GB1593038A - Submerged settler for suspended solids - Google Patents

Submerged settler for suspended solids Download PDF

Info

Publication number
GB1593038A
GB1593038A GB14935/78A GB1493578A GB1593038A GB 1593038 A GB1593038 A GB 1593038A GB 14935/78 A GB14935/78 A GB 14935/78A GB 1493578 A GB1493578 A GB 1493578A GB 1593038 A GB1593038 A GB 1593038A
Authority
GB
United Kingdom
Prior art keywords
water
enclosure
water treatment
treatment system
settling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB14935/78A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posgate E S
Original Assignee
Posgate E S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posgate E S filed Critical Posgate E S
Priority to GB14935/78A priority Critical patent/GB1593038A/en
Publication of GB1593038A publication Critical patent/GB1593038A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0003Making of sedimentation devices, structural details thereof, e.g. prefabricated parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

(54) SUBMERGED SETTLER FOR SUSPENDED SOLIDS (71) I, EDWARD SALMON POSGATE (a British subject), 48 Roberts Crescent, Brampton, Ontario, Canada, do hereby declare the invention, for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement:- This invention relates to water treatment systems. In particular, this invention relates to a submersible settling enclosure for use with a water treatment system in order to minimize variations in turbidity of water drawn from a large body of water for treatment.
Drinking water treatment systems operate most efficiently when turbid suspensions are uniform and low in concentration. If such input conditions to a drinking water treatment system can be sustained, a substantial saving in treatment chemicals can be achieved and the treatment can be simplified and a larger reserve of capacity can be obtained.
The turbidity in a large body of raw water varies quite considerably in response to variations in weather conditions and seasonal changes and marine traffic. Prior to a storm, the turbidity of water entering a water treatment system may be very low and may increase greatly under storm conditions and remain at an increased level for several days following a storm.
Similar variations can result from seasonal changes. The turbidity of a body of water during winter months may be substantially consistent at a low level but may increase dramatically during ice breakup and spring run-off conditions.
In addition, marine traffic passing near the intake of a water treatment system can cause a sharp increase in the concentration of suspended material. Other marine activities such as dredging operations can also cause a large increase in turbidity. In many instances, increases in turbidity caused by marine traffic and the like cannot be predicted, with the result that the increase may place an unexpected load on the water treatment process.
A process in which drinking water is treated with polymers and direct filtration has become increasingly popular in recent years. The capital cost required to establish a system to operate on this new process is substantially less than that required for systems operating according to previously known processes. The new systems do not require large settling reservoirs and, as a result, are much less costly. However, the process can only be employed where raw surface waters having a very low turbidity is available. As previously indicated, all systems which use surface waters of a large body of water as a source are vulnerable to changes in weather, seasonal conditions and maritime traffic. As a result, there is a danger that the variations in turbidity may result in overfeeding or underfeeding of chemicals such as the treatment polymers.
If underfeeding occurs, there is a danger of fine suspensions passing through the filter which may contain pathogenic micro-organisms which cannot be destroyed by chlorination. If overfeeding occurs, the excess treatment materials may themselves constitute a health hazard.
In water treatment processes, it is mandatory to proportion the input of polymers to variations in the concentration of suspension and variations in flow rate. While these two variables can be monitored, difficulties can arise in situations where there is a sudden change in turbidity resulting from a storm or flash flood. In addition, under conditions of high turbidity the output of the water treatment system can be severely curtailed.
The present invention seeks to overcome the difficulties of the prior art described above by providing a source of raw water in which the variation in turbidity is minimized.
According to one aspect of the present invention, there is provided in a water treatment system which extracts water from a large open main body of water, a settling enclosure submerged in said main body of open water, a settling chamber in said settling enclosure, a second body of water in said settling chamber separated from said main body by said settling enclosure to an extent sufficient to maintain said second body of water in a substantially quiescent condition for substantially all conditions of said main body, an input passage opening through said settling enclosure for admitting water to said settling chamber and a discharge passage opening through said settling enclosure to permit water to discharge from said settling chamber, a conduit for conveying water from said discharge passage to a receiver for quiescent water.
The invention will be more clearly understood with reference to the following detailed specification read in conjunction with the drawings wherein; Figure 1 is a diagrammatic illustration of a water treatment system according to one aspect of the present invention; Figure 2 is a partially sectioned pictorial view of a settling enclosure; Figure 3 is a partially sectioned pictorial view of a settling enclosure of a further embodiment of the invention; Figure 4 is a partially sectioned side view of a settling enclosure constructed in accordance with a still further embodiment of the invention; Figure 5 is a sectional side view of a water treatment system according to a further aspect of the present invention; Figure 6 is a plan view of the system of Figure 5; and Figure 7 is an enlarged pictorial end view showing a conduit open for flushing and an adjacent conduit closed to prevent flushing.
With reference to Figure 1 of the drawings, the reference numeral 10 refers to a water treatment system which draws water from a large open body of water 12 and delivers treated water to a storage tank 14. Water is withdrawn from the body of water 12 through line 16 by means of a pump 18.
Before entering the line 16, the water passes through submerged settling enclosures 20.
Figure 2 of the drawings illustrates one form of submerged settling enclosure 20. In this embodiment, the enclosure 20 is formed from a flexible web 22 of an opaque flexible reinforced thermoplastic membrane which will not degrade during twenty years of continuous submersion in water such as TEFLON (Trade Mark), reinforced polyethylene or reinforced nylon or the like. The web 22 is folded on itself to form a plurality of compartments 24. Weighted pipes 26, which are preferably plastic pipes filled with weighting filler material 27 which may be rigid or flexible serve to retain the lower edge portions of each compartment against the bed of the body of water and hollow buoyant pipes 28 serve to support the compartments in an open position. Concrete is a suitable rigid filling material and sand forms a suitable flexible material. The buoyant pipes 28 float in the water which is located within each compartment 24 in use. Water is admitted to the enclosure 20 through input passage 30 and is discharged through output passage 32. Adjacent compartments 24 are connected to one another by conduits 34 and 36. The conduits 34 and 36 are positioned so that water entering the first compartment 24 by way of passage 30 must pass along the length of the first compartment 24 before passing through conduit 34 to enter the second compartment and thereafter the water must again pass along the length of the second compartment before entering the third compartment through conduit 36 and so forth so that the water follows the path outlined by arrows 38. The entire settling enclosure is anchored by anchoring cables 40 which extend between anchoring blocks 42 at either side of the enclosure.
In use, one or more settling enclosures of the type illustrated in Figure 2 of the drawings may be required to provide the input capacity for a water treatment system.
Where more than one settling enclosure is required, two such enclosures may be connected in series or in parallel to provide the required capacity.
It will be seen that water entering the input passage 30 passes into a first compartment 24 and thereafter it is not subjected to the turbulent conditions of the larger body of water so that the suspended particles in the water have an opportunity to settle out. The compartments 24 provide settling chambers in which a substantially quiescent body of water may be stored. The flexible enclosure wall may yield somewhat when subjected to underwater currents. However, the buoyant floats 28 will serve to return the flexible wall to the open configuration when the influence of currents is removed. Thus, the water located within the enclosure is subjected to disturbances which are minimal when compared with those applied to the main body of water by currents caused by storm conditions or the like. By constructing the flexible enclosure wall 22 from an opaque material, sunlight is not admitted to the enclosure and consequently the growth of algae and vegetation within the enclosure is inhibited by lack of sunlight.
Figure 3 of the drawings illustrates a settling enclosure structure in which adjacent side walls 25 of the compartments 24 are fused together in the area of the connecting passage 33, thus eliminating the need for the connecting conduit 34. As shown in Figure 3 of the drawings, when the compartments 24 are filled with water an air space 44 is provided above the buoyant supports 28. The air space 44 further serves to maintain the compartments 24 in an open configuration as water is withdrawn from the compartments 24. An air input line, such as that described hereinafter with reference to Figure 4 of the drawings, may be provided for admitting air to each air space 44.
Figure 4 of the drawings illustrates a settling enclosure 50 constructed in accordance with a further embodiment of the present invention. In this enclosure, the flexible enclosure wall 22 is in the form of a dome, the lower edge of which is secured to a peripheral ring 52. A concrete base 56 is laid down on the bed 54 of the body of water to provide a flat support for the peripheral ring 52 and anchor pins 58 secure the peripheral ring 52 to the bed 54. Water from the main body of water 12 enters the water storage compartment 24 by way of inlet conduit 30 which is supported by a support structure 60.
Water is withdrawn from the enclosure 24 through output conduit 32. It will be noted that the inner end 31 of the conduit 32 is raised above the bottom of the enclosure.
After a period of use, sediment will build up on the bottom of the enclosure and the lower end 31 of the outlet pipe is raised above the bottom so that it will withdraw water from the enclosure at a level sufficient to permit a substantial build up of sediment to occur before it is necessary to clean out the enclosure. A plurality of small access windows 62 open through the flexible wall to provide access to the storage compartment 24 for a silt removing suction pipe which will permit periodic removal of sediment deposited in the storage compartment as a result of settling. A resealable patch may be provided at each window 62 so that the windows are only open when the cleaning operation takes place.
Air is admitted to the air space 44 by means of conduit 64 which is connected to a suitable source of air such as a compressor at the water processing system.
Water treatment polymers or the like may be admitted to the water entering the enclosure with intake conduit 30 by means of a feed line 66 connected to a source of polymer supply at the processing system. The provision of a polymer supply line serves to permit the enclosure to be used as a preliminary water treatment enclosure in addition to a submerged settling tank.
In use, water entering the conduit 30 may receive a water treatment additive such as a polymer by way of line 66. The water storage compartment has a capacity sufficient to provide the retention time required to achieve an acceptable settling of suspended solids. The capacity of a compartment or a series of compartments may be calculated from the average daily flow rate of a plant and the settling rate of the solids which would be a characteristic of the location. Air entering the air space 44 by way of conduit 64, together with the stored body of water, serves to retain the flexible wall 22 in the expanded position illustrated in Figure 2 of the drawings. As previously indicated, the flexible wall is preferred to a rigid structure.
However, it will be understood that a rigid structure could be employed to provide the submerged settling tank if required. The rigid structures would, however, be subject to high impact loads and stresses and would be more expensive to fabricate. Water is withdrawn from the settling chamber through conduit 32.
Figures 5, 6 and 7 of the drawings illustrate a water treatment system which is particularly suitable fbr use in extracting water from a flowing body of water such as a river or stream. In this embodiment, conduits 80 are located on the bed 82 of the stream in a side by side parallel relationship extending longitudinally of the stream in the direction of flow of the stream. The conduits 80 are secured with respect to the bed of the stream by means of anchor cables 84 and anchoring pins 86 or the like. The conduits may be made from an extruded plastic material or the like and may have sufficient longitudinal flexibility to follow a relatively uneven bed of a stream or the like. The wall of each conduit may, however, be substantially rigid. Each conduit 80 has an input end 88 and an output end 100. The input end 88 is open and the conduits are preferably arranged so that the input end 88 opens in the downstream direction so that there is no direct flow of water into the input ends. The output ends 100 each have a releasable closure flap 102 hingedly connected thereto. The flap 102 is movable from the open position shown in one conduit illustrated in Figure 7 to the closed position shown in the other conduit illustrated in Figure 7. The output ends 100 of the conduits are connected to a manifold 104 by conduits 106 so that water may be extracted from each conduit simultaneously.
The manifold 104 may be proportioned and adapted to ensure that a subtantially equal quantity of water is extracted from each of the conduits so that the dwell time in each conduit is substantially the same. In order to aid the settling out of suspended material from the water as it enters the input end 88 of each conduit, water treatment polymer is introduced by a pumping system generally identified by the reference number 107 through a manifold 108 and suitable connecting conduits similar to the conduits 106.
The turbidity of the water flowing in the stream may be measured by a turbidimeter 110 having a probe 112 located in the stream.
The turbidimeter 110 may be connected to the pumping system 107 of the polymer additive system to control the rate at which polymer is added in response to variations in the turbidity of the water in the stream.
Baffles 114 are located at the input end of each conduit to establish a mixing turbulence at the point where the polymer is added to the water so that the polymer is thoroughly mixed with the water entering the settling chambers formed by the conduits.
In use, water is drawn into the conduits by way of the open input ends 88 and as previously indicated the turbulence is induced in the input water as it is drawn over the baffles 114. Water treatment polymers are added to the water at the input end in proportions determined by the turbidity of the water in the stream as monitored by the turbidity 110. The water is drawn through each conduit 80 to the output end 100. The closure flap 102 of each conduit is normally closed. Water is drawn from the output end 100 of each conduit through conduits 106 to manifold 104 and thereafter the water is pumped from the conduit 104 to a water treatment system.
The conduits are proportioned to form a settling enclosure which has a capacity capable of storing a quiescent volume of water which is substantially greater than the instantaneous requirements of the water treatment system. In view of the fact that the interior of the conduits is isolated from the main body of water, a substantially quiescent body of stored water is provided in the conduits and the sediment within the quiescent water settles out and accumulates in the base of each conduit. The coarser sediment settles out closer to the input end of the conduits and the finer sediment settles out towards the discharge end thereof.
In order to flush the conduits to remove accumulated sediment, it is only necessary to open the closure flaps 102 at the output ends of the conduits. Having opened the flaps 102, the conduits are open to receive water flowing in the downstream direction so that the natural flow of water will tend to flush the sediment out of the conduits. Thus, the flushing of the conduits is a simple and an inexpensive process.
In a water treatment system requiring a total flow rate through the manifold 104 of the order of about 14,000 U.S. gallons per minute, the settling enclosure may consist of 24 rigid plastic conduits each having a four foot diameter and measuring 370 feet in length and arranged in a side by side relationship. In an alternative construction, the settling enclosure may consist of a single conduit extending over a considerable length. For example, one hour of detention time at a flow of 20,000,000 U.S. gallons per day may be provided by a single four foot diameter conduit measuring about 9,000 feet in length. This single conduit is capable of functioning in the same way as the plurality of conduits described above.
Various modifications of the present invention will be apparent to those skilled in the art without departing from the scope of the invention. For example, the shape and number of enclosures may be different from that illustrated in the preferred embodiment.
The enclosures should, however, serve as a barrier against strong current, turbulence, wave action and the wall of the enclosure should be opaque to prevent the passage of sunlight to the enclosure.
A typical installation may employ a submerged settling enclosure such as the semisphere illustrated in Figure 4 of the drawings having a 60' diameter and will provide one hour of detention for a flow rate of 20 million gallons per day. In an alternative construction, a semi-spherical segment having a 120' diameter and 20' altitude will provide about one hour detention for a flow rate of 20 million gallons per day and ten such units may be combined in series to provide a flow rate of 200 million gallons per day. A settling tank of cubic configuration measuring 75' by 75' by 20' in altitude will provide about one hour detention for a flow rate of 20 million gallons per day.
In an installation in which the weighted members which hold down the side walls of the web are flexible and filled with flexible material, the weighted members may have sufficient longitudinal flexibility to rest upon the bed of a body of water without requiring a specially prepared base. As previously indicated, sand makes a suitable filling for a flexible plastic pipe. A sand filled plastic pipe may have sufficient weight to weigh the side walls of the web down and sufficient flexibility to conform to an uneven bed of a reservoir or the like. In a further modification, the enclosure which is formed at the lower edge of the web in Figure 3 may be filled with the weighing material without being enclosed in a plastic pipe.
In a further modification of the present invention, the buoyant pipes 28 may be replaced by lengths of polyethylene foam which may have a cylindrical or any desired cross-sectional configuration. In addition, the buoyant members may be secured with respect to the flexible web 22 so as to be retained in any required positions such as the positions illustrated in Figure 2 of the drawings. The buoyant members may be secured by any suitable means such as by the formation of a sleeve by extending a portion of flexible material diagonally across the corners between the side and top walls of the enclosures illustrated in Figure 2 so that the buoyant members may fit longitudinally within the sleeve formed thereby.
In yet another modification, the flexible enclosure wall 2 of the dome-shaped enclosure illustrated in Figure 4 may be provided with buoyancy supports secured with respect to the flexible enclosure wall for supporting the flexible enclosure wall in an extended position. The buoyancy member may be located internally or externally of the flexible enclosure wall. In one preferred form, the buoyancy members may be in the form of lengths of polyethylene foam radiating outwardly from the apex of the dome configuration to spaced locations along the lower peripheral edge of the dome and being secured over their full length with respect to the flexible enclosure wall. The buoyancy members would, thus, serve to retain the dome configuration in this extended position illustrated in Figure 4 in use.
It will also be understood that in the selection of the various materials used in the construction of the device according to the present invention, care should be taken to ensure that all materials are suitable for use in storing potable water.
WHAT I CLAIM IS: 1. A water treatment system comprising: (a) a main body of open water, (b) a settling enclosure submerged in said main body of open water, (c) a settling chamber in said settling enclosure, (d) a second body of water in said settling chamber separated from said main body by said settling enclosure to an extent sufficient to maintain said second body of water in a substantially quiescent condition for substantially all conditions of said main body, (e) an input passage opening through said settling enclosure for admitting water to said settling chamber and a discharge passage opening through said settling enclosure to permit water to discharge from said settling chamber, (f) a conduit for conveying water from said discharge passage to a receiver for quiescent water.
2. A water treatment system as claimed in Claim 1 wherein the receiver for quiescent water is a shore based water treatment plant.
3. A water treatment system as claimed in Claim 2 wherein said settling enclosure has an enclosure wall in the form of a flexible member which will yield in response to pressure applied thereto by the main body of water.
4. A water treatment system as claimed in claimed in any one of the preceeding claims wherein said settling enclosure is made from a light impervious material which serves to inhibit the growth of algae and vegetation within said settling chamber.
5. A water treatment system as claimed in Claim 4 wherein said light impervious material is made from a plastics material.
6. A water treatment system as claimed in any one of the preceeding claims including a support structure supporting the wall of the settling enclosure in an extended position.
7. A water treatment system as claimed in any one of the preceeding claims including at least one air pocket disposed within said settling chamber of said second body of water to prevent said chamber collapsing inwardly as water is drawn outwardly through said conduit.
8. A water treatment system as claimed in any one of the preceeding claims wherein said settling enclosure is formed with a plurality of compartments which are connected to one another in series, said input passage opening into a first of said compartments in the series and said output passage opening compartments in the series and output passage opening outwardly from the last compartment in the series such that water entering the enclosure must travel through each compartment before being discharged from the enclosure.
9. A water treatment system as claimed in any of the preceeding claims including means for admitting a water treatment polymer to water entering said enclosure.
10. A water treatment system as claimed in Claim 1 including means for admitting air to said settling enclosure to maintain said enclosure in an expanded configuration.
11. A water treatment system as claimed in Claim 1 wherein said settling enclosure comprises (a) an enclosure wall in the form of a flexible member having a peripheral edge, (b) means for retaining the peripheral edge of the enclosure wall in the position sealed against the bed of the main body of water, (c) buoyant means on said enclosure wall for supporting a portion of said enclosure wall above the bed of the main body of water to maintain the settling chamber in an expanded configuration when submerged.
11. A water treatment system as claimed in Claim 10 including air input passage means communicating with the settling chamber for admitting air thereto to maintain said enclosure wall in an expanded configuration regardless of the level of water therein and to provide a compressible air filled enclosure above said second body of water.
12. A water treatment system as claimed in Claims 10 and 11 wherein said flexible enclosure wall is folded upon itself to form a series of compartments each of which includes means for retaining peripheral edge portions thereof sealed against said bed, said compartments being connected to one another in series by connecting passages, the connecting passages of each compartment being remote from one another so that water must pass through substantially the full length of each compartment before passing to the next compartment in the series, said input passage communicating with the first compartment in the series and said output passage communicating with the last compartment in the series.
13. A water treatment system as claimed
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (23)

**WARNING** start of CLMS field may overlap end of DESC **. buoyancy members may be in the form of lengths of polyethylene foam radiating outwardly from the apex of the dome configuration to spaced locations along the lower peripheral edge of the dome and being secured over their full length with respect to the flexible enclosure wall. The buoyancy members would, thus, serve to retain the dome configuration in this extended position illustrated in Figure 4 in use. It will also be understood that in the selection of the various materials used in the construction of the device according to the present invention, care should be taken to ensure that all materials are suitable for use in storing potable water. WHAT I CLAIM IS:
1. A water treatment system comprising: (a) a main body of open water, (b) a settling enclosure submerged in said main body of open water, (c) a settling chamber in said settling enclosure, (d) a second body of water in said settling chamber separated from said main body by said settling enclosure to an extent sufficient to maintain said second body of water in a substantially quiescent condition for substantially all conditions of said main body, (e) an input passage opening through said settling enclosure for admitting water to said settling chamber and a discharge passage opening through said settling enclosure to permit water to discharge from said settling chamber, (f) a conduit for conveying water from said discharge passage to a receiver for quiescent water.
2. A water treatment system as claimed in Claim 1 wherein the receiver for quiescent water is a shore based water treatment plant.
3. A water treatment system as claimed in Claim 2 wherein said settling enclosure has an enclosure wall in the form of a flexible member which will yield in response to pressure applied thereto by the main body of water.
4. A water treatment system as claimed in claimed in any one of the preceeding claims wherein said settling enclosure is made from a light impervious material which serves to inhibit the growth of algae and vegetation within said settling chamber.
5. A water treatment system as claimed in Claim 4 wherein said light impervious material is made from a plastics material.
6. A water treatment system as claimed in any one of the preceeding claims including a support structure supporting the wall of the settling enclosure in an extended position.
7. A water treatment system as claimed in any one of the preceeding claims including at least one air pocket disposed within said settling chamber of said second body of water to prevent said chamber collapsing inwardly as water is drawn outwardly through said conduit.
8. A water treatment system as claimed in any one of the preceeding claims wherein said settling enclosure is formed with a plurality of compartments which are connected to one another in series, said input passage opening into a first of said compartments in the series and said output passage opening compartments in the series and output passage opening outwardly from the last compartment in the series such that water entering the enclosure must travel through each compartment before being discharged from the enclosure.
9. A water treatment system as claimed in any of the preceeding claims including means for admitting a water treatment polymer to water entering said enclosure.
10. A water treatment system as claimed in Claim 1 including means for admitting air to said settling enclosure to maintain said enclosure in an expanded configuration.
11. A water treatment system as claimed in Claim 1 wherein said settling enclosure comprises (a) an enclosure wall in the form of a flexible member having a peripheral edge, (b) means for retaining the peripheral edge of the enclosure wall in the position sealed against the bed of the main body of water, (c) buoyant means on said enclosure wall for supporting a portion of said enclosure wall above the bed of the main body of water to maintain the settling chamber in an expanded configuration when submerged.
11. A water treatment system as claimed in Claim 10 including air input passage means communicating with the settling chamber for admitting air thereto to maintain said enclosure wall in an expanded configuration regardless of the level of water therein and to provide a compressible air filled enclosure above said second body of water.
12. A water treatment system as claimed in Claims 10 and 11 wherein said flexible enclosure wall is folded upon itself to form a series of compartments each of which includes means for retaining peripheral edge portions thereof sealed against said bed, said compartments being connected to one another in series by connecting passages, the connecting passages of each compartment being remote from one another so that water must pass through substantially the full length of each compartment before passing to the next compartment in the series, said input passage communicating with the first compartment in the series and said output passage communicating with the last compartment in the series.
13. A water treatment system as claimed
in Claims 10, 11 and 12 wherein said means for retaining the peripheral edge portions of said enclosure in a position sealed against the bed of the main body of water includes weight means at said peripheral edge which extends longitudinally thereof.
14. A water treatment system as claimed in Claim 13 wherein said weight means is flexible to accommodate irregularities in the bed of the body of water.
15. A water treatment system as claimed in Claim 1 wherein said settling enclosure consists of at least one conduit member.
16. A water treatment system as claimed in Claim 1 wherein said main body of water is a flowing stream of water and wherein said circling enclosure comprises at least one settling conduit having an input end and an output end, said input passage opening through said input end of said conduit in a downstream direction and being located downstream from said output end, closure means at the output end of each conduit for preventing the direct discharge of water from each conduit, said output passage opening from said conduit at said output end into said discharge conduit.
17. A water treatment system as claimed in Claim 16 wherein said output passage of each conduit is oriented to open in an upstream direction and said closure means of each conduit is releasable to open said output end to permit flushing of settled material from said settling enclosure by directing the flow water in the stream through said output end of said conduit.
18. A water treatment system as claimed in Claim 17 including means for directing and admitting water treatment polymer to the input end of each conduit.
19. A water treatment system as claimed in Claim 18 including baffle means at the input end of each conduit to induce a mixing turbulence in the flow of water entering said input end to effect a thorough mixing of water and treatment polymer at said input end.
20. A water treatment system as claimed in Claim 19 including anchor means for securing each conduit with respect to the bed of the stream.
21. A water treatment system as claimed in Claim 20 wherein said stream is a shallow stream which has a depth which is less than twice the height of the conduits which are located therein.
22. A water treatment system as claimed in Claim 21 wherein the output ends of the conduits are connected in parallel to a manifold which communicates with said discharge conduit.
23. A water treatment system as claimed in Claim 22 wherein the means for directing and admitting water treatment polymer to the input end of each conduit comprises a manifold connected in parallel to the input end of each conduit.
GB14935/78A 1978-04-17 1978-04-17 Submerged settler for suspended solids Expired GB1593038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB14935/78A GB1593038A (en) 1978-04-17 1978-04-17 Submerged settler for suspended solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB14935/78A GB1593038A (en) 1978-04-17 1978-04-17 Submerged settler for suspended solids

Publications (1)

Publication Number Publication Date
GB1593038A true GB1593038A (en) 1981-07-15

Family

ID=10050146

Family Applications (1)

Application Number Title Priority Date Filing Date
GB14935/78A Expired GB1593038A (en) 1978-04-17 1978-04-17 Submerged settler for suspended solids

Country Status (1)

Country Link
GB (1) GB1593038A (en)

Similar Documents

Publication Publication Date Title
US4133761A (en) Submerged settler for suspended solids
US3221884A (en) Apparatus for removing a surface layer from a body of liquid
US4335977A (en) Water storage and distribution system
FI66959B (en) RECORDING OF RECEIVABLES AVAILABLE WITHOUT RECOVERY
US3508652A (en) Method of and apparatus for separating oil from water
US6458282B1 (en) Method and apparatus for separating floating pollutants
CN1213347A (en) Off-shore sewage treating and transport apparatus and method thereof
US3701429A (en) Skimmer for removing floating matter from a body of liquid
US3456265A (en) Swimming pools
US4008155A (en) Apparatus for disposal of effluents
KR100541071B1 (en) A removing device for floating matter using floating separator
US3701428A (en) Sewage disposal systems
US4059962A (en) Floating skimming barrier assemblies
GB1593038A (en) Submerged settler for suspended solids
CA1100056A (en) Submerged settler for suspended solids
EP0641744A1 (en) Purifying apparatus
KR100521900B1 (en) The water supply and the drain equipment of swimming pool of the coastal area that use water level
JPH07127041A (en) Inflow water separating device for dam reservoir
WO1996018581A1 (en) Purifying apparatus
US3596768A (en) Apparatus for water purification
Imbertson Automatic rubber diversion dam in the Los Angeles River
KR200266400Y1 (en) water storage and supply apparatus in under the sea
JPH0657789A (en) Underwater storage of water
US20200147521A1 (en) Sludge harvester improvements
KR102363445B1 (en) Sludge separation type waste water storage tank

Legal Events

Date Code Title Description
PS Patent sealed
PCNP Patent ceased through non-payment of renewal fee