GB1566504A - Valve actuator - Google Patents
Valve actuator Download PDFInfo
- Publication number
- GB1566504A GB1566504A GB329477A GB329477A GB1566504A GB 1566504 A GB1566504 A GB 1566504A GB 329477 A GB329477 A GB 329477A GB 329477 A GB329477 A GB 329477A GB 1566504 A GB1566504 A GB 1566504A
- Authority
- GB
- United Kingdom
- Prior art keywords
- cylinder
- valve
- accumulator
- actuator
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/122—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Driven Valves (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Safety Valves (AREA)
- Valve Device For Special Equipments (AREA)
- Actuator (AREA)
- Lift Valve (AREA)
Description
(54) VALVE ACTUATOR
(71) We, ROCKWELL
INTERNATIONAL CORPORATION, a corporation organised under the laws of the
State of Delaware, United States of
America, having a place of business at 600
Grant Street, Pittsburgh, Pennsylvania,
U.S.A., do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement:- This invention relates to an actuator for a valve and, more specifically, to such an actuator which includes a hydraulic cylinder and piston arrangement together with an accumulator for providing a reservoir of high pressure gas for reliable closure of the valve as hydraulic pressure is relieved.
There have herebefore been utilized a number of means for closing large valves in the feedwater and steam systems of nuclear power plants. Because of safety and reliability requirements for these plants, the time required to close the valves within the system and the ability of the valves to safely withstand seismic shock are of real concern.
While electrical motor operators have been used for reliable closure of heavy duty valves of this type in the past, the closure time required has generally made them unattractive.
It is presently felt that a valve actuator incorporating a hydraulic cylinder and gas accumulator affords the best means for rapid closure of the valve. Hydraulic oil is directed to a piston within the hydraulic cylinder to open the valve in opposition to a precharged source of high pressure gas which acts on the other side of the piston. A reservoir of the high pressure gas is maintained in an accumulator to ensure a sufficient quantity is available to act on the piston to rapidly close the valve when the hydraulic pressure is relieved. While it is obvious that an accumulator might be provided in the form of a tank at a remote location from the valve, it is preferred to have a self-contained system.One such system presently employed for use with balanced globe valves up to 32" includes a cylinder within a cylinder configuration in which the high pressure gas is located between the cylinders. However, this configuration is not inexpensive to provide and the size and weight of the outer cylinder required to provide ample closing forces is recognized as being a significant factor to be considered in a determination of the ability of the valve to withstand seismic shock.
Additionally, although this configuration has ensured rapid closure of balanced valves in the past, its applicability for use with unbalanced gate valves is questionable.
There are indications that the larger forces which would be needed to close a comparable sized gate valve would require an outer cylinder of significantly larger dimensions and weight, greatly complicating the seismic problems and space problems which must be considered in power plant design.
It is, therefore, an object of the invention to provide a valve actuator having a hydraulic cylinder and gas accumulator configuration which is self-contained, weighs less and is less expensive to manufacture.
According to the invention there is provided a valve actuator capable of being mounted on a valve in alignment with a valve stem which is moved to open and close said valve, said actuator comprising: a hydraulic cylinder; a piston slidably mounted within said cylinder; a piston rod joined to said piston and extending axially outwardly through an opening in a first end of said cylinder for sealed, sliding movement therethrough, said rod having an outer end for connection to said valve stem in use; and a high pressure gas accumulator mounted on said cylinder, said accumulator having a pressure wall which is intersected by said cylinder to locate a second end of said cylinder within said accumulator to allow communication of the interior of said accumulator with the cylinder, said pressure wall including a hemispherically shaped portion.
A preferred embodiment of the invention is now more particularly described with reference to the accompanying drawings, wherein:
Figure 1 is a sectional side view of a valve actuator including various features of the invention, and
Figure 2 is a sectional side view of a prior art valve actuator.
Although Figure 1 shows a preferred valve actuator embodying the present invention, it is perhaps best to first discuss the prior art actuator of Figure 2.
As seen in Figure 2, a prior art valve actuator 10 includes a hydraulic cylinder 12 with a piston 14 slidably mounted therein. A piston rod 16 is mounted at a first side 18 of the piston 14 to extend outwardly of the cylinder 12 through a hole 20 in the lower end 22 of the cylinder. A sealing device 24 encircles the rod 16 at hole 20 to prevent the loss of hydraulic oil from the cylinder 12 while allowing sliding movement of the rod 16 therethrough. An extended end 26 of the rod 16 is joined to a valve stem 28 of a valve 30 on which the actuator 10 is mounted.
A hydraulic pump and manifold system 32 (shown in phantom) can be of any type well known in the art which is capable of providing hydraulic fluid for controlled positioning of the piston 14. An oil reservoir 34 (also shown in phantom) can extend at least partially around the valve actuator 10 to provide a supply of hydraulic oil for the pump and manifold 32 when the valve is opened and a collector for hydraulic oil when the valve is closed.
To provide the positive means needed for closing the valve 30, the prior art valve actuator 10 further includes a high pressure gas cylinder 36 which encircles the cylinder 12 to completely encase it therein. The lower end of the gas cylinder 36 is, like the cylinder 12, sealably mounted to a flange member 38 which includes a means in the form of bolts 40 for securing the actuator 10 to the upper structure 42 of the valve 30.
The upper end 44 of the cylinder 36 includes a sealed closure 46 to generally confine the gas between the flange member 38 and the end closure 46 and to generally define a high pressure gas accumulator 48 in the space between the cylinders 36 and 12.
The end closure 46 includes a gas valve 50 for precharging the accumulator 48 to a desired, predetermined pressure when the piston 14 is in a lowered position (at the opposite end of the cylinder from the position shown in Figure 2). Since there is an access space 52 between the upper end 54 of cylinder 12 and the end closure 46, the gas is free to flow between the accumulator 48 and the upper portion of cylinder 12 to act on the second side 56 of the piston 14. A pressure transducer 58, also provided in the end closure 46, is used for monitoring the pressure of the gas.
With the piston 14 at the lower end of the cylinder 12, the piston rod 16 has acted on the stem 28 to close the valve 30. When it is desired to open the valve 30, the pump and manifold 32 are employed to pump hydraulic oil through a supply and discharge line 60 integrally formed in the flange member 38. As the hydraulic oil acts on the first side 18 of the piston 14, the rod 16 and stem 28 begin to move upwardly. The hydraulic pressure is of sufficient magnitude to overcome the precharged gas pressure in the upper portion of the cylinder 12 and the accumulator 48. The pumping of hydraulic oil is continued until the piston 14 is relocated at the upper end 54 of the cylinder 12, as shown in Figure 2, at which time the valve 30 will be in the open position.In this position, the high pressure gas will be primarily contained within the accumulator 48 and will be at a significantly higher pressure than the precharge pressure because of the decreased volume resulting from piston movement.
If rapid closure of the valve 30 is desired, because of a line rupture or some other operational requirement, the pump and manifold system 32 is remotely controlled to allow evacuation of the hydraulic oil from the cylinder 12 by way of the supply and discharge line 60. With resistance to piston movement removed, the high pressure gas in the accumulator 48 will act on the second side 56 of the piston 14 to rapidly close the valve.
To ensure reliable operation of the actuator 10, the piston 14 is provided a pair of piston sealing rings 62 to prevent the passage of oil and/or gas around the piston 14. As an added protection against the formation of a gas-hydraulic oil mixture, a circumferential groove 65 between the rings 62 and a drain line 66 are formed in the piston 14 and rod 16. The drain line 66 extends downwardly through the interior of the rod 16 to a discharge location below the cylinder 12 which allows access thereto for monitoring the effectiveness of the sealing rings 62.
Although the valve actuator 10 described hereinabove has provided an adequate means for rapidly closing balanced globe valves in nuclear power plants, it does include features which require serious consideration when designing a power plant. Because of the potential hazard to the general population which a nuclear power plant is said to present a number of rigid and extensive safety requirements must be met.
As stated hereinabove, a valve actuator must be capable of meeting certain closure time requirements in case of dangerous line rupture. However, to ensure that a sufficient force is available to rapidly close the valve, the encircling cylindrical configuration of the prior art actuator 10 requires a relatively heavy, large structure to retain the gas at expected, high operating pressures. The weight and size of the outer cylinder significantly contribute to the total eccentric weight of a valve which is to be installed in the system. The amount of weight extending in a cantilevered fashion from the feedwater or steam line presents structural problems which must be solved when seismic shock requirements are considered.The double cylinder design includes a large flange member 38, in order to provide a support means for the larger diameter cylinder, which further increases the weight of the actuator.
As seen in Figure 1, the preferred valve actuator 70 embodying present invention also includes a similar hydraulic cylinder 72, piston 74 and piston rod 76 configuration. A similar oil reservoir, pump and manifold system (not shown) are mounted to the actuator 70 for control of hydraulic oil into and out of a supply and discharge line 78, located at the lower end 80 of the cylinder 72. However, in the preferred embodiment, the outer cylinder has been eliminated by providing a high pressure gas accumulator 82 having a part-spherical shaped pressure wall 84. The pressure wall 84 includes an opening 86 therethrough having a diameter generally matching the outer diameter of the cylinder 72. Interior threads 88 of the opening 86 are adapted to engage matching threads 90 about the outer surface 91 of the cylinder 72 for positive retention of the cylinder 72 therein.Accordingly, the pressure wall 84 is intersected by the cylinder 72 as it is mounted on the cylinder 72 at threads 90. So mounted, the upper end 92 of the cylinder 72 is disposed within the interior 94 of the accumulator 82 to afford free communication of the interior 94 with the upper side 96 of the piston 74. As with actuator 10, the upper end 92 of the cylinder 72 is generally opened for free gas communication to the interior of the cylinder 72 when the piston 74 is lowered. A gas valve 98 and a pressure transducer 100 again allow precharging of the accumulator and monitoring of the gas pressure therein.
A flexible metallic seal 102 at the lower end of the pressure wall 84 encircles the outer surface 91 of the cylinder 72 and is welded thereto to ensure retention of the high pressure gas.
Since the spherical shaped pressure wall 84 only partially receives the cylinder 72 therein, the accumulator 82 does not extend to the lower end 80 of the cylinder 72. This eliminates the need for so large a flange member as 38 of the prior art actuator 10.
Further, although the actuator 70 might include a similar flange member but one having a small diameter to extend around the cylinder 72, the lower end 80 of the cylinder 72 and the upper structure 104 of the valve have been adapted to be joined by a conventional yoke lock ring 106 which is well known in the art. As a result, the actuator 70 accommodates an improved mounting means while affording some reduction in weight and material.
It has also been found by the present invention that providing an accumulator with a part-spherical shape, despite the fact that it is intersected by a cylinder, affords a significantly better gas volume to overall weight ratio than can be obtained with the accumulator of the prior art configuration.
It should be noted that the preferred accumulator is not a complete sphere because of the intersection of its wall by the hydraulic cylinder. In the example shown in
Figure 1 the outside diameter of cylinder 72 is substantially half that of part-spherical wall 84, but in some embodiments the diameter of the cylinder may approach the diameter of the part-spherical shaped wall, and it is apparent that the exact shape of the lower part (as viewed in Figure 1) of the accumulator then becomes less significant.
For example, it might be convenient for manufacturing reasons to cast the hydraulic cylinder with an integrally formed upwardly flared non-spherical frustrum section thereon which section would serve as the lower part of the accumulator. A hemispherical upper section could be welded on the frustrum to provide an accumulator which is mounted on the cylinder. In any case, an accumulator which includes a substantial portion which lies within at least a hemi-spherical wall portion will possess the desired strength characteristics which makes the improved gas volume to overall weight ratio possible.
To verify the advantages of the preferred actuator, a computer analysis of comparable actuator configurations for a balanced, 32" globe valve of the type mentioned hereinabove was conducted. A comparison was made of material weight (prior to machining), material costs, and manufacturing time expected. The dimensions of the cylinder 72 and the generally spherical shaped pressure wall 84 and the relative amount of insertion of the cylinder 72 within the wall 84 were determined from various combinations of standard cylinder sizes and hemisphere sizes available for use in manufacturing.
Accordingly, the preferred configuration is not intended to present the optimum pressure to weight ratio design but rather one which may be practically supplied. Nevertheless, it was found that a prior art actuator 10, including the hydraulic cylinder, piston, piston rod, etc., would require about 3,350 pounds of material and about 120 hours of time to manufacture. A comparable valve actuator 70 incorporating the above described features of the present invention would weigh only about 1,200 pounds at a material cost which is less than half that of the actuator 10 and require only about 75 hours of manufacturing time.
With the savings of material by weight and cost each being greater than one-half and the manufacturing time being reduced by about one-third, the preferred actuator 70 obviously represents a substantial improvement over the prior art actuator 10 while continuing to provide effective, reliable valve closure. Additionally, the
aforementioned weight reduction further ensures safe operation of the valve even if the power plant were subjected to seismic shock forces of a higher magnitude than the prior art actuator would have been able to to withstand.
With an increasing interest in the use of gate valves in nuclear power plant systems, the advantages described hereinabove become even more significant. It should initially be understood that a comparable sized, unbalanced gate valve requires only a slightly longer piston closing stroke than a balanced globe valve, but that the expected, required opening and closing forces would be greatly increased, on an order of about five times the force needed for the globe valve. For the same stroke, this increased force, in turn, requires the piston to be provided a larger diameter for the gas to be maintained at a similar pressure while still ensuring rapid closure. As a result, the hydraulic cylinder would have a diameter over twice as large as the embodiments shown in Figures 1 and 2 although the= height would be similar.With the cylinder having greater than twice the original volume, the volume of the accumulator would also be more than doubled to generate the same gas pressures through valve operation.
It can be seen that to employ an accumulator, as shown in Figure 2, with an outer cylinder to encircle a larger hydraulic cylinder while retaining the same gas pressure would significantly increase its diameter and weight requirements. Initial evaluations indicate that the outside diameter would extend well beyond the outside dimensions of the valve to make installation in the system highly impractical and that the weight would make compliance with seismic requirements highly unlikely. In short, the preferred configuration makes possible the practical use of a hydraulic-gas actuator for rapid closure of some valves which would not heretofore have been possible.
While the embodiment discussed hereinabove represents the preferred valve
actuator for a particular large valve utilizing
available manufacturing material, it should
be obvious that significant alterations may be made while remaining within the scope
of the invention as claimed. It might, for
example, be found that the most efficient
closing pressure to weight ratio can be
obtained by decreasing the amount of
insertion of the hydraulic cylinder into
the accumulator. On the other hand,
where height limitations within a
particular power plant installation
dictate, the length of insertion of
the hydraulic cylinder within the
accumulator might approach the diameter
of the accumulator.Additionally, the
method employed to mount the spherical
shaped pressure wall on the cylinder
and the method of mounting the
cylinder to the valve might be changed to
any number of means well known in the
valve manufacturing art. Similarly, although
general manufacturing procedures and
seismic considerations would presently
seem to indicate. otherwise, it would be
possible, if desired, to mount the spherical
shaped pressure wall in an eccentric manner with respect to the hydraulic cylinder WHAT WE CLAIM IS:
1.A valve actuator capable of being
mounted on a valve in alignment with a
valve stem which is moved to open and
close said valve, said actuator comprising: a
hydraulic cylinder; a piston slidably
mounted within said cylinder; a piston rod joined to said piston and extending axially
outwardly through an opening in a first end
of said cylinder for sealed, sliding
movement therethrough, said rod having an
outer end for connection to said valve stem
in use; and a high pressure gas accumulator
mounted on said cylinder, said accumulator
having a pressure wall which is intersected
by said cylinder to locate a second end of
said cylinder within said accumulator to
allow communication of the interior of said
accumulator with the cylinder, said pressure
wall including a hemispherically shaped
portion.
2. The valve actuator as set forth in Claim
1, where said pressure wall includes a
threaded hole therethrough to receive a matching threaded portion of said cylinder.
3. The valve actuator as set forth in Claim
1 or 2, wherein said pressure wall is joined to
said cylinder by a circumferential weld
therebetween to prevent leakage of high
pressure gas from said accumulator.
4. The valve actuator as set forth in Claim
1, 2 or 3, wherein said cylinder includes a
substantial portion thereof which is located
outwardly of said accumulator.
5. The valve actuator as set forth in any
**WARNING** end of DESC field may overlap start of CLMS **.
Claims (8)
- **WARNING** start of CLMS field may overlap end of DESC **.material and about 120 hours of time to manufacture. A comparable valve actuator 70 incorporating the above described features of the present invention would weigh only about 1,200 pounds at a material cost which is less than half that of the actuator 10 and require only about 75 hours of manufacturing time.With the savings of material by weight and cost each being greater than one-half and the manufacturing time being reduced by about one-third, the preferred actuator 70 obviously represents a substantial improvement over the prior art actuator 10 while continuing to provide effective, reliable valve closure. Additionally, the aforementioned weight reduction further ensures safe operation of the valve even if the power plant were subjected to seismic shock forces of a higher magnitude than the prior art actuator would have been able to to withstand.With an increasing interest in the use of gate valves in nuclear power plant systems, the advantages described hereinabove become even more significant. It should initially be understood that a comparable sized, unbalanced gate valve requires only a slightly longer piston closing stroke than a balanced globe valve, but that the expected, required opening and closing forces would be greatly increased, on an order of about five times the force needed for the globe valve. For the same stroke, this increased force, in turn, requires the piston to be provided a larger diameter for the gas to be maintained at a similar pressure while still ensuring rapid closure. As a result, the hydraulic cylinder would have a diameter over twice as large as the embodiments shown in Figures 1 and 2 although the= height would be similar.With the cylinder having greater than twice the original volume, the volume of the accumulator would also be more than doubled to generate the same gas pressures through valve operation.It can be seen that to employ an accumulator, as shown in Figure 2, with an outer cylinder to encircle a larger hydraulic cylinder while retaining the same gas pressure would significantly increase its diameter and weight requirements. Initial evaluations indicate that the outside diameter would extend well beyond the outside dimensions of the valve to make installation in the system highly impractical and that the weight would make compliance with seismic requirements highly unlikely. In short, the preferred configuration makes possible the practical use of a hydraulic-gas actuator for rapid closure of some valves which would not heretofore have been possible.While the embodiment discussed hereinabove represents the preferred valve actuator for a particular large valve utilizing available manufacturing material, it should be obvious that significant alterations may be made while remaining within the scope of the invention as claimed. It might, for example, be found that the most efficient closing pressure to weight ratio can be obtained by decreasing the amount of insertion of the hydraulic cylinder into the accumulator. On the other hand, where height limitations within a particular power plant installation dictate, the length of insertion of the hydraulic cylinder within the accumulator might approach the diameter of the accumulator.Additionally, the method employed to mount the spherical shaped pressure wall on the cylinder and the method of mounting the cylinder to the valve might be changed to any number of means well known in the valve manufacturing art. Similarly, although general manufacturing procedures and seismic considerations would presently seem to indicate. otherwise, it would be possible, if desired, to mount the spherical shaped pressure wall in an eccentric manner with respect to the hydraulic cylinder WHAT WE CLAIM IS: 1.A valve actuator capable of being mounted on a valve in alignment with a valve stem which is moved to open and close said valve, said actuator comprising: a hydraulic cylinder; a piston slidably mounted within said cylinder; a piston rod joined to said piston and extending axially outwardly through an opening in a first end of said cylinder for sealed, sliding movement therethrough, said rod having an outer end for connection to said valve stem in use; and a high pressure gas accumulator mounted on said cylinder, said accumulator having a pressure wall which is intersected by said cylinder to locate a second end of said cylinder within said accumulator to allow communication of the interior of said accumulator with the cylinder, said pressure wall including a hemispherically shaped portion.
- 2. The valve actuator as set forth in Claim 1, where said pressure wall includes a threaded hole therethrough to receive a matching threaded portion of said cylinder.
- 3. The valve actuator as set forth in Claim 1 or 2, wherein said pressure wall is joined to said cylinder by a circumferential weld therebetween to prevent leakage of high pressure gas from said accumulator.
- 4. The valve actuator as set forth in Claim 1, 2 or 3, wherein said cylinder includes a substantial portion thereof which is located outwardly of said accumulator.
- 5. The valve actuator as set forth in anyone of the preceding claims wherein substantially the whole of the pressure wall from its junction with the cylinder forms a part-sphere.
- 6. The valve actuator as set forth in Claim 5 wherein the outside diameter of the cylinder is substantially one half of the outside diameter of the pressure wall.
- 7. The valve actuator as set forth in any one of the preceding claims wherein the pressure wall is mounted co-axially on the cylinder. ~~~~~~~~~~~~~~~~~~~~
- 8. A valve actuator substantially as hereinbefore described with reference tc and as shown in Figure 1 of the accompany drawings.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66378776A | 1976-03-04 | 1976-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
GB1566504A true GB1566504A (en) | 1980-04-30 |
Family
ID=24663262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB329477A Expired GB1566504A (en) | 1976-03-04 | 1977-01-27 | Valve actuator |
Country Status (11)
Country | Link |
---|---|
JP (1) | JPS5845627B2 (en) |
BE (1) | BE852020A (en) |
CA (1) | CA1051408A (en) |
CH (1) | CH601712A5 (en) |
DE (1) | DE2708250A1 (en) |
ES (1) | ES456521A1 (en) |
FR (1) | FR2343185A1 (en) |
GB (1) | GB1566504A (en) |
IT (1) | IT1075074B (en) |
NL (1) | NL7702298A (en) |
SE (1) | SE434182B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008068492A1 (en) * | 2006-12-07 | 2008-06-12 | Stannah Lifts Limited | Improvements in or relating to drive systems |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4216703A (en) * | 1978-04-17 | 1980-08-12 | Rockwell International Corporation | Valve actuator |
FR2547015B1 (en) * | 1983-06-06 | 1985-07-26 | Amri | ACTUATOR WITH PNEUMATIC ENERGY ACCUMULATOR, PARTICULARLY FOR TAP |
DE19932743C2 (en) * | 1999-07-14 | 2003-10-09 | Thomas Scholzen | Control valve system with pneumatic actuator |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2943624A (en) * | 1958-04-17 | 1960-07-05 | Mavis M Alquist | Quantitative indicator for syringes |
US2943642A (en) * | 1958-07-07 | 1960-07-05 | Cleveland Pneumatic Ind Inc | Liquid spring accumulator |
US3122169A (en) * | 1960-05-26 | 1964-02-25 | Menasco Mfg Company | Accumulator |
US3248879A (en) * | 1965-04-22 | 1966-05-03 | Acf Ind Inc | Constant pressure source for valves |
FR1539749A (en) * | 1967-07-05 | 1968-09-20 | Creusot Forges Ateliers | Fluid accumulator with two pressure levels |
FR2127281A5 (en) * | 1971-03-03 | 1972-10-13 | Ellingsen Karl | |
US3962956A (en) * | 1974-11-19 | 1976-06-15 | Greer Hydraulics, Inc. | Hydropneumatic valve actuator |
-
1977
- 1977-01-27 GB GB329477A patent/GB1566504A/en not_active Expired
- 1977-01-27 CA CA270,553A patent/CA1051408A/en not_active Expired
- 1977-02-11 CH CH171877A patent/CH601712A5/xx not_active IP Right Cessation
- 1977-02-25 DE DE19772708250 patent/DE2708250A1/en not_active Ceased
- 1977-02-28 SE SE7702173A patent/SE434182B/en not_active IP Right Cessation
- 1977-03-01 FR FR7705952A patent/FR2343185A1/en active Granted
- 1977-03-01 JP JP52022129A patent/JPS5845627B2/en not_active Expired
- 1977-03-03 BE BE2055705A patent/BE852020A/en not_active IP Right Cessation
- 1977-03-03 IT IT2084577A patent/IT1075074B/en active
- 1977-03-03 NL NL7702298A patent/NL7702298A/en active Search and Examination
- 1977-03-04 ES ES456521A patent/ES456521A1/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008068492A1 (en) * | 2006-12-07 | 2008-06-12 | Stannah Lifts Limited | Improvements in or relating to drive systems |
Also Published As
Publication number | Publication date |
---|---|
CA1051408A (en) | 1979-03-27 |
BE852020A (en) | 1977-07-01 |
NL7702298A (en) | 1977-09-06 |
ES456521A1 (en) | 1978-02-16 |
SE434182B (en) | 1984-07-09 |
JPS5845627B2 (en) | 1983-10-11 |
JPS52107619A (en) | 1977-09-09 |
IT1075074B (en) | 1985-04-22 |
SE7702173L (en) | 1977-09-05 |
FR2343185B1 (en) | 1983-02-18 |
DE2708250A1 (en) | 1977-09-08 |
FR2343185A1 (en) | 1977-09-30 |
CH601712A5 (en) | 1978-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3817278A (en) | Spring closing check valve | |
US4174656A (en) | Valve actuator | |
US3605793A (en) | Safety relief valve | |
US4264054A (en) | Metal-to-metal seat hub seals | |
US3086745A (en) | Hydraulic operator for reciprocating gate valves | |
US4311297A (en) | Pressure insensitive valve | |
RU2267453C2 (en) | Aerosol can with pressure control valve | |
US4250916A (en) | Check valve with damping device | |
KR860003615A (en) | Surge Suppression Check Valve | |
JP2015517068A (en) | Guide member used in valve actuator assembly | |
CA1051408A (en) | Valve actuator | |
US4241816A (en) | Self-locking shock absorber with volume compensation | |
US3026084A (en) | Valve construction | |
US2230961A (en) | Leak alarm for refrigerating systems | |
US4977957A (en) | Subsurface well safety valve with light weight components | |
US5058861A (en) | Bellows seal and method for assembling | |
CA1145650A (en) | Replaceable bladder accumulator device | |
US3063469A (en) | Three-way valve | |
US4351363A (en) | Hydro-pneumatic pressure vessel | |
CA1104468A (en) | Valve actuator | |
US3675896A (en) | Valve including resilient seat washer with abutting rigid annular washer | |
CN1089414C (en) | New-type safety valve | |
CN101666388B (en) | Pressure relief valve | |
CN208503585U (en) | A kind of explosion-proof ball valve of noise reduction | |
US4257714A (en) | Device for coupling a pair of rods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PS | Patent sealed | ||
732 | Registration of transactions, instruments or events in the register (sect. 32/1977) | ||
PE20 | Patent expired after termination of 20 years |
Effective date: 19970126 |