GB202015840D0 - Method of forming an electrode - Google Patents

Method of forming an electrode

Info

Publication number
GB202015840D0
GB202015840D0 GBGB2015840.8A GB202015840A GB202015840D0 GB 202015840 D0 GB202015840 D0 GB 202015840D0 GB 202015840 A GB202015840 A GB 202015840A GB 202015840 D0 GB202015840 D0 GB 202015840D0
Authority
GB
United Kingdom
Prior art keywords
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
GBGB2015840.8A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kings College London
University of Oxford
KING'S COLLEGE
Original Assignee
Kings College London
University of Oxford
KING'S COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kings College London, University of Oxford, KING'S COLLEGE filed Critical Kings College London
Priority to GBGB2015840.8A priority Critical patent/GB202015840D0/en
Publication of GB202015840D0 publication Critical patent/GB202015840D0/en
Priority to PCT/GB2021/052559 priority patent/WO2022074369A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
GBGB2015840.8A 2020-10-06 2020-10-06 Method of forming an electrode Ceased GB202015840D0 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GBGB2015840.8A GB202015840D0 (en) 2020-10-06 2020-10-06 Method of forming an electrode
PCT/GB2021/052559 WO2022074369A1 (en) 2020-10-06 2021-10-04 Method of forming an electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB2015840.8A GB202015840D0 (en) 2020-10-06 2020-10-06 Method of forming an electrode

Publications (1)

Publication Number Publication Date
GB202015840D0 true GB202015840D0 (en) 2020-11-18

Family

ID=73223886

Family Applications (1)

Application Number Title Priority Date Filing Date
GBGB2015840.8A Ceased GB202015840D0 (en) 2020-10-06 2020-10-06 Method of forming an electrode

Country Status (2)

Country Link
GB (1) GB202015840D0 (en)
WO (1) WO2022074369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234715A1 (en) * 2022-05-31 2023-12-07 주식회사 엘지에너지솔루션 Method for manufacturing polymer solid electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US20200303741A1 (en) 2019-03-19 2020-09-24 Chongqing Jinkang New Energy Automobile Co., Ltd. Isotropic self-assembly of graphite particles for li-ion anode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5785030B2 (en) * 2011-08-18 2015-09-24 株式会社Screenホールディングス Manufacturing method of all solid state battery
US20200373552A1 (en) * 2018-02-13 2020-11-26 Fisker, Inc. Low tortuosity electrodes and electrolytes, and methods of their manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US20200303741A1 (en) 2019-03-19 2020-09-24 Chongqing Jinkang New Energy Automobile Co., Ltd. Isotropic self-assembly of graphite particles for li-ion anode

Non-Patent Citations (140)

* Cited by examiner, † Cited by third party
Title
A. BASILEM. HILDERF. MAKHLOOGHIAZADC. POZO GONZALOD. R. MACFARLANEP. C. HOWLETTM. FORSYTH: "Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies", ADV. ENERGY MATER., vol. 8, 2018, pages 1703491, XP055528125, DOI: 10.1002/aenm.201703491
A. BIELEFELDD. A. WEBERJ. JANEK: "Microstructural modeling of composite cathodesfor all solid state batteries", J. PHYS. CHEM. C, vol. 123, 2019, pages 1626 - 1634
A. MORATA-ORRANTIAS. GARC LA-MART INE. MORANM. A. ALARIO-FRANCO: "A new La2/3LixTil-xAlx03 solid solution: structure, microstructure, and Li+ conductivity", CHEM. MATER., vol. 14, 2002, pages 2871 - 2875
A. S. SHAPLOVR. MARCILLAD. MECERREYES: "Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s", ELECTROCHIM. ACTA, vol. 175, 2015, pages 18 - 34, XP055618012, DOI: 10.1016/j.electacta.2015.03.038
A. SAKUDAA. HAYASHIT. OHTOMOS. HAMAM. TATSUMISAGO: "All-solid state lithium sec- ondary batteries using LiCo02 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes", J. POWER SOURCES, vol. 196, 2011, pages 6735 - 6741
A. SAKUDAA. HAYASHIY. TAKIGAWAK. HIGASHIM. TATSUMISAGO: "Evaluation of elas- tic modulus of Li2S-P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test", J. CERAM. SOC. JPN., vol. 121, 2013, pages 946 - 949
A. W. SCHAEFERS. R. H. BARRETTK. DOYMEL. M. DRAYA. R. GNADTR. SELFA. O'SULLIVANA. P. SYNODINOSA. J. TORIJA: "Technological, economic and environmental prospects of all-electric aircraft", NAT. ENERGY, vol. 4, 2019, pages 160 - 166
B. L. PAPKEM. A. RATNERD. F. SHRIVER: "Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts", J. PHYS. CHEM. SOLIDS, vol. 42, no. 6, 1981, pages 493 - 500
C. HUANGM. DONTIGNYK. ZAGHIBP. S. GRANT: "Low-tortuosity and graded lithium ion battery cathodes by ice templating", J. MATER. CHEM. A, vol. 7, 2019, pages 21421 - 21431
C. HUANGP. S. GRANT: "Coral-like directional porosity lithium ion battery cathodes by ice templating", J. MATER. CHEM. A, vol. 6, 2018, pages 14689
C. L. A. LEUNGR. TOSIE. MUZANGAZAS. NONNIP. J. WITHERSP. D. LEE: "Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti- 6A1-4V components", MATER. DES., vol. 174, 2019, pages 107792, XP055714198, DOI: 10.1016/j.matdes.2019.107792
C. L. DAVIDSONA. J. FEILZER: "Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives", J. DENT., vol. 25, no. 6, 1997, pages 435 - 440
C. LIX. ZHENGY. PANQ. Y. LI: "Polymerized ionic liquid-containing interpenetrating network solid polymer electrolytes for all-solid-state lithium metal batteries", ACS APPL. MATER. INTERFACES, vol. 11, 2019, pages 34904 - 34912
C. MAOR. E. RUTHERJ. LIZ. DUI. BELHAROUAK: "Identifying the limiting electrode in lithium ion batteries for extreme fast charging", ELECTROCHEM. COMMUN., vol. 97, 2018, pages 37 - 41, XP085545358, DOI: 10.1016/j.elecom.2018.10.007
C. MAY. FENGF. XINGL. ZHOUY. YANGQ. XIAL. ZHOUL. ZHANGL. CHEND. G. IVEY: "A borate decorated anion-immobilized solidpolymer electrolyte for dendrite-free, long-life Limetal batteries", J. MATER. CHEM. A, vol. 7, 2019, pages 19970 - 19976
C. NIUH. PANW. XUJ. XIAOJ.-G. ZHANGL. LUOC. WANGD. MEIJ. MENGX. WANG: "Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions", NAT. NANOTECHNOL., vol. 14, 2019, pages 594, XP036798580, DOI: 10.1038/s41565-019-0427-9
C. STETSONT. YOONJ. COYLEW. NEMETHM. YOUNGA. NORMANS. PYLYPENKOC. BANC.- S. JIANGM. AL-JASSIM: "Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials", NANO ENERGY, vol. 55, 2019, pages 477 - 485
C. TANS. R. DAEMIO. O. TAIWOT. M. M. HEENAND. J. L. BRETTP. R. SHEARING: "Evolution of electrochemical cell designs for in-situ and operando 3D characterization", MATER, vol. 11, no. 2157, 2018, pages 1 - 16
C. YANGK. FUY. ZHANGE. HITZL. HU: "Protected lithium-metal anodes in batteries: from liquid to solid", ADV. MATER., vol. 29, no. 1701169, 2017, pages 1 - 28, XP055443547, DOI: 10.1002/adma.201701169
C. YANGX. ZHANGM. HUANGJ. HUANGZ. FANG: "Preparation and rate capability of car- bon coated LiNil/3Col/3Mnl/302 as cathode material in lithium ion batteries", ACS APPL. MATER. INTERFACES, vol. 9, 2017, pages 12408 - 12415
C.-H. CHENF. BROSA PLANELLAK. O'REGAND. GASTOLW.D. WIDANAGEE. KENDRICK: "Devel- opment of experimental techniques for parameterization of multi-scale lithium-ion battery models", J. ELECTROCHEM. SOC., vol. 167, no. 8, 2020, pages 080534
C.-J. BAEC. K. ERDONMEZJ. W. HALLORANY.-M. CHIANG, Y.-M.: "Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance", ADV. MATER., vol. 25, 2013, pages 1254 - 1258
D. GUYOMARDJ. M. TARASCON: "Li metal-free rechargeable LiMn204/carbon cells: their under- standing and optimization", J. ELECTROCHEM. SOC., vol. 139, 1992, pages 937 - 948
D. H. KIMD. Y. OHK. H. PARKY. E. CHOIY. J. NAMH. A. LEES.-M. LEEY. S. JUNG: "Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries", NANO LETT, vol. 17, 2017, pages 3013 - 3020
D. WEINGARTHR. DRUMMA. FOELSKE-SCHMITZR. KOTZV. PRESSER: "An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores", PHYS. CHEM. CHEM. PHYS., vol. 16, 2014, pages 21219 - 21224
E. FEDELIO. GARCIA-CALVOT. THIEUT. N. T. PHAND. GIGMESI. URDAMPILLETAA. KVASA: "Nanocomposite solid polymer electrolytes based on semi-interpenetrating hybrid polymer networks for high performance lithium metal batteries", ELECTROCHIM. ACTA, vol. 353, 2020, pages 136481, XP086228652, DOI: 10.1016/j.electacta.2020.136481
E. J. CHENGK. HONGN. J. TAYLORH. CHOEJ. WOLFENSTINEJ. SAKAMOTO: "Mechanical and physical properties of LiNi0.33Mn0.33Co0.3302 (NMC", J. EUR. CERAM. SOC., vol. 37, 2017, pages 3213 - 3217, XP029987331, DOI: 10.1016/j.jeurceramsoc.2017.03.048
F. BASKOROH. Q. WONGH.-J. YEN: "Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery", ACS APPL. ENERGY MATER., vol. 2, 2019, pages 3937 - 3971
F. HIPPAUFB. SCHUMMS. DOERFLERH. ALTHUESS. FUJIKIT. SHIRATSUCHIT. TSUJIMURAY. AIHARAS. KASKEL: "Overcoming binder limitations of sheet-type solid-statecathodes using a solvent-free dry-film approach", ENERGY STORAGE MATER., vol. 21, 2019, pages 390 - 398
F. LINI. M. MARKUSD. NORDLUNDT.-C. WENGM. D. ASTAH. L. XINM. M. DOEFF: "Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries", NAT. COMMUN., vol. 5, 2014, pages 3529
G. B. APPETECCHIG.-T. KIMM. MONTANINOM. CAREWSKAR. MARCILLAD. MECERREYESI. DE MEATZA: "Ternary polymer electrolytes containing pyrrolidinium- based polymeric ionic liquids for lithium batteries", J. POWER SOURCES, vol. 195, 2010, pages 3668 - 3675
G. C. SOSSOJ. CHENS. J. COXM. FITZNERP. PEDEVILLAA. ZENMICHAELIDES: "Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations", CHEM. REV., vol. 116, 2016, pages 7078 - 7116
G. HOMANNL. STOLZJ. NAIRI. C. LASKOVICM. WINTERJ. KASNATSCHEEW: "Poly(ethylene oxide)-based electrolyte for solid-state-lithium batteries with high voltage positive electrodes: eval- uating the role of electrolyte oxidation in rapid cell failure", SCI. REPORTS, vol. 10, 2020, pages 4390
G. SHAOD. A. H. HANAORX. SHENA. GURLO: "Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications", ADV. MATER., vol. 1907176, 2020, pages 1 - 33
H. AONOE. SUGIMOTOY. SADAOKAN. IMANAKAG.-Y. ADACHI: "Ionic conductivity of solid elec- trolytes based on lithium titanium phosphate", J. ELECTROCHEM. SOC., vol. 137, 1990, pages 1023 - 1027
H. AONOE. SUGIMOTOY. SADAOKAN. IMANAKAG.-Y. ADACHI: "The electrical properties of ceramic electrolytes for LiMxTi2-x(P04)3+ yLi20, M=Ge, Sn, Hf, and Zr Systems", J. ELECTROCHEM. SOC., vol. 140, 1993, pages 1827 - 1833
H. PENGQ. WUL. XIAO: "Low temperature synthesis of Li5La3Nb2012 with cubic garnet-type structure by sol-gel process", J. SOL-GEL SCI. TECHNOL., vol. 66, 2013, pages 175 - 179, XP035374152, DOI: 10.1007/s10971-013-2984-y
H. SUNK. ZHAO: "Electronic structure and comparative properties of LiNixMnyCoz02 cathode materials", J. PHYS. CHEM. C, vol. 121, 2017, pages 6002 - 6010
H. WAKAYAMAH. YONEKURAY. KAWAI: "Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode", CHEM. MATER., vol. 28, no. 12, 2016, pages 4453 - 4459
H.-J. DEISEROTHJ. MAIERK. WEICHERTV. NICKELS.-T. KONGC. REINER: "Li7PS6X and Li6PS5X (X: CI, Br, I): possible three dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements", Z. ANORG. ALLG. CHEM., vol. 637, 2011, pages 1287 - 1294, XP055188343, DOI: 10.1002/zaac.201100158
H.-J. HAY. H. KWONJ. Y. KIMS.-Y. LEE: "A self-standing, UV-cured polymer networks- reinforced plastic crystal composite electrolyte for a lithium-ion battery", ELECTROCHIM. ACTA, vol. 57, 2011, pages 40 - 45, XP028124239, DOI: 10.1016/j.electacta.2011.03.101
H.-J. NOHS. YOUNC. S. YOONY.-K. SUN: "Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]02(x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries", J. POWER SOURCES, vol. 233, 2013, pages 121 - 130, XP028997672, DOI: 10.1016/j.jpowsour.2013.01.063
I. KOETSCHAUM. N. RICHARDJ. R. DAHNJ. B. SOUPARTJ. C. ROUSCHE: "Orthorhombic LiMn02 as a high capacity cathode for Li-ion cells", J. ELECTROCHEM. SOC., vol. 142, no. 9, 1995, pages 2906 - 2910
I. V. THORATD. E. STEPHENSONN. A. ZACHARIASK. ZAGHIBJ. N. HARBD. R. WHEELER: "Quantifying tortuosity in porous Li-ion battery materials", J. POWER SOURCES, vol. 188, 2009, pages 592 - 600, XP025988462, DOI: 10.1016/j.jpowsour.2008.12.032
J. BUP. LEUNGC. HUANGS. H. LEEP. S. GRANT: "Co-spray printing of LiFeP04 and PEOLil.5A10.5Gel.5(P04)3 hybrid electrodes for all-solid state Li-ion battery applications", J. MATER. CHEM. A, vol. 7, 2019, pages 19094 - 19103
J. C. BACHMANS. MUYA. GRIMAUDH.-H. CHANGN. POURS. F. LUXO. PASCHOSF. MAGLIAS. LUPARTP. LAMP: "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction", CHEM. REV., vol. 116, 2016, pages 140, XP055297581, DOI: 10.1021/acs.chemrev.5b00563
J. D. STEVENSONP. G. WOLYNES: "The ultimate fate of supercooled liquids", J. PHYS. CHEM. A, vol. 115, 2011, pages 3713 - 3719
J. H. LEEC. S. YOONJ.-Y. HWANGS.-J. KIMF. MAGLIAP. LAMPS.-T. MYUNGDY.-K. SUN: "High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[NiO.85CoO.05MnO.10]02 cathode", ENERGY ENVIRON. SCI., vol. 9, 2016, pages 2152 - 2158
J. LIANGY. SUNY. ZHAOQ. SUNJ. LUOF. ZHAOX. LINX. LIR. LIL. ZHANG: "Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solidstate high voltage LiCo02 batteries", J. MATER. CHEM. A, vol. 8, 2020, pages 2769 - 2776
J. LIUZ. BAOY. CUIE. J. DUFEKJ. B. GOODENOUGHP. KHALIFAHQ. LIB. Y. LIAWP. LIUA. MANTHIRAM: "Pathways for practical high-energy long- cycling lithium metal batteries", NAT. ENERGY, vol. 4, 2019, pages 180 - 186, XP036724758, DOI: 10.1038/s41560-019-0338-x
J. M. PRINGLEP. C. HOWLETTD. R. MACFARLANEM. FORSYTH: "Organic ionic plastic crystals: recent advances", J. MATER. CHEM., vol. 20, 2010, pages 2056 - 2062, XP055528070, DOI: 10.1039/b920406g
J. MAJ. SUNGY. LEEY. SONS. CHAEN. KIMS.-H. CHOIJ. CHO: "Strategic pore architecture for accommodating volume change from high Si content in lithium-ion battery anodes", ADV. ENERGY MATER., vol. 10, no. 6, 2020, pages 1903400
J. OUG. LIZ. CHEN: "Improved composite solid electrolyte through ionic liquid-assisted polymer phase for solid-state lithium ion batteries", J. ELECTROCHEM. SOC., vol. 166, no. 10, 2019, pages A1785 - A1792
J. S. SANDERR. M. ERBL. LIA. GURIJALAY.-M. CHIANG: "High-performance battery electrodes via magnetic templating", NAT. ENERGY, vol. 1, 2016, pages 1 - 7, XP055500653
J. WANJ. XIEX. KONGZ LIUK. LIUF. SHIA. PEIH. CHENW. CHENJ. CHEN: "Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous hostfor lithium batteries", NAT. NANOTECH., vol. 14, 2019, pages 705 - 711, XP036824616, DOI: 10.1038/s41565-019-0465-3
J. ZHOUT. QIANJ. LIUM. WANGL. ZHANGC. YAN: "High-safety all-solid-state lithium- metal battery with high-ionic conductivity thermoresponsive solid polymer electrolyte", NANO LETT, vol. 19, 2019, pages 3066 - 3073
J.-H. SHINW. A. HENDERSONS. PASSERINI: "PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries", J. ELECTROCHEM. SOC., vol. 152, 2005, pages A978 - A983
K. C. KIMT. LIUS. W. LEES. S. JANG: "First-principles density functional theory modeling of Li binding: thermodynamics and redox properties of quinone derivatives for lithium-ion batteries", JACS, vol. 138, 2016, pages 2374 - 2382
K. G. GALLAGHERS. E. TRASKC. BAUERT. WOEHRLES. F. LUXM. TSCHECHP. LAMPB. J. POLZINS. HAB. LONG: "Optimizing areal capacities through understanding the limitations of lithium-ion electrodes", J. ELECTROCHEM. SOC., vol. 163, 2015, pages A138
K. M' ARKERP. J. REEVESC. XUK. J. GRIFFITHC. P. GREY: "Evolution of structure and lithium dy- namics in LiNi0.8Mn0.lCo0.102 (NMC811) cathodes during electrochemical cycling", CHEM. MATER., vol. 31, 2019, pages 2545 - 2554
K. NIEY. HONGJ. QIUQ. LIX. YUH. LIL. CHEN, FRONT. CHEM., vol. 6, 2018, pages 1
K. XU: "Electrolytes and interphases in Li-ion batteries and beyond", CHEM. REV., vol. 114, 2014, pages 11502 - 11618
K.-H. CHENA. J. SANCHEZE. KAZYAKA. L. DAVISN. P. DASGUPTA: "Lithium metal anodes: syn- ergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes", ADV. ENERGY MATER., vol. 9, 2019, pages 1802534
L. ALMARJ. JOOSA. WEBERE. IVERS-TIEE: "Microstructural feature analysis of commercial Li-ion battery cathodes by focused ion beam tomography", J. POWER SOURCES, vol. 427, 2019, pages 1 - 14, XP085718064, DOI: 10.1016/j.jpowsour.2019.04.019
L. FROBOESEJ. FELIX VAN DER SICHELT. LOELLHOEFFELL. HELMERSA. KWADE: "Effect of mi- crostructure on the ionic conductivity of an all solid-state battery electrode", J. ELECTROCHEM. SOC., vol. 166, no. 2, 2019, pages A318 - A328
L. LIR. M. ERBJ. WANGJ. WANGY.-M. CHIANG: "Fabrication of low-tortuosity ultrahigh-area- capacity battery electrodes through magnetic alignment of emulsion-based slurries", ADV. ENERGY MATER., 2018, pages 1802472
L. YUEJ. MAJ. ZHANGJ. ZHAOS. DONGZ. LIUG. CUIL. CHEN: "All solid-state polymer electrolyte for high-performance lithium ion batteries", ENERGY STORAGE MATER, vol. 5, 2016, pages 139 - 154
M. A. KRAFTS. OHNOT. ZINKEVICHR. KOERVERS. P. CULVERT. FUCHSA. SENYSHYNS. INDRISB. J. MORGANW. G. ZEIER: "Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries", J. AM. CHEM. SOC., vol. 140, 2018, pages 16330 - 16339
M. BOUZRATI-ZERELLIJ. KIRSCHNERC. P. FIKM. MAIERC. DIETLINF. MORLET-SAVARYJ. P. FOUASSIERJ.-M. BECHTJ. E. KLEEJ. LALEV'EE: "Silyl glyoxylates as a new class of high performance photoini- tiators: blue LED induced polymerization of methacrylates in thin and thick Films", MACROMOLECULES, vol. 50, 2017, pages 6911 - 6923
M. D. WIDSTROMK. B. LUDWIGJ. E. MATTHEWSA. JARRYM. ERDIA. V. CRESCEG. RUBLOFFP. KOFINAS: "Enabling high performance all-solid-state lithium metal batteriesusing solid polymer electrolytes plasticized with ionic liquid", ELECTROCHIM. ACTA, vol. 345, 2020, pages 136156
M. EBADIC. MARCHIORIJ. MINDEMARKD. BRANDELLC. MOYSES ARAUJO: "Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations", J. MATER. CHEM. A, vol. 7, 2019, pages 8394 - 8404, XP055701330, DOI: 10.1039/C8TA12147H
M. EBNERD.-W. CHUNGR. E. GARCIAV. WOOD: "Tortuosity anisotropy in lithium-ion battery electrodes", ADV. ENERGY MATER., vol. 4, 2014, pages 1301278
M. FINSTERBUSCHT. DANNERC.-L. TSAIS. UHLENBRUCKA. LATZO. GUILLON: "High capacity garnet-based all-solid-state lithium batteries: fabrication and 3D-microstructure resolved modeling", ACS APPL. MATER. INTERFACES, vol. 10, no. 26, 2018, pages 22329 - 22339
M. FORSYTHL. PORCARELLIX. WANGN. GOUJOND. MECERREYES: "Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries", ACC. CHEM. RES., vol. 52, 2019, pages 686 - 694
M. ITOHY. INAGUMAW.-H. JUNGL. CHENT. NAKAMURA: "High lithium ion conductivity in the perovskite-type compounds Ln12Li12Ti03 (Ln=La,Pr,Nd,Sm", SOLID STATE IONICS, vol. 70-71, 1994, pages 203 - 207
M. MURAYAMAR. KANNOM. IRIES. ITOT. HATAN. SONOYAMAY. KAWAMOTO: "Synthesis of new lithium ionic conductor thioLISICON-lithium silicon sulfides system", J. SOLID STATE CHEM., vol. 168, 2002, pages 140 - 148, XP055723686, DOI: 10.1006/jssc.2002.9701
M. NAMAZIANH. A. ALMODARRESIEHM. R. NOORBALAH. R. ZARE: "DFT calculation of electrode potentials for substitutedquinones in aqueous solution", CHEM. PHYS. LETT., vol. 396, 2004, pages 424 - 428, XP004568490, DOI: 10.1016/j.cplett.2004.08.089
M. P. S. MOUSAVIB. E. WILSONSADRA. KASHEFOLGHETAE. L. ANDERSONS. HEP. BUHLMANNA. STEIN: "Ionic liquids as electrolytes for electrochemical double-layer capacitors structures that optimize specific energy", ACS APPL. MATER. INTERFACES, vol. 8, 2016, pages 3396 - 3406
M. S. ISLAMC. A. J. FISHER: "Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties", CHEM. SOC. REV., vol. 43, no. 1, 2014, pages 185 - 204
M. TACHEZJ.-P. MALUGANIR. MERCIERG. ROBERT: "Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4", SOLID STATE IONICS, vol. 14, 1984, pages 181 - 185
M. TAGHAVIKISHS. SUBIANTOY. GUX. SUNX. S. ZHAON. ROY CHOUDHURY: "A poly(ionic liquid) gel electrolyte for efficient all solid electrochemical double-layer capacitor", SCI. REPORTS, vol. 8, 2018, pages 10918
M. WANGY. GONGY. GUY. CHENL. CHENH. SHI: "Effects of fast lithium-ion conductive coating layer on the nickel rich layeredoxide cathode material", CERAM, vol. 45, 2019, pages 3177 - 3185
M. WETJENG.-T. KIMM. JOOSTG. B. APPETECCHIM. WINTERS. PASSERINI: "Thermal and electrochemical properties of PEO-LiTFSI-Pyrl4TFSI-based composite cathodes, incorporating 4 V-class cathode active materials", J. POWER SOURCES, vol. 246, 2014, pages 846 - 857, XP028739947, DOI: 10.1016/j.jpowsour.2013.08.037
M. YAMAMOTOY. TERAUCHIA. SAKUDAM. TAKAHASHI: "Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities", SCI. REPORTS, vol. 8, 2018, pages 1212
M. ZAHEERH. XUB. WANGL. LIY. DENG: "An in situ polymerized comb-like PLA/PEG-based solid polymer electrolyte for lithium metal batteries", J. ELECTROCHEM. SOC., vol. 167, 2020, pages 070504
N. GOUJONT. HUYNHR. KERRK. VEZZUV. DI NOTOJ. CHIEFARIP.C. HOWLETTM. FORSYTH: "Enabling high lithium conductivity in polymerized ionic liquid block copolymer electrolytes", BAT- TERIES SUPERCAPS, vol. 2, 2019, pages 132 - 138
N. NITTAF. WUJ. T. LEEG. YUSHIN: "Li-ion battery materials: present and future", MATER. TODAY, vol. 18, no. 5, 2015, pages 252 - 264
N. OTSU: "A threshold selection method from gray-level histograms", IEEE TRANS. SYST. MAN. CYBERN., vol. 9, 1979, pages 62 - 66, XP000617438
N. V. ILAWEJ. FU, S. RAMANATHANB. M. WONGJ. WU: "Chemical and radiation stability of ionic liquids: a computational screening study", J. PHYS. CHEM. C, vol. 120, 2016, pages 27757 - 27767
O. PECHERS.-T. KONGT. GOEBELV. NICKELK. WEICHERTC. REINERH.-J. DEISEROTHJ. MAIERF. HAARMANND. ZAHN: "Atomistic Characterisation of Li+ mobility and conductivity in Li7-xPS6-xIx argyrodites from molecular dynamics simulations, solid-State NMR, and impedance spectroscopy", CHEM. - EUR. J., vol. 16, 2010, pages 8347 - 8354, XP055188338, DOI: 10.1002/chem.201000501
P. G. BRUCEA. R. ARMSTRONGR. L. GITZENDANNER: "New intercalation compounds for lithium batteries: layered LiMn02", J. MATER. CHEM., vol. 9, no. 1, 1999, pages 193 - 198
P. GARRAC. DIETLINF. MORLET-SAVARYF. DUMURD. GIGMESJ.-P. FOUASSIERJ. LALEV'EE: "Pho- topolymerization processes of thick films and in shadow areas: a review for the access tocomposites", POLYM. CHEM., vol. 8, 2017, pages 7088 - 7101
P. LEUNGJ. BUV. P. QUIJANOM. R. ROBERTSN. GROBERTP. S. GRANT: "Single-step spray printing of symmetric all-organic solid-state batteries based on porous textile dye electrodes", ADV. ENERGY MATER., vol. 9, no. 39, 2019, pages 1901418
P. OHH. LEES. PARKH. CHAJ. KIMJ. CHO: "Improvements to the overpotential of all-solid- state lithium-ion batteries during the past ten years", ADV. ENERGY MATER., vol. 10, no. 24, 2020, pages 2000904
P. PELJOH. H. GIRAULT: "Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception", EES, vol. 11, 2018, pages 2306 - 2309
Q. LIS. ZHUY. LU: "3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries", ADV. FUNCT. MATER., vol. 27, 2017, pages 1606422
Q. ZHAOS. STALINC.-Z. ZHAOL. A. ARCHER: "Designing solid-state electrolytes for safe, energy- dense batteries", NAT. REV. MATER., vol. 5, 2020, pages 229 - 252, XP037055431, DOI: 10.1038/s41578-019-0165-5
R. BOUCHETS. MARIAR. MEZIANEA. ABOULAICHL. LIENAFAJ.-P. BONNETT. N. T. PHAND. BERTIND. GIGMESD. DEVAUX: "Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries", NAT. MATER., vol. 12, 2013, pages 452 - 457, XP055316945, DOI: 10.1038/nmat3602
R. DRUMMONDC. HUANGP.S. GRANTS.R. DUNCAN: "Overcoming diffusion limitations in super- capacitors using layered electrodes", J. POWER SOURCES, vol. 433, no. 126579, 2019, pages 1 - 10
R. HET. KYU: "Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes", MACROMOLECULES, vol. 49, no. 15, 2016, pages 5637
R. KOERVERW. ZHANGL. DE BIASIS. SCHWEIDLERA. O. KONDRAKOVS. KOLLINGT. BREZESINSKIP. HARTMANNW. G. ZEIERJ. JANEK: "Chemo-mechanical expansion of lithium electrode materials - on the route to mechanically optimized all-solid-state batteries", ENERGY ENVIRON. SCI., vol. 11, 2018, pages 2142 - 2158
S. BEHRR. AMINY.-M. CHIANGA. P. TOMSIA: "Highly-structured, additive-Free lithium-ion cath- odes by freeze-casting technology", CERAM. FORUM INTER., vol. 92, no. 4, 2015, pages 39 - 43
S. BOULINEAUM. COURTYJ.-M. TARASCONV. VIALLET: "Mechanochemical synthesis of Li- argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application", SOLID STATE IONICS, vol. 221, 2012, pages 1 - 5, XP028432169, DOI: 10.1016/j.ssi.2012.06.008
S. ISIKLIK. M. RYAN: "Recent advances in solid-state polymer electrolytes and innovative ionic liquids based polymer electrolyte systems", CURR. OPIN. ELECTROCHEM., vol. 21, 2020, pages 188 - 191
S. J. COOPERA. BERTEIP. R. SHEARINGJ. A. KILNERN. P. BRANDON: "TauFactor: An open- source application for calculating tortuosity factors from tomographic data", SOFTWARE X, vol. 5, 2016, pages 203 - 210
S. J. COOPERD. S. EASTWOODJ. GELBG. DAMBLANCD. J. L. BRETTR. S. BRADLEYP. J. WITHERSP. D. LEEA. J. MARQUISN. P. BRANDON: "Image based modelling of microstructural heterogeneity in LiFeP04 electrodes for Li-ion batteries", J. POWER SOURCES, vol. 247, 2014, pages 1033 - 9, XP028760205, DOI: 10.1016/j.jpowsour.2013.04.156
S. K. CHAURASIAA. CHANDRA: "Organic-inorganic hybrid electrolytes by in-situ dispersion of silicananospheres in polymer matrix", SOLID STATE IONICS, vol. 307, 2017, pages 35 - 43, XP085053971, DOI: 10.1016/j.ssi.2017.05.003
S. KAZEMIABNAVIZ. ZHANGK. THORNTONS. BANERJEE: "Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries", J. PHYS. CHEM. B, vol. 120, 2016, pages 5691 - 5702
S. MENKINM. LIFSHITZA. HAIMOVICHM. GOORR. BLANGAS. G. GREENBAUMA. GOLDBOURTD. GOLODNITSKY: "Evaluation of ion-transport in composite polymer-in-ceramicelectrolytes: Case study of active and inert ceramics", ELECTROCHIM. ACTA, vol. 304, 2019, pages 447 - 455, XP085639178, DOI: 10.1016/j.electacta.2019.03.006
S. MOGURAMPELLYJ. R. KEITHV. GANESAN: "Mechanisms Underlying Ion Transport in Polymer- ized Ionic Liquids", JACS, vol. 139, 2017, pages 9511 - 9514
S. R. DAEMIX. LUD. SYKESJ. BEHNSENC. TANA. PALACIOS-PADROSJ. COOKSONE. PETRUCCOP. J. WITHERSD. J. L. BRETT: "4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering", MATER. HORIZ., vol. 6, 2019, pages 612 - 617
S. RANDAUD. A. WEBERO. KOTZR. KOERVERP. BRAUNA. WEBERE. IVERS TIFFEET. ADERMANNJ. KULISCHW. G. ZEIER: "Benchmarking the performance of all-solid-state lithium batteries", NAT. ENERGY, vol. 5, 2020, pages 259 - 270, XP037069874, DOI: 10.1038/s41560-020-0565-1
S. SONGJ. LUF. ZHENGH. M. DUONGL. LU: "A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes", RSC ADV., vol. 5, 2015, pages 6588 - 6594
S. XUK.-H. CHENN. P. DASGUPTAJ. B. SIEGELA. G. STEFANOPOULOU: "Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss", J. ELECTROCHEM. SOC., vol. 166, no. 14, 2019, pages A3456 - A3463
S. YUA. MERTENSH. TEMPELR. SCHIERHOLZH. KUNGLR.-A. EICHEL: "Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility", ACS APPL. MATER. INTERFACES, vol. 10, no. 26, 2018, pages 22264 - 22277
S. ZAHND. R. MACFARLANEE. I. IZGORODINA: "Assessment of Kohn-Sham density functional theory and Miller-Plesset perturbation theory for ionic liquids", PHYS. CHEM. CHEM. PHYS., vol. 15, 2013, pages 13664 - 13675
S. ZEKOLLC. M.-EDWARDSA. K. O. HEKSELMANJ. KASEMCHAINANC. KUSSD. E. J. ARMSTRONGD. CAIR. J. WALLACEF. H. RICHTERJ. H. J. THIJSSEN: "Hybrid electrolytes with 3D bicontinuous orderedceramic and polymer microchannels for all-solid state batteries", EES, vol. 11, 2018, pages 185 - 201
S.-J. CHOIS.-H. CHOIA. D. BUIY.-J. LEES.-M. LEEH.-C. SHINY.-C. HA: "Lil-doped sulfide solid electrolyte: enabling a high-capacity slurry cast electrode by low-temperature post-sintering for practical all solid-state lithium batteries", ACS APPL. MATER. INTERFACES, vol. 10, 2018, pages 31404 - 31412
T. HURIAG. LUDOVICIG. LUTZEMBERGER: "State of charge estimation of high power lithium iron phosphate cells", J. POWER SOURCES, vol. 249, 2014, pages 92 - 102, XP028804748, DOI: 10.1016/j.jpowsour.2013.10.079
T. M. M. HEENANA. V. LLEWELLYNA. S. LEACHM. D. R. KOKC. TANR. JERVISD. J. L. BRETTP. R. SHEARING: "Resolving Li-ion battery electrode particles using rapid lab-based X-ray nano-computed tomography for high-throughput quantification", ADV. SCI., vol. 7, 2010, pages 2000362
T. UEKIM. WATANABE: "Macromolecules in ionic liquids: progress, challenges, and opportunities", MACROMOLECULES, vol. 41, 2008, pages 3739 - 3749
U. ULISSIM. AGOSTINIS. ITOY. AIHARAJ. HASSOUN: "All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte", SOLID STATE IONICS, vol. 296, 2016, pages 13 - 17, XP029762030, DOI: 10.1016/j.ssi.2016.08.014
V. GREGORION. GARC'IAP. TIEMBLO: "Solvent-free and scalable procedure to prepare PYR13TFSI/LiTFSI/PVDF-HFP thermoplastic electrolytes with controlled phase separation and enhanced Li ion diffusion", MEMBRANE, vol. 9, 2019, pages 50
V. THANGADURAIA. K. SHUKLAJ. GOPALAKRISHNAN: "LiSr1.65.0.35B 1.3B' 1.709 (B = Ti, Zr; B' = Nb, Ta): new lithium ion conductors based on the perovskite structure", CHEM. MATER., vol. 11, 1999, pages 835 - 839, XP000828674, DOI: 10.1021/cm9810382
V. THANGADURAIW. WEPPNER: "Li6La2Ta2012 (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction", ADV. FUNCT. MATER., vol. 15, 2005, pages 107 - 112
V. YUFITF. TARIQD. S. EASTWOODM. BITONB. WUP. D. LEEN. P. BRANDON: "Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries", JOULE, vol. 3, 2019, pages 485 - 502
W. LIJ.N. REIMERSJ.R. DAHN: "In situ X-ray diffraction and electrochemical studies of Lil-xNi02", SOLID STATE IONICS, vol. 67, 1993, pages 123 - 130
X. JUDEZG. G. ESHETUC. LIL. M. RODRIGUEZ-MARTINEZH. ZHANGM. ARMAND: "Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes", JOULE, vol. 2, 2018, pages 2208 - 2224
X. WANGH. ZHUG. M. A. GIRARDR. YUNISD. R. MACFARLANED. MECERREYESA. J. BHATTACHARYYAP. C. HOWLETTM. FORSYTH: "Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids", J. MATER. CHEM. A, vol. 45, 2017, pages 23844
X. ZHANGR. LVA. WANGW. GUOX. LIUJ. LUO: "MXene aerogel scaffolds for high rate lithium metal anodes", ANGEW. CHEM., INT. ED., vol. 57, 2018, pages 15028
X.-B. CHENGR. ZHANGC.-Z. ZHAOQ. ZHANG: "Toward safe lithium metal anode in rechargeable batteries: a review", CHEM. REV., vol. 117, 2017, pages 10403 - 10473
Y. DENGC. EAMESJ.-N. CHOTARDF. LALEREV. SEZNECS. EMGEO. PECHERC. P. GREYC. MASQUELIERM. S. ISLAM: "Structural and mechanistic insights into fast lithium-ion conduction in Li4Si04-Li3P04 Solid Electrolytes", J. AM. CHEM. SOC., vol. 137, 2015, pages 9136 - 9145, XP055638499, DOI: 10.1021/jacs.5b04444
Y. KATOS. SHIOTANIK. MORITAK. SUZUKIM. HIRAYAMAR. KANNO: "All-solid-state batteries with thick electrode congurations", J. PHYS. CHEM. LETT., vol. 9, 2018, pages 607 - 613
Y. X. GAOX. P. WANGW. G. WANGQ. F. FANG: "Sol-gel synthesis and electrical properties of Li5La3Ta2012 lithium ionic conductors", SOLID STATE IONICS, vol. 181, 2010, pages 33 - 36
Y. X. QIUD. KLEEW. PLUSTERB. SEVERICHH. HOCKER: "Surface modification of polyurethane by plasma-induced graft polymerization of poly(ethylene glycol) methacrylate", J. APPL. POLYMER SCI., vol. 61, no. 13, 1996, pages 2373 - 2382, XP000635245, DOI: 10.1002/(SICI)1097-4628(19960926)61:13<2373::AID-APP17>3.0.CO;2-5
Y. YANGQ. WUD. WANGC. MAZ. CHENC. ZHUY. GAOC. LI: "Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries", J. MEMBR. SCI., vol. 595, 2020, pages 117549
Y. ZHANGT.-T. ZUOJ. POPOVICK. LIMY.-X. YINJ. MAIERY.-G. GUO: "Towards better Li metal anodes: Challenges and strategies", MATER. TODAY, 2019, Retrieved from the Internet <URL:https://doi.org/10.1016/j.mattod.2019.09.018>
Y.-G. LEES. FUJIKIC. JUNGN. SUZUKIN. YASHIROR. OMODAD.-S. KOT. SHIRATSUCHIT. SUGIMOTOS. RYU: "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes", NAT. ENERGY, 2020, Retrieved from the Internet <URL:https://doi.org/10.1038/s41560-020-0575-z>
Z. GUOY. ZHANGY. DONGJ. LIS. LIP. SHAOX. FENGB. WANG: "Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks", JACS, vol. 141, 2019, pages 1923 - 1927
Z. OSMANM. I. M. GHAZALIL. OTHMANK. B. M. ISA: "AC ionic conductivity and DC polarization method of lithium ion transportin PMMA-LiBF4 gel polymer electrolytes", RESULTS PHYS, vol. 1, 2012, pages 4

Also Published As

Publication number Publication date
WO2022074369A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP4044305A4 (en) Electrode assembly manufacturing method and electrode assembly manufacturing apparatus
EP3930062C0 (en) Method and apparatus for manufacturing electrode assembly of secondary battery
GB2584946B (en) Method of selecting ions
EP3784327B8 (en) Electrode body of an electrode assembly and electrode assembly for electrical stimulation, and method for producing an electrode assembly
PL3764433T3 (en) Positive electrode active material and method of producing positive electrode active material
EP3956937A4 (en) Lithium metal anode assemblies and an apparatus and method of making same
IL286689A (en) Method of conditioning an ion-selective electrode
GB202015840D0 (en) Method of forming an electrode
EP3980796C0 (en) Method of cyclic coulometry
PL3933975T3 (en) Method and apparatus for pre-lithiation of electrode
GB2592616B (en) Method of forming an article
ZA202103111B (en) Electrode for electrolytic evolution of gas
GB2601795B (en) Electrode structure and method of making an electrode structure
GB2588232B (en) Method of manufacturing an electrode assembly
GB2585048B (en) A method of manufacturing an electrode
GB202109034D0 (en) Method of insulating an object
GB202009460D0 (en) Method of insulating an object
GB202019511D0 (en) Electrode structure and method of making an electrode structure
GB202115555D0 (en) Method of making nanosheets
GB201908687D0 (en) Method of insulating an object
GB202012664D0 (en) An electrode architecture and method of making the electrode architecture
GB202012666D0 (en) An electrode architecture and method of making the electrode architecture
GB201915923D0 (en) An electrical joint and method of forming
GB202103609D0 (en) Method of selecting cells
GB202106007D0 (en) Method and electrode

Legal Events

Date Code Title Description
AT Applications terminated before publication under section 16(1)