GB1586483A - Magnesium-containing complexes method for their preparation and compositions containing the same - Google Patents

Magnesium-containing complexes method for their preparation and compositions containing the same Download PDF

Info

Publication number
GB1586483A
GB1586483A GB17844/77A GB1784477A GB1586483A GB 1586483 A GB1586483 A GB 1586483A GB 17844/77 A GB17844/77 A GB 17844/77A GB 1784477 A GB1784477 A GB 1784477A GB 1586483 A GB1586483 A GB 1586483A
Authority
GB
United Kingdom
Prior art keywords
component
magnesium
acid
complex
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB17844/77A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/760,315 external-priority patent/US4094801A/en
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Publication of GB1586483A publication Critical patent/GB1586483A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/063Peroxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/142Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/20Rosin acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/24Epoxidised acids; Ester derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/064Thiourea type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/083Dibenzyl sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/08Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/042Siloxanes with specific structure containing aromatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/045Siloxanes with specific structure containing silicon-to-hydroxyl bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/046Siloxanes with specific structure containing silicon-oxygen-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/048Siloxanes with specific structure containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/04Oxidation, e.g. ozonisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Paints Or Removers (AREA)

Description

(54) MAGNESIUM-CONTAINING COMPLEXES, METHOD FOR THEIR PREPARATION, AND COMPOSITIONS CONTAINING THE SAME (71) We, THE LUBRIZOL CORPORATION, a corporation duly organised and existing under the laws of the State of Ohio, United States ofAmerica, of Box 17100 Euclid Station, Cleveland, Ohio 44117, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement: This invention relates to magnesium-containing complexes and methods for their preparation. More particularly, it provides a method for preparing a non-carbonated magnesium-containing complex in the form of a solid, a grease or a gel, containing at least a high proportion of the magnesium in the starting material, which comprises heating, at a temperature above 30"C., a mixture comprising: (A) At least one of magnesium hydroxide, hydratable magnesium oxide, partially hydrated magnesium oxide or a magnesium alkoxide, which is/are incorporated into the mixture as such and not prepared in situ; (B) At least one oleophilic organic reagent comprising a carboxylic acid, a sulfonic acid, a pentavalent phosphorus acid, or an ester or alkali metal or alkaline earth metal salt of any of these; and (C) At least one organic substantially inert diluent; the ratio of equivalents of magnesium to component B, calculated as the free carboxylic or sulfonic acid or as the phosphoric acid (the equivalent weight being calculated as herein described) being at least 5:1, water being present, the amount of water, which is free or combined in a magnesium compound of component A, being at least sufficient to hydrate (or hydrolyse in the case of an alkoxide) a substantial proportion of component A calculated as magnesium oxide.
Several methods are known for the preparation of basic magnesium compounds for use in lubricants, greases and the like. For example, U.S. Patent 3 865 737 describes the formation of a highly basic magnesium-containing liquid dispersion by mixing an oil-soluble dispersing agent, magnesium oxide, a volatile aliphatic hydrocarbon solvent, alcohol, water and ammonia or an ammonium compound, treating the mixture with carbon dioxide, adding a non-volatile diluent oil and removing volatiles. Similarly, U.S. Patent 3 629 109 describes the carbonation of a mixture of an oil-soluble organic acid or salt thereof, magnesium oxide, a lower aliphatic alcohol, water and an organic liquid diluent. The products obtained by these methods may be characterized, for the most part, as basic, oleophilic magnesium carbonates since an essential step in their preparation is reaction with carbon dioxide.
In accordance with the present invention, it has been discovered that highly basic magnesium complexes may be prepared without reaction with carbon dioxide or similar acidic gases. The products obtained in accordance with the present invention, which may be characterized as complexes of magnesium oxide or hydroxide and a magnesium sulfonate, carboxylate or phosphate, and which are hereinafter sometimes referred to merely as "magnesium complexes", have a wide variety of uses, including additives for lubricants and fuel oils and corrosion-resistant coatings or constituents thereof.
Magnesium-containing compositions prepared using the preferred methods of the invention may be used as greases, as detergent additives for lubricants or as corrosion inhibitors, vanadium scavengers and smoke suppressants for fuels, and in the formulation of corrosion-resistant coatings for metals.
Component A Component A used in the method of this invention is magnesium hydroxide, magnesium oxide, partially hydrated magnesium oxide, a magnesium alkoxide, or a mixture of these.
Magnesium hydroxide and magnesium oxide are, of course, represented by the formulas Mg(OH)2 and MgO, respectively. Magnesium oxide exists in an inactive "dead burned" and a hydratable "reactive" form and the latter is the one which is useful in this invention although mixtures of the "reactive" form with minor amounts of the "dead burned" form may also be used. "Partially hydrated magnesium oxide", for the purpose of this invention, is magnesium oxide which is associated with water in an amount less than that required for conversion to magnesium hydroxide; that is, the amount of water is less than one mole per mole of magnesium oxide. As so defined, "partially hydrated magnesium oxide may actually be a mixture of various proportions of magnesium oxide and magnesium hydroxide and its exact chemical nature is not critical to this invention. Typically, the amount of water present in "partially hydrated magnesium oxide" is at least 0.7 mole per mole of the oxide.
The magnesium alkoxides, especially the lower alkoxides (i.e., those in which the alkyl groups contain 7 carbon atoms or less), are equivalent to magnesium oxide and hydroxide for the purpose of this invention; they are hydrolyzed by water to magnesium hydroxide under the conditions described hereinafter.
The equivalent weight of component A is half its molecular weight, since magnesium is a divalent element.
Component B Component B is at least one oleophilic reagent comprising any of several types of organic acidic compounds or salts or esters thereof. Among the suitable reagents for this purpose are the carboxylic and sulfonic acids. These acids include many of those known to be susceptible to overbasing and especially many of those disclosed in a number of U.S.
patents such as 2.616,904; 2,695.910; 3,312.618: 3.746,643; 3.764,533: and the aforementioned 3.629,109.
The sulfonic acids suitable for use as component B include those represented by the formulas R'(SORH)r and (R),T(SO;H),.. In these formulas, Rl is an aliphatic or aliphatic-substituted cycloaliphatic hydrocarbon or essentially hydrocarbon radical free from acetvlenic unsaturation and containing up to 60 carbon atoms. When R is aliphatic. it usually contains at least 15-18 carbon atoms; when it is an aliphatic-substituted cycloaliphatic radical. the aliphatic substituents usually contain a total of at least 12 carbon atoms. Examples of R are alkyl. alkenyl and alkoxv-alkvl radicals. and aliphaticsubstituted cvcloaliphatic radicals wherein the aliphatic substituents are alkyl. alkenyl, alkoxy. alkoxyalkyl. carboxyalkyl and the like. Generally. the cycloaliphatic nucleus is derived from a cvcloalkane or a cvcloalkene such as cyclopentane. cyclohexane, cyclohexene or cyclopentene. Specific examples of R' are cetylcyclohexyl, laurylcyclohexyl, cetyloxyethyl. octadecensl. and radicals derived from petroleum, saturated and unsaturated paraffin wax. and olefin polymers including polymerized monoolefins and diolefins containing about 1-8 carbon atoms per olefinic monomer unit. R' can also contain other substituents such as phenyl. cvcloalkyh hydroxy. mercapto. halo. nitro, amino. nitroso, lower alkoxy lower alkyimercapto carboxy. carbalkoxy. oxo or thio. or interrupting groups such as -NH-. -O- or -S-. as long as the essentially hydrocarbon character thereof is not destroyed.
R2 is generally a hydrocarbon or essentially hydrocarbon radical free from acetylenic unsaturation and containing 4-60 aliphatic carbon atoms, preferably an aliphatic hydrocarbon radical such as alkyl or alkenyl. It may also, however, contain substituents or interrupting groups such as those enumerated above provided the essentially hydrocarbon character thereof is retained. In general, the non-carbon atoms present in k or R2 do not account for more than 10% of the total weight thereof.
The radical T is a cyclic nucleus which may be derived from an aromatic hydrocarbon such as benzene, naphthalene, anthracene or biphenyl, or from a heterocyclic compound such as pyridine, indole or isoindole. Ordinarily T is an aromatic hydrocarbon nucleus, especially a benzene or naphthalene nucleus.
The subscript x is at least 1 and is generally 1-3. The subscripts r and y have an average value of about 1-4 per molecule and are generally also 1.
Illustrative sulfonic acids useful as component B are mahogany sulfonic acids, petrolatum sulfonic acids, mono- and polywax-substituted naphthalene sulfonic acids, cetylchlorobenzene sulfonic acids, cetylphenol sulfonic acids, cetylphenol disulfide sulfonic acids, cetoxycapryl benzene sulfonic acids, dicetyl thianthrene sulfonic acids, di-lauryl beta-naphthol sulfonic acids, dicapryl nitro-naphthalene sulfonic acids, paraffin wax sulfonic acids, unsaturated paraffin wax sulfonic acids, hydroxy-substituted paraffin wax sulfonic acids, tetraisdbutylene sulfonic acids, tetra-amylene sulfonic acids, chlorosubstituted paraffin wax sulfonic acids, nitroso-substituted paraffin wax sulfonic acids, petroleum naphthene sulfonic acids, cetyl-cyclopentyl sulfonic acids, lauryl cyclohexyl sulfonic acids, mono- and polywax-substituted cyclohexyl sulfonic acids, postdodecylbenzene sulfonic acids, "dimer alkylate" sulfonic acids, and the like. These sulfonic acids are well-known in the art and require no further discussion herein.
For the purpose of this invention, the equivalent weight of a sulfonic acid is the molecular weight thereof divided by the number of sulfonic acid groups present therein. Thus, for a monosulfonic acid the equivalent weight is equal to the molecular weight.
Carboxylic acids suitable for use as component B include aliphatic, cycloaliphatic and aromatic mono- and polybasic carboxylic acids free from acetylenic unsaturation, including naphthenic acids, alkyl- or alkenyl-substituted cyclopentanoic acids, alkyl- or alkenylsubstituted cyclohexanoic acids, and alkyl- or alkenyl-substituted aromatic carboxylic acids.
The aliphatic acids generally contain at least 8 and preferably at least 12 carbon atoms. The cycloaliphatic and aliphatic carboxylic acids can be saturated or unsaturated. Specific examples include 2-ethylhexanoic acid, linolenic acid, propylene tetramer-substituted maleic acid, behenic acid, isostearic acid, pelargonic acid, capric acid, palmitoleic acid, linoleic acid, lauric acid, oleic acid, ricinoleic acid, undecyclic acid, dioctylcylopentanecarboxylic acid, myristic acid, dilauryldecahydronaphthalenecarboxylic acid, stearyloctahydroindenecarboxylic acid, palmitic acid, acids formed by oxidation of petrolatum or of hydrocarbon waxes, and commercially available mixtures of two or more carboxylic acids such as tall oil acids, rosin acids, and the like. The equivalent weight of any such acid is its molecular weight divided by the number of carboxy groups present therein.
Pentavalent phosphorus acids useful as component B may be represented by the formula formula
wherein each of R3 and R4 is hydrogen or a hydrocarbon or essentially hydrocarbon radical preferably having about 4-25 carbon atoms at least one of R3 and R4 being hydrocarbon or essentially hydrocarbon; each of X', X2, X3 and X4 iS oxygen or sulfur; and each of a and b isO or 1. Thus, it will be appreciated that the phosphorus acid may be an organophosphoric, phosphonic or phosphinic acid, or a thio analog of any of these. The equivalent weight of such a phosphorus acid is its molecular weight divided by the number of hydroxy or SH groups bonded to phosphorus therein.
Usually, the phosphorus acids are those of the formula
wherein R3 is a phenyl radical or (preferably) an alkyl radical having up to 18 carbon atoms, and R4 is hydrogen or a similar phenyl or alkyl radical.
Mixtures of such phosphorus acids are often preferred because of their ease of preparation.
Also useful as component B are the alkali metal and alkaline earth metal salts (e.g., sodium, potassium, magnesium, calcium, strontium or barium salts, with magnesium salts being preferred) and esters of the acids previously described. The suitable esters include those with monohydric alcohols free from acetylenic unsaturation and having about 1-25 carbon atoms, including monohydric alcohols such as methanol, ethanol, the butanols, the hexanols, allyl alcohol, crotyl alcohol, stearyl alcohol and oleyl alcohol, and polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerol, sorbitol, sorbitan and similar carbohydrates and derivatives of carbohydrates. When an ester is used as component B, it is converted to the magnesium salt of the free acid during the reaction with component A and water. In other words, the acidic portion of the ester is the operative portion for the purpose of this invention and the identity of the alcoholic portion thereof is largely immaterial. Thus, it will be appreciated that the equivalent weight of the ester for the purpose of this invention is its molecular weight divided by the number of groups present therein which are convertible by hydrolysis to carboxylate or sulfonate groups or to pentavalent phosphorus acid groups under the reaction conditions of the invention. If any of the ester groups remain unconverted, the ester is considered as inert to that extent for the purpose of calculating its equivalent weight.
The preferred compounds for use as component B are the above-described sulfonic and carboxylic acids, especially those having an equivalent weight of 300-500. The sulfonic acids are most often used, and a particular preference is expressed for alkylaromatic sulfonic acids and more particularly for alkylbenzenesulfonic acids.
It is also within the scope of the invention to use as component B mixtures of two or more of the above-described compounds or types of compounds. Examples of suitable mixtures are mixtures of carboxylic acids, of sulfonic acids, and of sulfonic with carboxylic acids.
Many such mixtures will be readily apparent to those skilled in the art. Particularly preferred are mixtures of alkyl-benzenesulfonic acids with fatty acids (which may be hydrogenated) and with carboxylic acids formed by oxidation of hydrocarbons such as petrolatum.
One of the characteristics of component B is that it is oleophilic. This means that it is soluble or at least stably dispersible (as defined hereinafter) in oil or similar non-polar organic liquids such as hexane, naphtha, Stoddard solvent, benzene and toluene. While component B need not be oil-soluble, the oil-soluble sulfonic and carboxylic acids and phosphate esters are preferred for the purposes of this invention. These oil-soluble compounds constitute a known subgenus of the previously described compounds useful as component B.
Component C Component C is at least one organic substantially inert diluent. It may be a solid or liquid at room temperature or a mixture of such a solid and a liquid. It need not be a solvent for component B, in the sense that component B is entirely soluble therein when in the liquid state, but should be at least a partial solvent in the sense that relatively small proportions of component B, at least, when blended with component C in the liquid state will form a homogeneous mixture.
Materials useful in component C include substantially inert, normally liquid organic diluents. The term "substantially inert" as used herein is intended to mean that the diluent is inert to chemical or physical change under the conditions in which it is used so as not to materially interfere in an adverse manner with the preparation, storage, blending and/or functioning of the magnesium complex in the context of its intended use. For example, small amounts of a diluent can undergo minimal reaction or degradation without preventing the making and using of the invention as described herein. In other words, such reaction or degradation, while technically discernible, would not be sufficient to deter the practical worker of ordinary skill in the art from making and using the invention for its intended purposes. "Substantially inert" as used herein is thus readily understood and appreciated by those of ordinary skill in the art.
Among the preferred normally liquid diluents are non-polar compounds or mixtures of compounds such as naphtha, hexane, kerosene, mineral oil, Stoddard solvent, benzene toluene, xylene, and alkylbenzenes of the type present as unsulfonated residue in alkylbenzenesulfonic acids. Also suitable are somewhat more polar liquids such as 1-butanol, 2-butanol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol and its ethers, wax-derived alcohol mixtures, methyl ethyl ketone, chlorobenzene, pyridine, indole, furan and tetrahydrofuran.
Also suitable are materials which are chemically similar to the above-described liquids but solid at ambient temperature. These include the following, as well as mixtures of any two or more thereof: Crystalline (including microcrystalline) and non-crystalline hydrocarbon waxes, including natural hydrocarbon waxes such as petrolatum, paraffin and olefin waxes, and synthetic hydrocarbon waxes such as polyethylene and other polyolefins.
Waxy alcohol mixtures such as C20-40 aliphatic alcohols.
Resins (synthetic) such as styrene-butadiene copolymers, hydrogenated styrenebutadiene polymers, olefin-vinyl carboxylate (e.g., vinyl acetate) copolymers, and hydrocarbon resins.
It is also within the scope of the invention to use mixtures of any of the materials described above. Such mixtures may be of materials all of which are liquid at normal ambient temperatures (e.g., about 20-30"C.) such as mineral oil-toluene, Stoddard solvent-toluene, mineral oil-alkylbenzene, Stoddard solvent-alkylbenzene of materials all of which are solid at normal ambient temperatures, such as paraffin wax-polyethylene wax, paraffin wax-polyethylene wax-C20-40 alcohol wax; or of materials which are both liquid and solid at normal ambient temperatures, such as mixtures of the above-mentioned normally liquid diluents and a resin (synthetic) or hydrocarbon wax (e.g., paraffin wax-toluene, polypropylene-toluene, polypropylene-mineral oil).
Component proportions The relative proportions of certain of the components specified above are an important feature of this invention since the physical state in which the magnesium complex is obtained depends to a great extent on the proportions of the components used for their preparation.
As previously noted, the ratio of equivalents of magnesium to the acid portion of component B (free carboxylic or sulfonic acid, or acidic phosphoric acid ester) is at least 5:1. This ratio is hereinafter sometimes referred to as the "magnesium ratio". (It will be appreciated that the magnesium ratio is such as to produce a basic magnesium complex.) If component B is the free carboxylic acid, an ester thereof, a free sulfonic acid or an acidic phosphate ester, the ratio of component A to component B will be identical to the magnesium ratio. If component B is a magnesium salt of one of the above, the ratio of component A to component B will be somewhat less than the magnesium ratio since part of the magnesium is provided by component B.
It has been found that magnesium complexes with relatively low magnesium ratios (e.g., 5-25:1 and particularly 5-10:1) are particularly suitable as lubricant additives. Complexes with a magnesium ratio above 60:1 and preferably up to 150:1 are suitable principally for use as additives for fuel oils. As protective coatings for metals, it is preferred to employ complexes in which component C is entirely or predominantly liquid and the magnesium ratio is between 25:1 and 60:1, or solid (e.g., "hot melt") complexes in which component C is entirely or predominantly solid at ambient temperature and which typically have a magnesium ratio of 5-50:1.
The amount of water (the molar ratio of water to component A is hereinafter sometimes designated the "water ratio") is also important. It should be at least sufficient to hydrate a substantial proportion of component A, calculated as magnesium oxide. If component A is magnesium hydroxide, it already contains at least this amount of water and the amount of additional water will depend on the nature of the product desired and the intended use thereof. On the other hand, if component A is anhydrous magnesium oxide the water ratio should generally be at least 0.7:1 so as to produce the partially hydrated magnesium oxide referred to hereinabove.
Most often, a water ratio between 0.7:1 and 3.0:1 is adequate to produce a composition of this invention. If larger amounts of water than this are used, it is frequently possible to remove excess water, at least some of which separates from the magnesium complex as a separate layer and the remainder of which can be removed by azeotropic distillation or the like. More water may be desirable for the preparation of the complex in certain instances; for example, magnesium oxide frequently contains traces of sodium compounds whose presence may be undesirable in the complex, and if so, such compounds may be removed by using up to 8 moles of water per mole of component A and removing the excess, which has dissolved therein the sodium compounds. When the excess water has been removed, the molar ratio of remaining water to component A is usually below 3:1 as noted above.
As among various magnesium complexes with water ratios between 0.7:1 and 3.0:1, those having a water ratio below 1:1 are often particularly suitable for use as lubricant additives or fuel oil additives, while those having a somewhat higher water ratio (e.g., between 1:1 and 3:1) may be particularly suitable in the preparation of corrosion-resistant coating compositions.
The ratio of component C to component A is not critical and may be varied so as to provide magnesium complexes suitable for the particular use to which they are intended.
For example, a complex suitable as a lubricant additive may frequently be obtained by employing as component C solely the unsulfonated alkylbenzene present as an impurity in the sulfonic acid used as component B. In that event, the weight ratio of component C to component A will usually be below about 1:1 and frequently as low as 0.5-0.7:1. In general, when a lubricant additive product is desired it is inadvisable to use volatile materials as component C.
When the magnesium complex is to be used as a fuel oil additive, higher amounts of component C are frequently preferred and these may include relatively volatile materials such as toluene or xylene, less volatile materials such as mineral oil or mineral seal oil, and mixtures of volatile and less volatile materials. The proportions of volatile and non-volatile diluents in such mixtures are subject to wide variation, but in any event it is usually found that the total weight ratio of component C to component A should be 1.2-1.8:1.
When a product useful in a protective metal coating is desired, still higher ratios (e.g., 2-3:1) are often employed with one of the diluents being a substantially volatile aliphatic hydrocarbon such as naphtha or Stoddard solvent, and the other being a somewhat less volatile material such as mineral oil. Another useful type of complex for metal coating is the solid (e.g., "hot melt") type briefly referred to hereinabove, in which component C comprises mostly or entirely materials which are solid at room temperature, in which case the ratio of C to A may be between 0.5:1 and 6:1.
For purposes of this invention, the equivalent weight of water is taken to be 9 (half its molecular weight).
Preparation of the magnesium complex The magnesium complexes of this invention may be prepared by merely blending the components described hereinabove and heating the resulting blend at a temperature above 30"C. It is important that water remain in the blend during substantially the entire period of preparation of the magnesium complex, and the maximum temperature thereof should be adjusted accordingly. However, said water may be present in the liquid or vapor state, i.e.
as liquid water or as steam, though it will be apparent to those skilled in the art that the preparation of complexes involving a relatively large amount of water will be difficult if not impossible, at least at atmospheric pressure, if the water is present as steam. Therefore, it is generally found that temperatures of about 30-125"C. are most conveniently employed at atmospheric pressure, and the preparation should be carried out under superatmospheric pressure if the use of higher temperatures is likely. Most often, a maximum temperature of about 100"C. is convenient when component C is entirely or predominantly liquid and the preferred temperature range is then about 40-90"C. Naturally, the temperature may be somewhat higher (e.g., about 95-150"C.) when component C is entirely or predominantly a solid at ambient temperature.
The order of addition of the various components is not critical. It is often convenient to first combine components A, E3 and D and subsequently to add water either all at once or incrementally. It is also often found convenient to prepare an initial mixture containing only a relatively small portion of component A (e.g., about 5-10% of the total amount thereof) and to add the remainder at a later stage, typically during or after the addition of water.
The magnesium complexes of this invention, when prepared as described herein, are often conveniently obtained as "thickened" compositions, i.e., heterogeneous dispersions in the form of greases or gels, or (when component C is predominantly solid) as "hot melt" materials. For many purposes, such as the formation of corrosion-resistant coatings, it is preferred that they be used in such "thickened" or "hot melt" form. However, some other applications such as those involving lubricants and fuels may require that the complex be in the form of a relatively non-viscous, easily flowable liquid. Thus, a "thickened" complex according to the invention can be further diluted with a substantially inert organic liquid diluent of the type described hereinabove to produce a homogeneous solution.
Another method for clarifying the magnesium complex for use in mineral oil is to add water or an acidic or basic reagent after preparation of the complex. The acidic or basic reagent may be organic or inorganic; suitable ones include sodium hydroxide, potassium hydroxide, ammonium hydroxide, triethanolamine, tartaric acid and citric acid. The amount of water or acidic or basic reagent is generally less than 10% by weight of the magnesium complex system.
The molecular structures of the magnesium complexes of this invention are not known and are not a critical aspect of the invention. The magnesium complexes are, in general, most conveniently defined in terms of the method for their preparation.
The preparation of the magnesium complexes of this invention is illustrated by the following examples. All parts are by weight and in all cases magnesium oxide is hydratable magnesium oxide.
Example 1 A blend is prepared of 135 parts of magnesium oxide and 600 parts of an alkylbenzenesulfonic acid having an equivalent weight of about 385, and containing about 24% unsulfonated alkylbenzene. During blending, an exothermic reaction takes place which causes the temperature to rise to 57"C. The mixture is stirred for one-half hour and then 50 parts of water is added. Upon heating at 95"C. for one hour, the desired magnesium oxide-sulfonate complex is obtained as a firm gel containing 9.07% magnesium.
Example 2 A blend of 600 parts of the alkylbenzenesulfonic acid of Example 1 and 225 parts of magnesium oxide is prepared and heated for 2 hours at 60-65"C. There is then added, over one hour, a solution of 10 parts of 30% ammonium hydroxide and 75 parts of water. The mixture is heated for 3 hours at 60-65"C., and then an additional 10 parts of 30% ammonium hydroxide solution is added over 5 minutes. Upon heating for 2 more hours at 60-65"C. and cooling, the desired magnesium oxide-sulfonate complex is obtained as a dark brown gel.
Example 3 Following the procedure of Example 2, a blend is made of 600 parts of the alkylbenzenesulfonic acid of Example 1 and 225 parts of magnesium oxide, and a solution of 30 parts of 30% ammonium hydroxide in 75 parts of water is added. After heating for 4 hours at 60-65"C., the mixture is cooled and 900 parts of hexane is added. The hexane-diluted mixture is centrifuged and the hexane is removed by vacuum stripping at 1500C. The residue is cooled to 1300C. and 18 parts of triethanolamine is added. The product is the desir the alkylbenzene-sulfonic acid of Example 5, 495 parts of mineral oil and 856 parts of Stoddard solvent. An additional 781 parts of magnesium oxide is then added and the mixture is slowly heated to 52-55"C. There are then added 30 parts of tetrapropenyl succinic acid and 37 parts of a black pigment. Upon screening and cooling, the desired composition containing the magnesium oxide-sulfonate gel is obtained.
Example 8 A mixture of 125 parts of toluene, 255 parts of the alkylbenzenesulfonic acid of Example 5, 680 parts of mineral oil, 550 parts of magnesium oxide and 200 parts of water is heated slowly to reflux temperature (about 100"C.) and excess water (about 43 parts) is removed by azeotropic distillation. The residue is stripped under vacuum at 1700C. as 117 parts of volatiles are removed. The residue from the stripping is cooled to yield the desired magnesium oxide-sulfonate complex in the form of a gel.
Example 9 A mixture of 2050 parts of water, 30 parts of magnesium oxide, 294 parts of the alkylbenzenesulfonic acid of Example 5, and 520 parts of oil is heated to 35-400C., and an additional 715 parts of magnesium oxide is added slowly. An exothermic reaction takes place and the magnesium oxide addition is regulated so as to cause a temperature increase of about 10 C. per hour to a maximum temperature of about 65"C. Heating is continued until the temperature reaches 85 C., whereupon a gel is obtained containing a clear water layer on top. The excess water (about 1552 parts) is decanted. To the residue are added 375 parts of mineral oil and 165 parts of toluene. and an additional portion of water (259 parts) Is removed by azeotropic distillation. Excess toluene is removed by stripping under nitrogen (180"C.) and the residue is screened to yield the desired magnesium oxide-sulfonate gel.
Example 10 A reaction vessel is charged with 63 parts of 'sepal 20+". a solid mixture consisting predominantly of C."-,l linear and branched aliphatic alcohols and available from Ethyl Corporation: 83 parts of Factowax R-143", a paraffin wax available from Standard Oil Company (Ohio) and melting at about 62 C.; and 83 parts of "Bareco Polywax 655", a polyethylene synthetic wax manufactured bv Petrolite Corp. and melting at about 102 C.
The mixture is melted and 21 parts of magnesium oxide is added. As the mixture is agitated at 96-99 C.. 235 parts of the alkvlbenzenesulfonic acid of Example 5 is added. Following the sulfonic acid addition. an additional 185 parts of magnesium oxide is added at 96-99"C.
Mixing is continued at that temperature for 2 hours and then 69 parts of water is added over 2-1/2 hours at 99-102"C. An additional 76 parts of alkylbenzenesulfonic acid is added at 96-99"C. and mixing is continued for 1-1/2 hours after which the mixture is heated to 143-1490C. for 3 hours and blown with nitrogen to remove volatiles by distillation. The residue is the desired solid magnesium oxide-sulfonate complex.
Exnz7lple 11 A mixture of 16 parts of the alkvlbenzenesulfonic acid of Example 5. 305 parts of mineral oil. 180 parts of magnesium oxide and 96 parts of "Hydrex 440". a mixture of hydrogenated fatty acids obtainable from Union Camp Corporation. is heated to 950C. and blown with steam for two hours. The temperature is increased to 145-1502C.. an additional 28 parts of mineral oil is added and the mixture is blown with air as the temperature is heated to 1700C.
over 15 minutes. The mixture is then cooled to room temperature and an additional 44 parts of mineral oil is added to yield the desired magnesium oxide-sulfonate complex having the consistency of a grease.
Lrrblicn,lrs nnd fuels When they have been diluted to form flowable liquids as previouslv described. the magnesium complexes of this invention are stably dispersible in the normally liquid media (e.g.. oil or fuel) in which they are intended to function. Thus. for example compositions intended for use in oils are stably dispersible in an oil in which they are to be used. The term stably dispersible" as used in the specification and appended claims is intended to meal the magnesium complex or other material is capable of being dispersed in a given medium to an extent which allows it to function in its intended manner. Thus. for example. when a magnesium complex is used in an oil. it is sufficient that it be capable of being suspended in the oil in an amount sufficient to enable the oil to possess one or more of the desired properties imparted to it by the suspended complex. Such suspension can be achieved in various conventional ways. For example. in constantly circulating oil or oil in splash lubricating systems. physical agitation can keep the complex suspended in oil. Likewise, conventional dispersants (such as the acylated nitrogen dispersants disclosed in U.S. Patent 3,219,666) often found in lubricating oils and fuels promote the stable dispersion or suspension of the magnesium complex. In any event, the complex will be "stably dispersible" in the normally liquid media in which it will be used in at least the minimum concentrations set forth elsewhere herein. Thus, the terminology "stable dispersible" is used in a conventional manner and will be understood by those of ordinary skill in the art.
As previously indicated, the magnesium complexes of this invention may be homogeneously incorporated into lubricants, in which they function primarily as ashproducing detergents. The products of Examples 1-4 are particularly useful for this purpose. They can be employed in a variety of lubricants based on diverse oils of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof. These lubricants include crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines, including automobile and truck engines, two-stroke engines, aviation piston engines, marine and railroad diesel engines, and the like. They can also be used in gas engines, stationary power engines and turbines and the like. Automatic transmission fluids, transaxle lubricants, gear lubricants, metal-working lubricants, hydraulic fluids and other lubricating oil and grease compositions can also benefit from the incorporation therein of the magnesium complexes of the present invention.
Natural oils include animal oil and vegetable oils (e.g., castor oil, lard oil) as well as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils. Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins [e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly-(1-octenes), poly(1-decenes), etc. and mixtures thereof]; alkylbenzenes [e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)-benzenes, etc.]; polyphenyls (e.g., bisphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.
Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters, or the C13 Oxo acid diester of tetraethylene glycol.
Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.). Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, hexa-(4methyl-2-pentoxy)-disiloxane, poly(methyl)siloxanes, poly(methylphenyl)-siloxanes, etc.). Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.), polymeric tetrahydrofurans and the like.
Unrefined, refined and rerefined oils (and mixtures of each with each other) of the type disclosed hereinabove can be used in the lubricant compositions of the present invention.
Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
Refined oils are similar to the unrefined oils except that they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those of skill in the art such as solvent extraction, acid or base extraction, filtration, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
Generally, the lubricants of the present invention contain an amount of the composition of this invention sufficient to impart detergency thereto. Normally this amount will be 0.05-20%, preferably 0.5-10%, of the total weight of the lubricant. In lubricating oils operated under extremely adverse conditions, such as lubricating oils for marine diesel engines, the magnesium complexes of this invention may be present in amounts up to 30%.
The magnesium complexes of the present invention, as illustrated by the products of Examples 8 and 9 may also be used as corrosion inhibitors, vanadium scavengers and smoke suppressants in fuels. For that purpose, they are homogeneously incorporated in minor proportions in normally liquid fuels, usually hydrocarbonaceous fuels such as fuel oils, bunker fuels and the like. Normally liquid fuel compositions comprising nonhydrocarbonaceous materials such as alcohols, ethers, organo-nitro compounds and the like (e.g., methanol, ethanol, diethyl ether, methyl ethyl ether, nitromethane) are also within the scope of the invention as are liquid fuels derived from vegetable or mineral sources such as corn, alfalfa, shale and coal. Normally liquid fuels which are mixtures of one or more hydrocarbonaceous fuels and one or more non-hydrocarbonaceous materials are also contemplated.
Generally, these fuel compositions contain an amount of the magnesium complex sufficient to impart corrosion-resistant properties thereto; usually this amount is about 1-10,000, preferably 4-1000, parts thereof by weight per million parts of fuel.
The invention also contemplates the use of other additives in combination with the magnesium complexes. Other additives useful in lubricants include, for example, auxiliary detergents and dispersants of the ash-producing or ashless type, corrosion- and oxidationinhibiting agents, pour point depressing agents, extreme pressure agents, color stabilizers and anti-foam agents.
The auxiliary ash-producing detergents are exemplified by oil-soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium and barium.
The term "basic salt" is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature above 50"C. and filtering the resulting mass. The use of a "promoter" in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, Carbitol (Trade Marks), ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl- -naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60-200"C.
Ashless detergents and dispersants are so called despite the fact that, depending on its constitution, the dispersant may upon combustion yield a non-volatile material such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain metal and therefore does not yield a metal-containing ash on combustion. Many types are known in the art, and any of them are suitable for use in the lubricants of this invention. The following are illustrative: (1) Reaction products of carboxylic acids (or derivatives thereof) containing at least 34 and preferably at least 54 carbon atoms with nitrogen-containing compounds such as amine, organic hydroxy compounds such as phenols and alcohols, and/or basic inorganic materials.
Examples of these "carboxylic dispersants" are described in British Patent 1,306,529 and in many U.S. patents including the following: 3,163,603 3,184,474 3,215,707 3,219,666 3,271,310 3,272,746 3,281,357 3,306,908 3,311,558 3,316,177 3,340,281 3,341,542 3,346,493 3,351,552 3,381,022 3,399,141 3,415,750 3,433,744 3,444,170 3,448,048 3,448,049 3,451,933 3,454,607 3,467,668 3,501,405 3,522,179 3,541,012 3,542,678 3,542,680 3,567,637 3,574,101 3,576,743 3,630,904 3,632,510 3,632,511 3,697,428 3,725,441 Re 26,433 (2) Reaction products of relatively high molecular weight aliphatic or alicyclic halides with amines, preferably polyalkylene polyamines. These may be characterized as "amine dispersants" and examples thereof are described for example, in the following U.S. patents: 3,275,554 3,438,757 3,454,555 3,565,804 (3) Reaction products of alkyl phenols in which the alkyl group contains at least 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines), which may be characterized as "Mannich dispersants". The materials described in the following U.S. patents are illustrative.
3,413,347 3,697,574 3,725,277 3,725,480 3,726,882 (4) Products obtained by post-treating the carboxylic, amine or Mannich dispersants with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, phosphorus compounds or the like. Examplary materials of this kind are described in the following U.S. patents: 3,036,003 3,087,936 3,200,107 3,216,936 3,254,025 2.256.185 3,278,550 3,280,234 3,281,428 3,282,955 3.312619 3,366,569 3,367,943 3,373,111 3,403,102 3,442,808 3,455,831 3,455,832 3,493,520 3,502,677 3,513,093 3,533,945 3,539,633 3,573,010 3,579,450 3,591,598 3,600,372 3,639,242 3,649,229 3,649,659 3,658,836 3,697,574 3,702,757 3,703,536 3,704,308 3,708,522 (5) Interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substituents, e.g., aminoalkyl acrylates or acrylamides and poly-(oxyethylene)-substituted acrylates. These may be characterized as "polymeric dispersants" and examples thereof are disclosed in the following U.S. patents: 3,329,658 3,449,250 3,519,565 3,666,730 3,687,849 3,702,300 Extreme pressure agents and corrosion- and oxidation-inhibiting agents are exemplified by chlorinated aliphatic hydrocarbons such as chlorinated wax; organic sulfides and polysulfides such as benzyl disulfide, bis(chlorobenzyl)disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized terpene; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpehtine or methyl oleate; phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentyl phenyl phosphite, dipentyl phenyl phosphite, tridecyl phosphite, distearyl phosphite, dimethyl naphthyl phosphite, oleyl 4-pentylphenyl phosphite, polypropylene (molecular weight 500)-substituted phenyl phosphite, diisobutyl-substituted phenyl phosphite; metal thiocarbamates, such as zinc dioctyldithiocarbamate, and barium heptylphenyl dithiocarbamate; Group II metal phosphorodithioates such as zinc die clohexylphosphorodithioate, zinc dioctylphosphorodithioate, barium di(heptylphenyl)-phosphorodithioate, cadmium dinonylphosphorodithioate, and the zinc salt of a phosphorodithioic acid produced by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl alcohol and n-hexyl alcohol.
Other additives useful in fuels include deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2,6-di-tertiary-butyl-4methylphenol, rust inhibitors such as alkylated succinic acids and anhydrides, bacteriostatic agents, gum inhibitors, metal deactivators, demulsifiers and the like.
The magnesium complexes of this invention can be added directly to the lubricant or fuel.
Preferably, however, they are diluted with a substantially inert, normally liquid organic diluent such as those mentioned hereinabove, particularly mineral oil, naphtha, benzene, toluene or xylene, to form an additive concentrate. These concentrates generally contain about 20-90% by weight of the magnesium complex and may contain in addition, one or more of the other additives described hereinabove.
The lubricants of this invention are illustrated by the following example. All parts are by weight.
Example 12 Ingredient Parts Mineral oil (SAE 10W-40 base) 86.83 Product of Example 4 0.49 Mixed ester-amide of polybutenyl succinic acid 3.02 Zinc dialkylphosphorodithioate 0.82 Sulfurized alkyl cyclohexenecarboxylate 0.39 Tetrapropenylsuccinic acid 0.07 Ethoxylated alkyl phenol 0.29 Hindered phenol antioxidant 0.34 Polyacrylate viscosity index improver 7.75 Silicone anti-foam agent 0.01 Corrosion-resistant coatings and other uses The "thickened" magnesium complexes of this invention may be used as corrosionresistant coatings for metal (e.g., ferrous metal, galvanized, aluminum or magnesium) surfaces, especially in the nature of undercoats for automotive bodies, coatings for structural members such as automotive frames, and the like. They may be employed as such alone, in combination with other basic metal sulfonates and the like known to be useful in corrosion-resistant coatings, and/or in combination with known adjuvants for such corrosion-resistant coatings such as acidic phosphate esters, resins (synthetic), and waxes.
Many of the suitable resins (synthetic) and waxes are the same as those described hereinabove with reference to component D; they may be incorporated in varying amounts in the thickened complex but generally comprise a minor amount of the coating composition, typically about 0.5-2.0% by weight. U.S. Patents 3,453,124 and 3,671,072 are incorporated by reference herein for their disclosure of basic compositions and adjuvants useful in combination with the thickened magnesium complexes.
The products of Examples 5-7 are exemplary of the magnesium complexes suitable for use as corrosion-resistant coatings of the undercoat type. Also useful for this purpose is the product prepared by the following example.
Example 13 A product is obtained substantially in accordance with the procedure of Example 7 by the reaction of 11.61 parts of the alkylbenzenesulfonic acid of Example 5, 9.2 parts of mineral oil, 23.71 parts of Stoddard solvent, 22.61 parts of magnesium oxide and 30.92 parts of water. To the resulting gel are added 0.97 part of a black pigment composition and 1.0 part of a vinyl acetate-ethylene copolymer comprising about 28Cho vinyl acetate units.
For coating automotive frames and the likw, a solid "hot melt" composition of the type described in Example 10 is particularly suitable. Frequently, a dye or pigment is added to the "hot melt" composition; for example, 17 parts of a black pigment may be added to the product of Example 10 immediately after the distillation step and distillation may then be continued to remove volatiles present in the dye or pigment composition.
For corrosion-inhibiting purposes, the "thickened" or solid composition of this invention may be applied to the metal surface by any ordinary method such as brushing, spraying, dip-coating, flow-coating, roller-coating and the like, with heating if necessary (as to liquefy a solid composition). The viscosity of a "thickened" composition may be adjusted for the particular method of application selected by adding, if necessary, a substantially inert, normally liquid organic diluent such as those disclosed hereinabove. The coated metal surface may then be dried either by exposure to air or by baking, although drying frequently takes place without a separate drying step. If the coating composition is of a suitable viscosity to allow direct application to the metal surface, typically the consistency of a No. 1 or No. 2 grease, no solvent is used and no drying procedure need be followed. A more viscous grease can be diluted to produce a less viscous grease which is suitable for application as previously noted. The film thickness is not critical although a coating of about 50-2000 mg. per square foot of surface in the case of an undercoat, and up to about 10,000 mg. per square foot in the case of a coating for frames or other structural members, is usually sufficient to provide adequate protection. Heavier coating can be used if desired, but they normally contribute little in the way of additional protection.
The magnesium complexes of this invention may also be used as lubricant greases and as stabilizers for synthetic resin compositions, typically polyvinyl-chloride, to protect them against oxidative degradation.
WHAT WE CLAIM IS: 1. A method for preparing a non-carbonated magnesium-containing complex in the form of a solid, a grease or a gel, containing at least a high proportion of the magnesium in the starting material, which comprises heating, at a temperature above 30"C., a mixture comprising: (A) At least one of magnesium hydroxide, hydratable magnesium oxide, partially hydrated magnesium oxide, or a magnexium alkoxide which is/are incorporated into the mixture as such and not prepared in situ; (B) At least one oleophilic organic reagent comprising a carboxylic acid, a sulfonic acid, a pentavalent phosphorus acid, or an ester or alkali metal or alkaline earth metal salt of any of these; and (C) At least one organic substantially inert diluent; the ratio of equivalents of magnesium to component B, calculated as the free carboxylic or sulfonic acid or as the phosphoric acid (the equivalent weight being calculated as hereinbefore described) being at least 5:1, water being present, the amount of water, which is free or combined in a magnesium compound of component A, being at least sufficient to hydrate (or hydrolyse in the case of an alkoxide) a substantial proportion of component A calculated as magnesium oxide.
2. A method according to claim 1 wherein component C is solid at room temperature.
3. A method acording to claim 1 wherein component C is a mixture of at least one material which is solid at room temperature with at least one normally liquid organic diluent.
4. A method according to any preceding claim wherein component B is at least one sulfonic acid or salt thereof.
5. A method according to claim 4 wherein component B is at least one alkylaromatic sulfonic acid.
6. A method according to claim 5 wherein component B is at least one alkylbenzenesulfonic acid,.
7. A method according to any one of claims l to 3 wherein component B is a mixture of at least one alkylbenzenesulfonic acid and at least one hydrogenated fatty acid or carboxylic acid formed by oxidation of petrolatum.
8. A method according to claim 3 wherein component B is at least one sulfonic acid or a magnesium salt thereof.
9. A method according to any preceding claim wherein component A is hydratable magnesium oxide.
10. A method according to claim 9 wherein the molar ratio of water to component A is at least 0.7:1.
11. A complex which has been prepared by the method of any preceding claim.
12. A complex which is solid at room temperature which has been prepared by the method of claim 2 or any method claim dependent thereon.
13. A complex in the form of a grease or gel which has been prepared by the method of claim 3 or any one of claims 4 - 10 when dependent on claim 3.
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (27)

**WARNING** start of CLMS field may overlap end of DESC **. described in Example 10 is particularly suitable. Frequently, a dye or pigment is added to the "hot melt" composition; for example, 17 parts of a black pigment may be added to the product of Example 10 immediately after the distillation step and distillation may then be continued to remove volatiles present in the dye or pigment composition. For corrosion-inhibiting purposes, the "thickened" or solid composition of this invention may be applied to the metal surface by any ordinary method such as brushing, spraying, dip-coating, flow-coating, roller-coating and the like, with heating if necessary (as to liquefy a solid composition). The viscosity of a "thickened" composition may be adjusted for the particular method of application selected by adding, if necessary, a substantially inert, normally liquid organic diluent such as those disclosed hereinabove. The coated metal surface may then be dried either by exposure to air or by baking, although drying frequently takes place without a separate drying step. If the coating composition is of a suitable viscosity to allow direct application to the metal surface, typically the consistency of a No. 1 or No. 2 grease, no solvent is used and no drying procedure need be followed. A more viscous grease can be diluted to produce a less viscous grease which is suitable for application as previously noted. The film thickness is not critical although a coating of about 50-2000 mg. per square foot of surface in the case of an undercoat, and up to about 10,000 mg. per square foot in the case of a coating for frames or other structural members, is usually sufficient to provide adequate protection. Heavier coating can be used if desired, but they normally contribute little in the way of additional protection. The magnesium complexes of this invention may also be used as lubricant greases and as stabilizers for synthetic resin compositions, typically polyvinyl-chloride, to protect them against oxidative degradation. WHAT WE CLAIM IS:
1. A method for preparing a non-carbonated magnesium-containing complex in the form of a solid, a grease or a gel, containing at least a high proportion of the magnesium in the starting material, which comprises heating, at a temperature above 30"C., a mixture comprising: (A) At least one of magnesium hydroxide, hydratable magnesium oxide, partially hydrated magnesium oxide, or a magnexium alkoxide which is/are incorporated into the mixture as such and not prepared in situ; (B) At least one oleophilic organic reagent comprising a carboxylic acid, a sulfonic acid, a pentavalent phosphorus acid, or an ester or alkali metal or alkaline earth metal salt of any of these; and (C) At least one organic substantially inert diluent; the ratio of equivalents of magnesium to component B, calculated as the free carboxylic or sulfonic acid or as the phosphoric acid (the equivalent weight being calculated as hereinbefore described) being at least 5:1, water being present, the amount of water, which is free or combined in a magnesium compound of component A, being at least sufficient to hydrate (or hydrolyse in the case of an alkoxide) a substantial proportion of component A calculated as magnesium oxide.
2. A method according to claim 1 wherein component C is solid at room temperature.
3. A method acording to claim 1 wherein component C is a mixture of at least one material which is solid at room temperature with at least one normally liquid organic diluent.
4. A method according to any preceding claim wherein component B is at least one sulfonic acid or salt thereof.
5. A method according to claim 4 wherein component B is at least one alkylaromatic sulfonic acid.
6. A method according to claim 5 wherein component B is at least one alkylbenzenesulfonic acid,.
7. A method according to any one of claims l to 3 wherein component B is a mixture of at least one alkylbenzenesulfonic acid and at least one hydrogenated fatty acid or carboxylic acid formed by oxidation of petrolatum.
8. A method according to claim 3 wherein component B is at least one sulfonic acid or a magnesium salt thereof.
9. A method according to any preceding claim wherein component A is hydratable magnesium oxide.
10. A method according to claim 9 wherein the molar ratio of water to component A is at least 0.7:1.
11. A complex which has been prepared by the method of any preceding claim.
12. A complex which is solid at room temperature which has been prepared by the method of claim 2 or any method claim dependent thereon.
13. A complex in the form of a grease or gel which has been prepared by the method of claim 3 or any one of claims 4 - 10 when dependent on claim 3.
14. A method according to claim 10 wherein component B is an alkylbenzene sulfonic
acid having an equivalent weight within the range 300-500, component C is the alkylbenzene whose sulfonation product is component B, water is present in a molar ratio to component A of from 0.7:1 to 3.0:1, and the reaction temperature is within the range 40-90"C.
15. A complex which has been prepared according to the method of claim 14.
16. A method according to claim 10 wherein component B is an alkylbenzenesulfonic acid having an equivalent weight within the range 300-500, component C is a mixture comprising hydrocarbon waxes, C20-40 waxy aliphatic alcohols and the alkylebenzene whose sulfonation product is component B, water is present in a molar ratio to component A of from 0.7:1 to 3.0:1, and the reaction temperature is within the range 95-150"C.
17. A complex which has been prepared by the method of claim 16.
18. An additive concentrate formed by mixing a substantially inert, normally liquid organic diluent and the complex of claim 11 or 15.
19. A composition formed by mixing a major amount of a lubricating oil and a minor amount of the complex of claim 11 or 15.
20. A composition formed by mixing a major amount of a normally liquid fuel and a minor amount of the complex of claim 11 or 15.
21. A metal article coated with the complex of claim 12, 13, or 17.
22. A complex according to claim 11, substantially as described in any of Examples 1 to 11.
23. A composition according to claim 19, substantially as described in Example 12.
24. A metal article coated with a composition substantially as described in Example 13.
25. A liquid composition formed by diluting a complex according to any one of Claims 11 - 13, 15, 17 and 22, with a substantially inert organic liquid diluent.
26. A method according to any one of claims 1 to 8, wherein free water is present in the mixture.
27. A complex which has been prepared by the method of claim 26.
GB17844/77A 1976-04-29 1977-04-28 Magnesium-containing complexes method for their preparation and compositions containing the same Expired GB1586483A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68162776A 1976-04-29 1976-04-29
US05/760,315 US4094801A (en) 1976-04-29 1977-01-18 Magnesium-containing complexes, method for their preparation, and compositions containing the same

Publications (1)

Publication Number Publication Date
GB1586483A true GB1586483A (en) 1981-03-18

Family

ID=27102689

Family Applications (1)

Application Number Title Priority Date Filing Date
GB17844/77A Expired GB1586483A (en) 1976-04-29 1977-04-28 Magnesium-containing complexes method for their preparation and compositions containing the same

Country Status (11)

Country Link
JP (1) JPS52144629A (en)
AU (1) AU515607B2 (en)
BR (1) BR7702529A (en)
CA (1) CA1095886A (en)
DE (1) DE2718780A1 (en)
ES (1) ES458333A1 (en)
FR (1) FR2349643A1 (en)
GB (1) GB1586483A (en)
IN (1) IN144027B (en)
IT (1) IT1086894B (en)
SE (1) SE447273B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113157A1 (en) * 1982-12-30 1984-07-11 EDWIN COOPER & COMPANY LIMITED Quench oils, concentrates for making quench oils and methods of treating metals
EP1277827A1 (en) * 2001-07-11 2003-01-22 SFA International, Inc. Method of reducing smoke and particulate emissions from compression-ignited reciprocating engines operating on liquid petroleum fuels

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391186A1 (en) * 1977-05-16 1978-12-15 Lubrizol Corp Non-carbonated overbased magnesium salts prepn. - from hydrocarbyl-substd. hydroxylic aromatic carboxylic acid, useful as additives for lubricants and fuels
JPS5436224A (en) * 1977-08-25 1979-03-16 Lubrizol Corp Process for preparing basic magnesium salt of substituted aromatichydroxyy containing carboxylic acid magnesium salt obtained therefrom and fuel or lubricant composition and additive composition
US4155859A (en) * 1978-01-19 1979-05-22 The Lubrizol Corporation Forging lubricants and method of use thereof
US4253976A (en) * 1979-02-21 1981-03-03 The Lubrizol Corporation Magnesium oxide-carboxylate complexes, method for their preparation, and compositions containing the same
US4260500A (en) * 1979-02-21 1981-04-07 The Lubrizol Corporation Magnesium-containing complexes, method for their preparation, and compositions containing the same
EP0209699A1 (en) * 1985-06-17 1987-01-28 HENKEL CORPORATION (a Delaware corp.) Corrosion-resistant coatings
CA2755365C (en) * 2004-03-31 2014-08-19 The Lubrizol Corporation High solids content dispersions

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739125A (en) * 1952-09-04 1956-03-20 Socony Mobil Oil Co Inc High metal content complex salts of sulfonic acids and mineral oil compositions thereof
FR1162191A (en) * 1956-09-10 1958-09-09 Continental Oil Co Improvements to the process for the preparation of alkaline earth metal alkylaryl sulfonates
BE668916A (en) * 1957-12-06
FR1265309A (en) * 1960-05-17 1961-06-30 Inst Francais Du Petrole Manufacturing process of metal sulfonates
CA949055A (en) * 1968-05-08 1974-06-11 Continental Oil Company Method for preparing highly basic grease and rust inhibiting compositions
US3746643A (en) * 1970-10-21 1973-07-17 Continental Oil Co Grease and rust inhibitor compositions
US3730895A (en) * 1970-10-21 1973-05-01 Atlantic Richfield Co Corrosion inhibiting compositions
FR2233388B1 (en) * 1973-06-12 1980-04-18 Exxon Research Engineering Co
AU501904B2 (en) * 1976-05-12 1979-07-05 Witco Chemical Corporation Corrosion-inhibiting compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113157A1 (en) * 1982-12-30 1984-07-11 EDWIN COOPER & COMPANY LIMITED Quench oils, concentrates for making quench oils and methods of treating metals
EP1277827A1 (en) * 2001-07-11 2003-01-22 SFA International, Inc. Method of reducing smoke and particulate emissions from compression-ignited reciprocating engines operating on liquid petroleum fuels
WO2003006587A1 (en) * 2001-07-11 2003-01-23 Sfa International, Inc. Method of reducing smoke and particulate emissions for compression-ignited reciprocating engines

Also Published As

Publication number Publication date
CA1095886A (en) 1981-02-17
FR2349643A1 (en) 1977-11-25
ES458333A1 (en) 1978-06-16
IN144027B (en) 1978-03-11
SE7704860L (en) 1977-10-30
SE447273B (en) 1986-11-03
FR2349643B1 (en) 1982-07-02
BR7702529A (en) 1977-11-29
DE2718780C2 (en) 1992-02-20
JPS52144629A (en) 1977-12-02
JPH0133476B2 (en) 1989-07-13
AU2467377A (en) 1978-11-02
DE2718780A1 (en) 1977-11-17
IT1086894B (en) 1985-05-31
AU515607B2 (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US4263150A (en) Phosphite treatment of phosphorus acid salts and compositions produced thereby
US4322479A (en) Magnesium oxide-carboxylate complexes, method for their preparation, and compositions containing the same
US4326972A (en) Concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engine
US4417990A (en) Mixed metal salts/sulfurized phenate compositions and lubricants and functional fluids containing them
US4308154A (en) Mixed metal salts and lubricants and functional fluids containing them
US4260500A (en) Magnesium-containing complexes, method for their preparation, and compositions containing the same
US3372116A (en) Preparation of basic metal phenates and salicylates
US4584115A (en) Method of preparing boron-containing compositions useful as lubricant additives
US3629109A (en) Basic magnesium salts processes and lubricants and fuels containing the same
US3489682A (en) Metal salt compositions
US4094801A (en) Magnesium-containing complexes, method for their preparation, and compositions containing the same
CA1055700A (en) Basic alkali sulfonate dispersions and processes
US4466894A (en) Phosphorus-containing metal salts/sulfurized phenate compositions/aromatic substituted triazoles, concentrates, and functional fluids containing same
US4067698A (en) Bridged phenol metal salt-halo carboxylic acid condensate additives for fuels
US4477362A (en) Method for preparing nitrogen- and oxygen-containing compositions _useful as lubricant and fuel additives
US5037565A (en) Basic alkali metal sulfonate dispersions, process for their preparation, and lubricants containing same
GB1586483A (en) Magnesium-containing complexes method for their preparation and compositions containing the same
US4089793A (en) Preparation and use of basic metal salt compositions of phosphorus-containing acids
USRE32235E (en) Magnesium-containing complexes, method for their preparation, and compositions containing the same
EP0608041B1 (en) Compositions, concentrates, lubricant compositions, fuel composition and methods for improving fuel economy of internal combustion engines
AU658218B2 (en) Improved lubricating compositions and additives useful therein
CA1135041A (en) Mixed metal salts and lubricants and functional fluids containing them
AU636354B2 (en) Lubricating oil compositions and concentrates
USRE32653E (en) Magnesium oxide-carboxlate complexes, method for their preparation, and compositions containing same
US4061474A (en) Phenoxide-halo carboxylic acid condensate additives for fuels

Legal Events

Date Code Title Description
PS Patent sealed [section 19, patents act 1949]
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19960428