ing a plurality of air turbines and valve and duct
means selectively connecting said turbines to said
pressure and vacuum cells whereby the air turbines
are powered by compressed air from the pressure cells flowing directly from the pressure cells, without intermediate storage, through the turbines to the atmosphere during the pressure phase of each operating cycle and are powered by atmospheric air flowing through the turbines to the vacuum cells during the vacuum phase of each operating cycle, and whereby the air flow through said turbines is in the same direction during the pressure and vacuum phases.
8. A combination floating breakwater and energy collector according to claim 1 in which the platform means has a downwardly projecting keel near its lee side, and in which the bottom profile of the platform means slopes downwardly from the front side to the base of said keel.
9. A combination floating breakwater and energy collector according to claim 2 in which said center means and positioning means comprises a selfpropelled vessel having said wings pivotally connected thereto on opposite sides thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7838348A GB2030232B (en) | 1978-09-27 | 1978-09-27 | Floating breakwater and energy collecting sysem |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7838348A GB2030232B (en) | 1978-09-27 | 1978-09-27 | Floating breakwater and energy collecting sysem |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2030232A true GB2030232A (en) | 1980-04-02 |
GB2030232B GB2030232B (en) | 1982-12-01 |
Family
ID=10499947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB7838348A Expired GB2030232B (en) | 1978-09-27 | 1978-09-27 | Floating breakwater and energy collecting sysem |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2030232B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095790A1 (en) * | 2004-03-27 | 2005-10-13 | HOFFMAN, Virginia, L. | Wave energy conversion apparatus |
WO2007057013A1 (en) * | 2005-11-18 | 2007-05-24 | Kurt Due Rasmussen | Wave energy converter comprising pressure and suction pipes |
CN101446256B (en) * | 2009-01-13 | 2010-06-23 | 陈积英 | Weighted floater sea wave power generator |
GB2504682A (en) * | 2012-08-04 | 2014-02-12 | Havkraft As | Plural OWC system with angled ports |
WO2014023401A2 (en) * | 2012-08-04 | 2014-02-13 | Havkraft As | Wave energy converter |
CN104153330A (en) * | 2014-05-15 | 2014-11-19 | 浙江海洋学院 | Breakwater and wave power generation device |
GB2522697A (en) * | 2014-02-03 | 2015-08-05 | Havkraft As | Wave energy converter |
-
1978
- 1978-09-27 GB GB7838348A patent/GB2030232B/en not_active Expired
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095790A1 (en) * | 2004-03-27 | 2005-10-13 | HOFFMAN, Virginia, L. | Wave energy conversion apparatus |
WO2007057013A1 (en) * | 2005-11-18 | 2007-05-24 | Kurt Due Rasmussen | Wave energy converter comprising pressure and suction pipes |
CN101446256B (en) * | 2009-01-13 | 2010-06-23 | 陈积英 | Weighted floater sea wave power generator |
GB2504682B (en) * | 2012-08-04 | 2014-10-22 | Havkraft As | Wave energy converter |
WO2014023401A2 (en) * | 2012-08-04 | 2014-02-13 | Havkraft As | Wave energy converter |
WO2014023401A3 (en) * | 2012-08-04 | 2014-04-10 | Havkraft As | Wave energy converter |
GB2504682A (en) * | 2012-08-04 | 2014-02-12 | Havkraft As | Plural OWC system with angled ports |
US9771920B2 (en) | 2012-08-04 | 2017-09-26 | Havkraft As | Wave energy converter |
AU2013301881B2 (en) * | 2012-08-04 | 2017-10-12 | Havkraft As | Wave energy converter |
GB2522697A (en) * | 2014-02-03 | 2015-08-05 | Havkraft As | Wave energy converter |
GB2522697B (en) * | 2014-02-03 | 2016-09-28 | Havkraft As | Wave energy converter |
NO342406B1 (en) * | 2014-02-03 | 2018-05-14 | Havkraft As | Wave energy converters |
CN104153330A (en) * | 2014-05-15 | 2014-11-19 | 浙江海洋学院 | Breakwater and wave power generation device |
CN104153330B (en) * | 2014-05-15 | 2016-02-03 | 浙江海洋学院 | Be provided with the breakwater of wave-type electric generator |
Also Published As
Publication number | Publication date |
---|---|
GB2030232B (en) | 1982-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4123185A (en) | Floating breakwater and energy collecting system | |
US6378450B1 (en) | Dynamically positioned semi-submersible drilling vessel with slender horizontal braces | |
US4850190A (en) | Submerged ocean current electrical generator and method for hydrogen production | |
US4603551A (en) | Wave power converter | |
US11660572B2 (en) | Wind and wave desalination vessel | |
US4392061A (en) | Apparatus for utilizing the energy of wave swells and waves | |
US3771481A (en) | Single column semisubmersible drilling vessel | |
AU2008338257B2 (en) | Apparatus for extracting energy from flowing water | |
US20070138021A1 (en) | Maritime hydrogen generation system | |
CN101611226B (en) | Energy extraction method and apparatus | |
US20180258904A1 (en) | Floating moon pool hydraulic pump | |
CN103523183A (en) | Movable semi-submersible multifunctional marine energy supplying platform | |
GB2085814A (en) | A semi-submersible vessel | |
Panicker | Power resource potential of ocean surface waves | |
CN114207218A (en) | Floating breakwater structure | |
WO2007097610A1 (en) | Semi-submersible vessel, method for operating a semi-submersible vessel and method for manufacturing a semi-submersible vessel | |
EP0767876A1 (en) | Offshore wind-/wave-energy converter | |
GB2030232A (en) | Floating breakwater and energy collecting system | |
EP3800785A1 (en) | Buoyant installation for photovoltaic power generation | |
CN102556292A (en) | Self-propelled marine wind-power engineering operation boat capable of operating by sitting on sea bed | |
USRE29478E (en) | Single column semisubmersible drilling vessel | |
EP0995032B1 (en) | Stream turbine | |
WO1999057011A1 (en) | Dynamically positioned semi-submersible drilling vessel | |
CN217416055U (en) | Formula foundation structure is floated to photovoltaic polygon on water | |
RU2002099C1 (en) | Floating device for generating electric energy due to use of water kinetic energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |