GB0302866D0 - Dispersion manipulating fibre - Google Patents

Dispersion manipulating fibre

Info

Publication number
GB0302866D0
GB0302866D0 GBGB0302866.9A GB0302866A GB0302866D0 GB 0302866 D0 GB0302866 D0 GB 0302866D0 GB 0302866 A GB0302866 A GB 0302866A GB 0302866 D0 GB0302866 D0 GB 0302866D0
Authority
GB
United Kingdom
Prior art keywords
manipulating
fibre
dispersion
manipulating fibre
dispersion manipulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GBGB0302866.9A
Other versions
GB2380812A (en
GB2380812B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Fibre AS
Original Assignee
Crystal Fibre AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Fibre AS filed Critical Crystal Fibre AS
Publication of GB0302866D0 publication Critical patent/GB0302866D0/en
Publication of GB2380812A publication Critical patent/GB2380812A/en
Application granted granted Critical
Publication of GB2380812B publication Critical patent/GB2380812B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02233Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range having at least two dispersion zero wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • G02B6/02242Low dispersion slope fibres having a dispersion slope <0.06 ps/km/nm2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03688Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Endoscopes (AREA)
  • Light Guides In General And Applications Therefor (AREA)
GB0302866A 2000-07-21 2001-07-20 Microstructured optic fibre with inner and outer claddings Expired - Lifetime GB2380812B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DKPA200001125 2000-07-21
US22345100P 2000-08-04 2000-08-04
DKPA200001405 2000-09-21
DKPA200100227 2001-02-12
DKPA200101014 2001-06-28
PCT/DK2001/000511 WO2002012931A2 (en) 2000-07-21 2001-07-20 Dispersion manipulating fibre

Publications (3)

Publication Number Publication Date
GB0302866D0 true GB0302866D0 (en) 2003-03-12
GB2380812A GB2380812A (en) 2003-04-16
GB2380812B GB2380812B (en) 2004-12-29

Family

ID=27512988

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0302866A Expired - Lifetime GB2380812B (en) 2000-07-21 2001-07-20 Microstructured optic fibre with inner and outer claddings

Country Status (3)

Country Link
AU (1) AU2001281741A1 (en)
GB (1) GB2380812B (en)
WO (1) WO2002012931A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266275B2 (en) 2002-03-15 2007-09-04 Crystal Fibre A/S Nonlinear optical fibre method of its production and use thereof
JP4158391B2 (en) * 2002-03-25 2008-10-01 住友電気工業株式会社 Optical fiber and manufacturing method thereof
WO2003100488A1 (en) * 2002-05-23 2003-12-04 Crystal Fibre A/S Optical waveguide, method of its production, and its use
DE10330361A1 (en) * 2003-07-01 2005-02-03 IAP-Institut für angewandte Photonik e.V. Photonic crystal fiber, to generate a super continuum in a wide spectral range, has a center fiber flanked by metal conductors within a mantle shrouding forming inner and outer hollow zones
JP2004177817A (en) * 2002-11-28 2004-06-24 Sumitomo Electric Ind Ltd Optical fiber and optical module
DE10301624A1 (en) * 2003-01-17 2004-07-29 Kwangju Institute Of Science And Technology Mode filtering and mode selection for multimode optical fibre with core and envelope, which has periodic index structure with rising reflection capacity of envelope only for specified transversal mode
US7414780B2 (en) 2003-06-30 2008-08-19 Imra America, Inc. All-fiber chirped pulse amplification systems
EP1788415A4 (en) * 2004-07-13 2008-11-26 Fujikura Ltd Hole assist type holey fiber and low bending loss multimode holey fiber
JP2006126725A (en) * 2004-11-01 2006-05-18 Sumitomo Electric Ind Ltd Optical fiber
US20060204190A1 (en) * 2005-03-11 2006-09-14 Massachusetts Institute Of Technology Large mode-area microstructure optical fiber
US7800818B2 (en) 2005-07-08 2010-09-21 Nkt Photonics A/S Blue extended super continuum light source
FR2893149B1 (en) 2005-11-10 2008-01-11 Draka Comteq France OPTICAL FIBER MONOMODE.
FR2899693B1 (en) 2006-04-10 2008-08-22 Draka Comteq France OPTICAL FIBER MONOMODE.
WO2008053922A1 (en) * 2006-11-01 2008-05-08 Fujikura Ltd. Photonic bandgap fiber
US8064128B2 (en) 2006-12-08 2011-11-22 Nkt Photonics A/S Deep blue extended super continuum light source
GB0719376D0 (en) 2007-10-03 2007-11-14 Univ Bath Hollow-core photonic crystal fibre
CN102099711B (en) 2007-11-09 2014-05-14 德雷卡通信技术公司 Microbend-resistant optical fiber
FR2930997B1 (en) 2008-05-06 2010-08-13 Draka Comteq France Sa OPTICAL FIBER MONOMODE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
GB9713422D0 (en) * 1997-06-26 1997-08-27 Secr Defence Single mode optical fibre

Also Published As

Publication number Publication date
AU2001281741A1 (en) 2002-02-18
WO2002012931A3 (en) 2002-05-30
GB2380812A (en) 2003-04-16
WO2002012931A2 (en) 2002-02-14
GB2380812B (en) 2004-12-29

Similar Documents

Publication Publication Date Title
AU2001282751A1 (en) Sizing dispersion
EP1337318A4 (en) Fibre membrane arrangement
AU2001288215A1 (en) Magnetotherapeutic device with bio-ceramic fibers
GB0302866D0 (en) Dispersion manipulating fibre
GB0031463D0 (en) Fibre laser
AU4693201A (en) Optical fiber
AU7570401A (en) Optical fibre cable
AU6674801A (en) Visual-servoing optical microscopy
GB0025080D0 (en) Fibre and its production
AU3415301A (en) Optical fiber
AU5267801A (en) Optical fiber
AU2001280363A1 (en) Sizing dispersion
IL151735A0 (en) Dispersion compensator
AU2683201A (en) Flat cable
AU6018101A (en) Cable
GB0030568D0 (en) Cable entry ports
AU4073001A (en) Calender
GB0022165D0 (en) Cladding
AU2001267928A1 (en) Dispersion section
EP1340110A4 (en) Fiber-optic connector
GB0015210D0 (en) Fibre riser
GB2384494B (en) Calender
GB0022434D0 (en) Microscope
GB0026147D0 (en) Fibre link
GB0019324D0 (en) Fibres

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20210719