GB1593351A - Corrosion resistant castable refractory mix - Google Patents

Corrosion resistant castable refractory mix Download PDF

Info

Publication number
GB1593351A
GB1593351A GB87/78A GB8778A GB1593351A GB 1593351 A GB1593351 A GB 1593351A GB 87/78 A GB87/78 A GB 87/78A GB 8778 A GB8778 A GB 8778A GB 1593351 A GB1593351 A GB 1593351A
Authority
GB
United Kingdom
Prior art keywords
weight
refractory
frit
oxide
calcium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB87/78A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to GB87/78A priority Critical patent/GB1593351A/en
Publication of GB1593351A publication Critical patent/GB1593351A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

(54) CORROSION RESISTANT CASTABLE REFRACTORY MIX (71) We, ALUMINUM COMPANY OF AMERICA, a Corporation organized and existing under the laws of the State of Pennsylvania, United States of America, of Alcoa Building, Pittsburgh, State of Pennsylvania, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: This invention relates to castable refractory mixtures. More particularly, it relates to a castable refractory mixture having enhanced corrosion resistance to molten aluminum.
In the processing of metal such as aluminum and aluminum alloys for casting or purification, the metal is generally melted in a furnace and conveyed in troughs lined with suitable refractory material to inhibit attack by the molten aluminum. Calcium aluminate is known as a good refractory material from the standpoint of corrosion resistance to a molten aluminum. However, calcium aluminate has a high thermal conductivity and a high thermal expansion coefficient.
It is known to modify calcium aluminate with other materials which counter the deleterious effects noted above. For example, Kadisch et al U.S. Patent 2,874,071 teaches a mixture of calcium aluminate with fused silica. The patentees further state that the material may be made much more refractory by an additional treatment involving dipping, spraying, or brushing the surface thereof with a plastic composition containing super-refractory powders or mixtures of such powders. The patentees state that such super-refractory powders are made by specially milling stabilized fused zirconium or alumina. They further state that refractory borides, nitrides, or carbides and mixtures thereof of silicon, molybdenum and chromium can also be applied as a coating.
While the use of calcium aluminate-silica mixtures is preferred to pure calcium aluminate because of the lower thermal conductivity of silica and the lower shrinkage of the mixture, the success of the mixture apparently depends on the bond between the calcium aluminate and silica which, if broken, permits metal attack of the silica. It is known that the use of boron oxide (B203) together with silica and calcium oxide and aluminum oxide provides a refractory material which prevents metal attack of siliceous aggregates. However, the prior art incorporated the boron oxide into the mixture by providing a fused or glassy matrix of calcium oxide, boron oxide, and aluminum oxide. For example, McDonald et al U.S.
Patent 2,997,402 teaches a refractory which comprises a homogeneous vitreous product and a refractory aggregate wherein the homogeneous vitreous product is a fused mixture of calcium oxide, boron oxide, and aluminum oxide and the refractory aggregate is principally a mixture of aluminum oxide and silicon dioxide in comminuted form. McDonald et al also suggest that up to 15% by weight of an additional metal oxide component can also be incorporated in the glass such as the oxides of magnesium, barium, beryllium, zironcium, zinc, vanadium, silicon, chromium, and molybdenum.
Rubin et al U.S. Patent 3,471,306 mixes bondforming components containing Awl203, B203, and CaO with a pre-calcined granular grog containing SiO2 in excess of Awl203 to form a calcium boroaluminate bond in situ.
While the use of such materials can result in satisfactory mixtures, fritted or glassy matrices comprising calcium oxide, boron oxide and aluminum oxide are not easily formed.
For example, in the formation of the homogeneous vitreous product of McDonald et al care must be taken to minimize the water solubility of the frit wherein the boron oxide and the calcium oxide might otherwise be leached out. On the other hand, the formation of a calcium-boroaluminate bond in situ as in Rubin et al is not easily achieved because of added complications in firing due to the presence of the aggregate (e.g. one cannot melt the bond-forming components as in McDonald et al to ensure formation of a homogenous stable mixture).
Therefore this invention is directed to a refractory mixture wherein a boron oxidecontaining material is used in the form of a zinc borosilicate glass frit having a low content (less than 0.5% by weight) of impurities such as alkali and alkaline earth additives which could otherwise be leached out of the frit in aqueous systems commonly used to form refractories.
In accordance with the invention there is provided a particulate refractory mixture capable of being mixed with water to form a castable refractory having enhanced corrosion resistance to molten aluminum, consisting essentially of 90-94% by weight refractory material and 6-10% by weight of a zinc borosilicate frit consisting essentially of zinc oxide, boron oxide, silicon oxide and O-1OC/r by weight aluminum oxide, the content of boron oxide in said frit being 2()-4()e; by weight, and there being less than 0.5% by weight impurities in the frit and not more than 1% by weight impurities in the refractory material.
In accordance with an embodiment of the invention, a particulate mixture capable of mixture with water to form a castable refractory having enhanced corrosion resistance to molten aluminum is provided consisting essentially of 90-94% by weight refractory material and 6-10% by weight zinc borosilicate frit consisting essentially of 50-60% by weight zinc oxide, 20-40% by weight boron oxide, 8-12% by weight silicon oxide, and 0-10% by weight aluminum oxide with less than 0.5% by weight impurities and wherein the total amount of impurities within the refractory material is not greater than 1% by weight.In preferred embodiments, the refractory mixture consists essentially of 24-34 parts by weight calcium aluminate, 60-70 parts by weight fused silica. and 6-10 parts by weight of a zinc borosilicate frit consisting essentially of 50-60% by weight zinc oxide, 30-38% by weight boron oxide, and S-12 S by weight silicon oxide with less than 0.5 Xs by weight impurities in the frit and wherein the refractory mixture has a total impurity content of 1% by weight.
In the accompanying drawings: Figure 1, is a flowsheet illustrating the invention.
Figure 2, is a photolithographic reproduction of a cross section of a corrosion test specimen showing metal attack where a fused silica-calcium aluminate refractory was used.
Figure 3, is a photolithographic reproduction of a corrosion test specimen made using fused silica, calcium aluminate, and a zinc borosilicate frit wherein the amount of borate in the frit is less than that required in accordance with the invention.
Figure 4, is a photolithographic reproduction of a corrosion test specimen made using the refractory of the invention.
Figure 5, is a photolithographic reproduction of a corrosion test specimen showing metal attack wherein a fused silica-calcium aluminate refractory contains zinc borosilicate frit in an amount less than that required in accordance with the invention.
In accordance with the invention, the corrosion resistant castable refractory mix consists essentially of three principal ingredients: calcium aluminate, fused silica, and zinc borosilicate with a total impurities content of not greater than 1% by weight.
In a particularly preferred embodiment of the invention, the calcium aluminate comprises a mixture of 75 836HO by weight Al203 and 14-23% by weight CaO with a total impurities content of other oxides and ignition loss of not more than 3% by weight. An example of such a calcium aluminate is the calcium aluminate cement sold by Aluminum Company of America under the designation CA-25. The calcium aluminate is used in particulate form in a particle size range of about 90% by weight -325 mesh (U.S. Standard Sieve Serics). The amount of calcium aluminate used in the mixture of the invention should be about 20-34% by weight and preferably 24-34 parts by weight of the total weight of the three ingredients.
The fused silica is used in a particle size range of about -4 mesh (U.S. Standard).
Preferably, the silica particle mixture contains at least about 50% by weight particles of -10 to +325 mesh with the balance smaller. Most preferably, about 20-30% by weight of the particles are - 10 to +20 mesh, about 15-25% by weight -20 to + 100 mesh, and the balance -100 mesh. The total amount of particulate fused silica used should be approximately 60-70 parts by weight of the total weight of the three components of the mixture.
The borosilicate glass frit used in the invention consists essentially of a fused mixture of zinc oxide (ZnO), boron oxide (B2O), and silicon dioxide (SiO2). The amount of boron oxide in the frit should be 20-40 weight percent and preferably 30-38 weight percent. The amount of zinc oxide in the frit should preferably be 50-60aJo by weight. The amount of silicon oxide in the frit should preferably be 8-12% by weight. Aluminum oxide may be added as an optional ingredient up to 10r,f by weight.The total amount of other impurities such as alkali metal oxides, calcium oxide or the like should be less than 0.5% by weight to ensure a water solubility of the frit of less than 1% by weight and preferably 0.4-0.6% by weight to prevent adversely effecting rheological and hydraulic properties of the castable refractory. As is well known to those skilled in the art, the mixtures of oxides should be heated to a temperature sufficient to fuse them into homogeneous glass mixture which is subsequently quenched to prevent crystallization (fritted) which would otherwise permit solubilizing of any of the ingredients therein in a subsequently formed hydraulic setting castable refractory. In accordance with the invention, the zinc borosilicate glass should preferably be ground to a particle size range of at least -100 mesh and more preferably -200 mesh (U.S. Standard).
The borosilicate frit content of the castable refractory mix should be about 6-10 parts by weight. Referring to the drawings, it can be seen from comparing Figures 2, 3, and 4 that when only 5% frit is used as in Figure 5, the results are not significantly different from the mixture illustrated in Figure 2, containing no borosilicate glass. However, as shown in Figure 4, when a higher amount of borosilicate glass is used, the desired corrosion resistance is obtained. In the mixture illustrated in Figure 4, 7% borosilicate was used.
Comparing Figure 4, with Figure 3, the same ratios of silica to calcium aluminate to zinc borosilicate frit were used, however, a different zinc borosilicate was used containing less than 20% by weight boron oxide in the boron oxide-silicon dioxide-zinc oxide mixture.
The following examples will serve to further illustrate the invention.
Example I A number of compositions, as shown in Table I, were formulated to test the efficacy of the invention including the operable parameters such as presence or absence of the borate, and amount of borate present in the frit. In each instance, the amounts shown are in parts by weight per hundred parts of the dry mixture. In each instance, sufficient water was added (11-18 parts per hundred parts of dry mixture) to provide the same consistency. The composition was cast as a cup; cured; and oven dried at 100"C. and fired to 8200C.
Following firing, molten aluminum (Aluminum Association Alloy 7075) heated to 820"C.
was poured into the refractory cup and maintained at this temperature for 72 hours. The molten aluminum was sampled for determination of alloy change and then poured out of the refractory cup and, after cooling, the refractory was cross-sectioned to observe the amount of the attack on the refractory by the molten metal.Under the title "Corrosion Test Results" in Table I, the severity of the attack is shown in the line entitled "Penetration" and is a function of the penetration and silicon pick-up as noted in the next line. TABLE I Sample No. 1 2 3 4 5 6 7 8 Fused Silica (parts per 69 62 62 62 64 66 68 64 100 parts of dry mix) Calcium Aluminate (parts 31 31 31 31 31 31 25 30 per 100 parts of dry mix) Additives (parts per 100 parts of dry mix) Zinc Borosilicate Frit 7 with 18.6% B2O3 Zinc Borosilicate Frit 7 5 3 7 6 with 32.5% B2O3 Zinc Alumina Silicate 7 Frit (No Borate) Corrosion Test Results Penetration Severe Severe Severe Negligible Severe Severe None None Silicon Pick-up 20 12 9.4 12 11 16 10 10 The results of Sample Nos. 1, 2, 4 and 5 are respectively illustrated inFigures 2-5 of the drawings.As can be seen from the Table, when using at least 6% by weight of the frit containing 32.5% B203 the amount of attack by the molten aluminum was negligible with the best results obtained using the preferred distribution range of fused silica particle sizes.
The effects of varying particle size distribution and cement content are shown in a few examples in Table II. The preferred distribution of particle size and cement content in Sample 8, provide low firing shrinkage, low porosity, and high strength.
TABLE II Sample 1 4 7 8 Fused Silica Grain (U.S. Standard Mesh Size) -10 to +20 -- -- -- 27 -20 to +50 17 17 28 11 -50 to +100 15 15 12 10 -100 to +325 7 -- 3 9 -325 30 30 25 7 Calcium Aluminate 31 31 25 30 Zinc Borosilicate Frit -- 7 7 6 (32.5% B2O3) Linear Firing Shrinkage (%) 0.75 0.95 0.07 0.05 Apparent Porosity (%) 21 19 20 20 Bulk Density (gm/cc) 1.92 2.02 1.91 1.92 Flexural Strength 12.4 15.9 13.0 14.5 (megapascals) Example II A further comparison was made between the castable refractory mix of the invention using three commercially available fused silica refractory mixes labeled A, B, and C and Sample #8 of Example I. The procedures for corrosion testing outlined in Example I, were repeated. In addition, physical properties of each of the refractories were measured.While it was noted that the corrosion resistance of commerical mixture A was measurably improved by the respective additions of CaF2 and H3BO3, the overall rheological and hydraulic properties of those refractories were adversely affected. With respect to commercial mix C, it should be noted that the use of a calcium boroaluminate additive did provide improved corrosion resistance but did not provide the high strength and low porosity of Sample #8 made using the refractory mix and zinc borosilicate frit of the invention.
TABLE III Sample A A* A** B C #8 Silica (in weight %) 63 64 62 64 Calcium Aluminate (in weight %) 37 36 32 30 Zinc Borosilicate (in weight %) 0 0 0 6 Calcium Boroaluminate (in weight %) 0 0 6 0 Physical Properties Bulk Density (gm/cc) 1.76 1.86 1.79 1.92 Porosity (%) 30 25 28 20 Flexural Strength 7.6 4.8 10.3 14.5 (megapascals) 45-60 Working Time at 21 C (mins.) 2-5 No Set Corrosion Test Results Penetration Severe None Negligible Severe None None Silicon Pick-up (%) 18 .01 .06 20 .12 .10 *97 parts by weight A plus 3 parts by weight CaF2 **95 parts by weight A plus 5 parts by weight H3BO3 While the teachings of this invention deal primarily with the use of a boron rich zinc silicate frit in fused-silica castable refractories, it will be readily apparent to those skilled in the art that other refractory materials may be substituted without departing from the spirit and concept of the invention. Such substitute refractory materials include mortars, plastics, and castables comprising silicon carbide, tabular alumina, fused alumina, mullite, refractory bauxite, fireclay, zircon, and/or kyanite aggregates in which the practice of the invention will enhance their corrosion resistance to molten aluminum alloys and may also enhance their physical and thermal properties as well, particularly for use in aluminum melting and holding furnaces. Thus, the use of zinc borosilicate in the amount specified in combination with such materials should be deemed to be within the scope of the invention.
Thus the invention provides a zinc borosilicate frit wherein boric oxide is supplied in an inert form and the matrix bond of the resulting refractory is modified to minimize or eliminate thermal expansion mismatch between the bond and the aggregate. More specifically, the use of the preferred embodiment of this invention is designed for use in hydraulic setting refractories comprising calcium aluminate cement and fused-silica aggregate in such a manner that the zinc borosilicate frit: reacts with the fused-silica aggregate and calcium aluminate to produce the desired bonding matrix; does not react with or interfere with the hydraulic portion of the refractory or the rheology of the castable mixture; and forms a bonding matrix which permits stress relief through viscoelastic deformation at normal processing and use temperatures.Thus, the invention provides an improved hydraulic setting fused silica refractory whose properties are such that it can be also used in many critical applications where heretofore only certain asbestos-containing materials satisfied the performance criteria.
WHAT WE CLAIM IS: 1. A particulate refractory mixture capable of being mixed with water to form a castable refractory having enhanced corrosion resistance to molten aluminum, consisting essentially of 90-94% by weight refractory material and 6-10% by weight of a zinc borosilicate frit consisting essentially of zinc oxide, boron oxide, silicon oxide and 0-10% by weight aluminum oxide, the content of boron oxide in said frit being 20-40% by weight, and there being less than 0.5% by weight impurities in the frit and not more than 1% by weight impurities in the refractory material.
2. A particulate refractory mixture according to claim 1, wherein said zinc borosilicate frit contains 50-60% by weight zinc oxide and 8-12% by weight silicon oxide.
3. A particulate refractory mixture according to claim 2, wherein said boron oxide content is 30-38% by weight.
4. A particulate refractory mixture according to claim 1, 2 or 3, wherein said refractory material consists essentially of calcium aluminate and fused silica.
5. A particulate refractory mixture according to claim 4, wherein said refractory material consists essentially, by weight of the total mixture, of 20-34%, by weight calcium aluminate and 60-70% by weight fused silica.
6. A particulate refractory mixture according to claim 5, wherein said calcium aluminate content is 24-34% by weight of the total mixture.
7. A particulate refractory mixture according to any one of claims 4 to 6, wherein the calcium aluminate comprises a mixture of 75 to 83% by weight Al203 and 14 to 23% by weight CaO with a total impurities content of other oxides and ignition loss of not more than 3% by weight.
8. A particulate refractory mixture according to any one of the preceding claims, wherein said zinc borosilicate frit has a particle size of not greater than -100 mesh.
9. A particulate refractory mixture according to any one of claims 4 to 8, wherein the particle size of the calcium aluminate is about 90% by weight -325 mesh.
10. A particulate refractory mixture according to any one of claims 4 to 9, wherein the particle size of the fused silica is -4 mesh.
11. A particulate refractory mixture according to claim 1, substantially as hereinbefore described with reference to the Examples.
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (11)

**WARNING** start of CLMS field may overlap end of DESC **. While the teachings of this invention deal primarily with the use of a boron rich zinc silicate frit in fused-silica castable refractories, it will be readily apparent to those skilled in the art that other refractory materials may be substituted without departing from the spirit and concept of the invention. Such substitute refractory materials include mortars, plastics, and castables comprising silicon carbide, tabular alumina, fused alumina, mullite, refractory bauxite, fireclay, zircon, and/or kyanite aggregates in which the practice of the invention will enhance their corrosion resistance to molten aluminum alloys and may also enhance their physical and thermal properties as well, particularly for use in aluminum melting and holding furnaces.Thus, the use of zinc borosilicate in the amount specified in combination with such materials should be deemed to be within the scope of the invention. Thus the invention provides a zinc borosilicate frit wherein boric oxide is supplied in an inert form and the matrix bond of the resulting refractory is modified to minimize or eliminate thermal expansion mismatch between the bond and the aggregate. More specifically, the use of the preferred embodiment of this invention is designed for use in hydraulic setting refractories comprising calcium aluminate cement and fused-silica aggregate in such a manner that the zinc borosilicate frit: reacts with the fused-silica aggregate and calcium aluminate to produce the desired bonding matrix; does not react with or interfere with the hydraulic portion of the refractory or the rheology of the castable mixture; and forms a bonding matrix which permits stress relief through viscoelastic deformation at normal processing and use temperatures.Thus, the invention provides an improved hydraulic setting fused silica refractory whose properties are such that it can be also used in many critical applications where heretofore only certain asbestos-containing materials satisfied the performance criteria. WHAT WE CLAIM IS:
1. A particulate refractory mixture capable of being mixed with water to form a castable refractory having enhanced corrosion resistance to molten aluminum, consisting essentially of 90-94% by weight refractory material and 6-10% by weight of a zinc borosilicate frit consisting essentially of zinc oxide, boron oxide, silicon oxide and 0-10% by weight aluminum oxide, the content of boron oxide in said frit being 20-40% by weight, and there being less than 0.5% by weight impurities in the frit and not more than 1% by weight impurities in the refractory material.
2. A particulate refractory mixture according to claim 1, wherein said zinc borosilicate frit contains 50-60% by weight zinc oxide and 8-12% by weight silicon oxide.
3. A particulate refractory mixture according to claim 2, wherein said boron oxide content is 30-38% by weight.
4. A particulate refractory mixture according to claim 1, 2 or 3, wherein said refractory material consists essentially of calcium aluminate and fused silica.
5. A particulate refractory mixture according to claim 4, wherein said refractory material consists essentially, by weight of the total mixture, of 20-34%, by weight calcium aluminate and 60-70% by weight fused silica.
6. A particulate refractory mixture according to claim 5, wherein said calcium aluminate content is 24-34% by weight of the total mixture.
7. A particulate refractory mixture according to any one of claims 4 to 6, wherein the calcium aluminate comprises a mixture of 75 to 83% by weight Al203 and 14 to 23% by weight CaO with a total impurities content of other oxides and ignition loss of not more than 3% by weight.
8. A particulate refractory mixture according to any one of the preceding claims, wherein said zinc borosilicate frit has a particle size of not greater than -100 mesh.
9. A particulate refractory mixture according to any one of claims 4 to 8, wherein the particle size of the calcium aluminate is about 90% by weight -325 mesh.
10. A particulate refractory mixture according to any one of claims 4 to 9, wherein the particle size of the fused silica is -4 mesh.
11. A particulate refractory mixture according to claim 1, substantially as hereinbefore described with reference to the Examples.
GB87/78A 1978-01-03 1978-01-03 Corrosion resistant castable refractory mix Expired GB1593351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB87/78A GB1593351A (en) 1978-01-03 1978-01-03 Corrosion resistant castable refractory mix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB87/78A GB1593351A (en) 1978-01-03 1978-01-03 Corrosion resistant castable refractory mix

Publications (1)

Publication Number Publication Date
GB1593351A true GB1593351A (en) 1981-07-15

Family

ID=9698191

Family Applications (1)

Application Number Title Priority Date Filing Date
GB87/78A Expired GB1593351A (en) 1978-01-03 1978-01-03 Corrosion resistant castable refractory mix

Country Status (1)

Country Link
GB (1) GB1593351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188989A (en) * 1987-12-01 1993-02-23 Dresser Industries Coating mix to prevent oxidation of carbon substrates
CN113880594A (en) * 2021-11-08 2022-01-04 中铸新材工业(江苏)有限公司 Fluorite-based castable for aluminum industry and preparation method thereof
CN114940620A (en) * 2022-04-18 2022-08-26 江苏大学 Andesite refractory bus duct castable and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188989A (en) * 1987-12-01 1993-02-23 Dresser Industries Coating mix to prevent oxidation of carbon substrates
CN113880594A (en) * 2021-11-08 2022-01-04 中铸新材工业(江苏)有限公司 Fluorite-based castable for aluminum industry and preparation method thereof
CN113880594B (en) * 2021-11-08 2022-07-22 中铸新材工业(江苏)有限公司 Fluorite-based castable for aluminum industry and preparation method thereof
CN114940620A (en) * 2022-04-18 2022-08-26 江苏大学 Andesite refractory bus duct castable and preparation method thereof

Similar Documents

Publication Publication Date Title
US4088502A (en) Corrosion resistant castable refractory mix
EP0584335B1 (en) Sprayable refractory composition
US4126474A (en) Refractory for aluminum-melting furnaces
CA1211479A (en) Aluminum resistant ceramic fiber composition
US2997402A (en) Refractory brick and preparation thereof
US4158568A (en) Corrosion resistant refractory mix
EP0579994B1 (en) Monolithic refractories
EP0323555A1 (en) Aluminum resistant refractory composition
US4060424A (en) Low temperature setting refractory cements
KR950008607B1 (en) Alumina-spinel type monolithic refractories
US4634685A (en) Refractory article suitable for casting molten metal
JPH09202667A (en) Castable refractory for slide gate
GB1593351A (en) Corrosion resistant castable refractory mix
CA1078106A (en) Refractory material suitable in particular for the production and handling of aluminium
EP0116873A1 (en) Ceramic fiber composition
US4999325A (en) Rebonded fused brick
KR100804961B1 (en) Composition of Al2O3-SiC-C brick for charging ladle
JP3031192B2 (en) Sliding nozzle plate refractories
JPH05178675A (en) Castable refractory
JPH08175875A (en) Castable refractory
AU678679B2 (en) Refractory brick
JPH0753607B2 (en) Method for manufacturing refractory material containing boron nitride
JPH06144939A (en) Basic castable refractory
KR930011274B1 (en) Unshaped refractories of alumina-spinel
JP2607916B2 (en) Zircon castable refractories

Legal Events

Date Code Title Description
PS Patent sealed
PCNP Patent ceased through non-payment of renewal fee