GB1601440A - Expansible trough apparatus for use in producing polyurethane foam - Google Patents

Expansible trough apparatus for use in producing polyurethane foam Download PDF

Info

Publication number
GB1601440A
GB1601440A GB1612278A GB1612278A GB1601440A GB 1601440 A GB1601440 A GB 1601440A GB 1612278 A GB1612278 A GB 1612278A GB 1612278 A GB1612278 A GB 1612278A GB 1601440 A GB1601440 A GB 1601440A
Authority
GB
United Kingdom
Prior art keywords
trough
sections
foam
fall plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB1612278A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schrader M J
Original Assignee
Schrader M J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schrader M J filed Critical Schrader M J
Priority to GB1612278A priority Critical patent/GB1601440A/en
Publication of GB1601440A publication Critical patent/GB1601440A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/461Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length dispensing apparatus, e.g. dispensing foaming resin over the whole width of the moving surface
    • B29C44/462Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length dispensing apparatus, e.g. dispensing foaming resin over the whole width of the moving surface provided with pre-foaming devices

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

(54) EXPANSIBLE TROUGH APPARATUS FOR USE IN PRODUCING POLYURETHANE FOAM (71) I. MILFORD JAMES SCHRAD ER, a citizen of the United States of America, of 525 Cinderella Drive, City of Claremont, State of California, United States of America do hereby declare the invention for which I pray that a patent may be granted to me, and the method by which it is to be performed. to be particularly described in and by the following statement: This invention relates to the continuous production of polymeric foam slabs, or "buns" as they are commonly referred to in the art, and more particularly to an expansible trough for use in such production bv which the width of the forming bun can bé varied to a desired length.
A method and related apparatus for producing continuous foam buns. in which the apparatus of the present invention can be used, are disclosed in United States Letters Patent Nos. 3.786,122 and 3,832,099, Essentially. the method taught in those patents for continuously producing polymeric foam buns, or strands as they are referred to therein. comprises the steps of continuously supplying a mixture of liquid foam reactants to the bottom of a rigid vessel or trough. allowing the mixture to expand upwardly and foam in the vessel due to the chemical reaction between the reactants and, prior to the completion of this expansion, allowing the partially expanded foam to flow upwardly from the trough over a weir structure, down an inclined fall plate and onto a channel shaped conveyor in which the foam is continuously drawn away from the structure. As the foam expands and rises in the trough and passes over the weir, it changes from a generally liquid state to a generally solid state and on the conveyor solidifies into a generally flat bun of polyurethane foam.
While the aforesaid process has been found to be an improvement over the previous methods used for forming such buns, the improved process nevertheless had certain shortcomings. Most notably, the bun of polymeric foam produced by the process was always of the same width. If differently sized buns were desired, it was necessary to saw the bun to the desired width which not only consumed additional time and expense but often resulted in a waste of product. In addition, the vessel or trough in which the mixed chemicals are received was extremely difficult to clean after a run of a particular material due to the nature of the material involved, thereby further increasing the overall costs of production. It would be highly desirable to provide equipment which could be used in such a process which would be capable of producing buns of polymeric foam of different desired widths and which would alleviate the problem of cleaning heretobefore experienced with the apparatus used in the process.
According to the present invention there is provided apparatus for use in the production of continuous buns of polymeric foam from a mixture of liquid foam reactants, including a pair of trough sections, one of said sections being slidably mounted within the other to define an expansible trough, a pair of detachable end sections, one of said sections being disposed at the outer end of each of said trough sections, and means for securing each of said end sections to said outer ends of said trough sections.
Viewed more specifically the invention provides an expansible trough adapted for use with an expansible fall plate in the continuous production of polyurethane foam buns. The trough is comprised of a pair of telescoping sections for varying the length of the trough and correspondingly adjusting the width of the forming bun. Similar adjustment is provided in the inclined fall plate for maintaining the forming bun in the proper width and detachable end portions are provided for the trough which allow the interior surface thereof to be fully covered with a protective paper lining to facilitate the cleaning opera tion.
An embodiment of the invention will now be described by way of example and with reference to the accompanying drawings, in which: Figure 1 is a perspective view of an expansible trough according to the inven tion; Figure 2 is a diagrammatic cross-section illustrating an apparatus for manufacturing continuous buns of a polymeric foam includ- ing the trough of Figure 1: Figure 3 is an exploded view of the expansible trough and paper liner: and Figure 4 is a perspective view of the trough and expansible fall plate.
Referring now in detail to the drawings, Figure 2 generallv illustrates apparatus for manufacturing a continuous bun 10 of polymeric foam which incorporates an ex pansible trough 12 and a fall plate 14.
The apparatus also includes a mixing 16, the output of which is directed by a pair of conduits 18 to a position near the bottom 20 of trough 12 through the open end 21 thereof. Adjacent the forward edge 24 of the trough, is the fall plate 14 which is inclined at an angle of about 20 with respect to the horizontal. This angle, as well-known in the art, varies with the particular material being used in a given run. A belt conveyor 28 is disposed under the downstream edge of the fall plate which moves in the direction of arrow 30 over a supporting platform 32.
A sheet of protective material 34* for example, kraft paper, from a supply roll 36 passes upwardly in front of the trough 12, between the curved forward edge 24 thereof and rearward edge 25 of the fall plate 14 and over the inclined surface of the fall plate and onto the convevor 28 to move therewith.
Adjacent each edge of the fall plate 14 is a rigid sidewall 38 which, together with the protective sheet 34, forms an open topped conveying system. As with sheet 34 and roll 36, a vertical sheet of similar protective material 40 is disposed along each of the sidewalls from the rolls (not shown) so as to separate the surface of the walls from the polymeric material to facilitate cleaning, as described in the aforesaid referenced patents. Sidewalls 38 are mounted on a frame (a portion of which is shown at 42 in Figure 4) such that they are moveable inwardly toward and in parallel alignment with the central axis of the inclined fall plate and conveyor 28 to cooperate with the expansible trough 12 and fall plate in the manner to be described.
The expansible through 12 is comprised of a main and longer section 44 second section 46 and detachable end sections 48 and 50 each of which are preferably of single piece construction. The second section 46 of the trough fits tightly within the larger section but is slidable therein to define a trough which is expansible along its longitudinal axis, has a slightly inclined forward wall portion 52 terminating in a curved lip portion 54, which, in place, is disposed adjacent the rearward edge of the fall plate 14 as previously described, a rear wall portion 56 and bottom wall 57.
The detachable end sections each include elongate contact surfaces 59 which mate with the corresponding wall portions of the trough sections adjacent the open ends thereof and are held thereagainst by thumb screws 58 or other suitable fastening means.
Guide means 60 are provided on the contact surfaces 59 of the end sections which are received by guide holes 62 in the trough section to assist in properly aligning the end portions with the trough sections for securing the end portions thereto upon the insertion of a protective liner as will be described.
To avoid having to remove the trough section from the complete assembly for a thorough cleaning after the completion of each run, as is generally done when using the apparatus described in the aforementioned patents due to the difficulty encountered in accomplishing such a cleaning, a protective lining 64, again preferably constructed of paper, is employed. As illus- trated in Figure 3 the lining fits over the rear wall of the trough 12 and extends along and against the interior walls and bottom thereof. In inserting the lining, the end sections of the trough are removed and the protective lining disposed within the open ended trough with the lateral ends thereof extending beyond the open ends of the trough. The end sections of the trough are then secured to the trough sections with the aid of the guide means which have been found to be very helpful in aligning the thumb screw receiving apertures in the trough sections with the thumb screws. After securing the end sections to the trough, the excess material of the protective lining can be trimmed if desired. In this manner, all but the interior of the end portions of the trough are out of direct contact with the polymeric material.
To protect the end sections 48 and 50 *om the foaming reactants to further alleviate the clean up problem, they can be given a Teflon (R.T.M.) protective coating or, alternatively, tightly wrapped in a suitable protective plastic material such as that sold under the trademark Saran Wrap by the Dow Chemical Company. In this manner, the entire interior of the trough is out of direct contact with the foaming polymeric material and accordingly, a thorough clean- ing can be accomplished by merely removing the lining from the interior of the trough and either removing the plastic covering from the end portions of the trough or simple rinsing the same when coated with Teflon. It has been found impractical to provide a Teflon coating to the interior of the entire trough due to the expenses involved in coating such a large area and the likelihood of damage to the coating.
Figure 4 illustrates the expansible struc ture of the fall plate 14 achieved through a three piece construction comprised of a first lower section 66, a second lower section and preferably narrower section 68 and an upper section 70 disposed over the juncture of the first and second sections and secured thereto in a standard fashion such that the first and second lower sections can be slidably moved in a transverse direction with respect to the longitudinal axis of the upper section.
By so moving the lower sections of the fall plate, the plate can be made to define a width or lateral dimension equal to the preset length of the trough.
In operation, the expansible trough 12 is first extended or compressed to a length which corresponds with the desired width of the polymeric bun to be produced. The protective liner 64 is then inserted into the trough such that it hugs the interior walls thereof and the end portions of the trough are secured. The fall plate is then correspondingly extended or compressed and the moveable sidewalls 38 moved to the edges of the fall plate. In so doing, the sidewalls move over the surface of the conveyor 28 and sheeting 34 which have a lateral dimension at least equal to the maximum extended width of the trough so that it can handle buns as wide as those which can be produced from the trough. In an alternative construction, a portion of the sidewalls 38 could be secured to the ends of the fall plate and would thereby be brought into proper position with the adjustment of the lateral dimension of the plate. Of course, the remaining portions of the sidewalls which would be disposed over the conveyor would then have to be brought in alignment with the walls carried by the fall plate. With these adjustments made and the mixing head 16 fed with chemical reactants suitable for producing polymeric foam, as known in the art, the mixture of reactants is fed through conduits 18 to the bottom of the trough as described above.
The mixture of reactants which begins in the mixing head 16 is essentially liquid as it arrives in the trough but, as the liquid level rises, the mixture begins to expand and foam, as is well-known, due to the chemical reaction. The expanding foam then rises upwardly in the trough, over the curved lip surface 54 thereof and into contact with the moving protective sheet 34 disposed over the fall plate 14. The foam then moves down over the fall plate and in so doing is changing from a mainly liquid to a largely solid state. As the foam expands and rises in the trough, fresh liquid mixture is supplied to the bottom of the trough so that a constant flow of solidifying foam passes over the forward edge of the trough and onto the fall plate.
As indicated in the referenced patents, the angle of inclination of the fall plate with the horizontal is chosen such that the foam, continuing to expand, retains a horizontal top surface 71. Generally, this angle is about 20 but varies with the type of foam being used. When the foam reaches the bottom of the fall plate, the expansion or foaming has substantially ceased and expanded foam continues horizontally along the conveyor while the foam curing occurs. The resulting bun can then be cut or sawed into desired lengths.
Upon completion of a run the mixing head is cleaned by running a cleaning agent of methylene chloride there-through which flushes the heads and runs into the trough through the conduits 18 where it is mixed with the residue in the trough. To drain the resulting slurry from the trough, one or more apertures 72 are disposed in the bottom wall 57 of the trough. These apertures are covered by the protective lining 64 and thereby avoid any leakage during use, but allow the trough to be drained by merely punching corresponding holes in the protective lining over apertures 72 whereupon the slurry will drain from the trough. After the trough has been drained, the protective lining is merely removed from the trough.
Little or no additional cleaning of the trough is required. Accordingly, the above described structure not only allows the described method to continuously produce buns of polymeric foam in different widths, but greatly reduces the amount of time necessary to clean the apparatus prior to the initiation of another run.
WHAT I CLAIM IS: 1. Apparatus for use in the production of continuous buns of polymeric foam from a pair of trough sections, one of said sections a palr of trough sections, one of said section being slidably mounted within the-other to define an expansible trough, a pair of detachable end sections, one of said sections being disposed at the outer end of each of said trough sections and means for securing each of said end sections to said outer ends of said trough sections.
2. Apparatus according to Claim 1 wherein each of said end sections includes a
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (9)

**WARNING** start of CLMS field may overlap end of DESC **. the entire interior of the trough is out of direct contact with the foaming polymeric material and accordingly, a thorough clean- ing can be accomplished by merely removing the lining from the interior of the trough and either removing the plastic covering from the end portions of the trough or simple rinsing the same when coated with Teflon. It has been found impractical to provide a Teflon coating to the interior of the entire trough due to the expenses involved in coating such a large area and the likelihood of damage to the coating. Figure 4 illustrates the expansible struc ture of the fall plate 14 achieved through a three piece construction comprised of a first lower section 66, a second lower section and preferably narrower section 68 and an upper section 70 disposed over the juncture of the first and second sections and secured thereto in a standard fashion such that the first and second lower sections can be slidably moved in a transverse direction with respect to the longitudinal axis of the upper section. By so moving the lower sections of the fall plate, the plate can be made to define a width or lateral dimension equal to the preset length of the trough. In operation, the expansible trough 12 is first extended or compressed to a length which corresponds with the desired width of the polymeric bun to be produced. The protective liner 64 is then inserted into the trough such that it hugs the interior walls thereof and the end portions of the trough are secured. The fall plate is then correspondingly extended or compressed and the moveable sidewalls 38 moved to the edges of the fall plate. In so doing, the sidewalls move over the surface of the conveyor 28 and sheeting 34 which have a lateral dimension at least equal to the maximum extended width of the trough so that it can handle buns as wide as those which can be produced from the trough. In an alternative construction, a portion of the sidewalls 38 could be secured to the ends of the fall plate and would thereby be brought into proper position with the adjustment of the lateral dimension of the plate. Of course, the remaining portions of the sidewalls which would be disposed over the conveyor would then have to be brought in alignment with the walls carried by the fall plate. With these adjustments made and the mixing head 16 fed with chemical reactants suitable for producing polymeric foam, as known in the art, the mixture of reactants is fed through conduits 18 to the bottom of the trough as described above. The mixture of reactants which begins in the mixing head 16 is essentially liquid as it arrives in the trough but, as the liquid level rises, the mixture begins to expand and foam, as is well-known, due to the chemical reaction. The expanding foam then rises upwardly in the trough, over the curved lip surface 54 thereof and into contact with the moving protective sheet 34 disposed over the fall plate 14. The foam then moves down over the fall plate and in so doing is changing from a mainly liquid to a largely solid state. As the foam expands and rises in the trough, fresh liquid mixture is supplied to the bottom of the trough so that a constant flow of solidifying foam passes over the forward edge of the trough and onto the fall plate. As indicated in the referenced patents, the angle of inclination of the fall plate with the horizontal is chosen such that the foam, continuing to expand, retains a horizontal top surface 71. Generally, this angle is about 20 but varies with the type of foam being used. When the foam reaches the bottom of the fall plate, the expansion or foaming has substantially ceased and expanded foam continues horizontally along the conveyor while the foam curing occurs. The resulting bun can then be cut or sawed into desired lengths. Upon completion of a run the mixing head is cleaned by running a cleaning agent of methylene chloride there-through which flushes the heads and runs into the trough through the conduits 18 where it is mixed with the residue in the trough. To drain the resulting slurry from the trough, one or more apertures 72 are disposed in the bottom wall 57 of the trough. These apertures are covered by the protective lining 64 and thereby avoid any leakage during use, but allow the trough to be drained by merely punching corresponding holes in the protective lining over apertures 72 whereupon the slurry will drain from the trough. After the trough has been drained, the protective lining is merely removed from the trough. Little or no additional cleaning of the trough is required. Accordingly, the above described structure not only allows the described method to continuously produce buns of polymeric foam in different widths, but greatly reduces the amount of time necessary to clean the apparatus prior to the initiation of another run. WHAT I CLAIM IS:
1. Apparatus for use in the production of continuous buns of polymeric foam from a pair of trough sections, one of said sections a palr of trough sections, one of said section being slidably mounted within the-other to define an expansible trough, a pair of detachable end sections, one of said sections being disposed at the outer end of each of said trough sections and means for securing each of said end sections to said outer ends of said trough sections.
2. Apparatus according to Claim 1 wherein each of said end sections includes a
flat contact surface corresponding in configuration to and being adapted to mate with the surface of said trough sections adjacent the outer end thereof such that a protective lining for the interior of said trough section can be held therebetween.
3. Apparatus according to Claim 1 or 2 including a protective lining disposed along and against the interior of said trough sections to prevent contact between said sections and said liquid foam reactants, lateral portions of said lining being disposed between and held by said trough sections and said end sections.
4. Apparatus according to any of Claims 1 to 3 including an inclined fall plate extending downwardly from said trough, said fall plate being correspondingly expansible with said trough in a transverse direction to the longitudinal axis of said plate, and a pair of vertical sidewalls disposed adjacent the transverse ends of said plate, said walls being continually parallel with and correspondingly moveable with said end of said plate.
5. Apparatus according to Claim 3 or 4 including means for drawing said end sections to said trough sections such that said lining is tightly held between said trough sections and said end sections.
6. Apparatus according to any of Claims 1 to 5 including guide means carried by said end sections and said trough sections said guide means carried by said end sections cooperating with said guide means carried by said trough sections for aligning said end sections with said trough sections.
7. Apparatus as claimed in any of Claims 1 to 6 wherein the trough section are open ended, each of said trough sections defining a forward wall portion, a rearward wall portion and a bottom wall portion extending therebetween, and the end sections define flat contact surfaces adapted to mate with the interior surface of sald trough sections adjacent the outer open ends thereof.
8. Apparatus as claimed in any one of Claims 1 to 7 wherein at least one drain aperture is disposed in the bottom wall portion of at least one of said trough sections.
9. Apparatus as claimed in claim 1 substantially as herein described with reference to the accompanying drawings.
GB1612278A 1978-04-24 1978-04-24 Expansible trough apparatus for use in producing polyurethane foam Expired GB1601440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1612278A GB1601440A (en) 1978-04-24 1978-04-24 Expansible trough apparatus for use in producing polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1612278A GB1601440A (en) 1978-04-24 1978-04-24 Expansible trough apparatus for use in producing polyurethane foam

Publications (1)

Publication Number Publication Date
GB1601440A true GB1601440A (en) 1981-10-28

Family

ID=10071594

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1612278A Expired GB1601440A (en) 1978-04-24 1978-04-24 Expansible trough apparatus for use in producing polyurethane foam

Country Status (1)

Country Link
GB (1) GB1601440A (en)

Similar Documents

Publication Publication Date Title
US4093109A (en) Expansible trough apparatus for use in producing polyurethane foam
EP0127384B1 (en) Improvements on or relating to the production of polymeric foam
US4216181A (en) Process for applying a layer of a liquid foamable reaction mixture to a continuously moving shaping support
US3832099A (en) Apparatus for producing polyurethane foam
US3234836A (en) Apparatus for cutting polyurethane foam and the like
EP1205290B1 (en) Method and apparatus for continuously producing foam blocks
GB1601440A (en) Expansible trough apparatus for use in producing polyurethane foam
US3887670A (en) Apparatus for and method of producing continuous foamed plastic bunstock
US3870441A (en) Production of polymeric foam
US4005958A (en) Apparatus for continuous production of rectangular cross-sectioned foamed plastic bunstock
US3496596A (en) Molding of foamed articles
DE2815160A1 (en) METHOD AND APPARATUS FOR PRODUCING AN ENDLESS POLYMERIC FOAM RAND
GB2044663A (en) Continuous casting of rectangular foam blocks
US4177028A (en) Adjustable apparatus for producing a foam material
US3711231A (en) Urethane tunnel mold
US4165955A (en) Apparatus for making flat top buns
EP0057099A2 (en) Apparatus for continuously molding cylindrical blocks of foamed polymeric material
US4102619A (en) Apparatus for producing foam slabs of rectangular cross-section
EP1233114B1 (en) Method and device for producing a sandwich panel, and sandwich panel produced in this way
EP0044478B1 (en) Method and apparatus for producing polymer foam
US4252757A (en) Method and apparatus for making foamed plastic slab
JPS615906A (en) Method and apparatus for continuously preparing synthetic resin foam
JPH0226649Y2 (en)
DE2819919A1 (en) PROCESS FOR CONTINUOUSLY MANUFACTURING CYLINDRICAL BLOCKS FROM POLYMER FOAM
DE2818556A1 (en) Expansible trough for polymeric foam production - to provide continuous buns of variable width, esp. of polyurethane

Legal Events

Date Code Title Description
CSNS Application of which complete specification have been accepted and published, but patent is not sealed