FR3140439A1 - Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers - Google Patents

Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers Download PDF

Info

Publication number
FR3140439A1
FR3140439A1 FR2210079A FR2210079A FR3140439A1 FR 3140439 A1 FR3140439 A1 FR 3140439A1 FR 2210079 A FR2210079 A FR 2210079A FR 2210079 A FR2210079 A FR 2210079A FR 3140439 A1 FR3140439 A1 FR 3140439A1
Authority
FR
France
Prior art keywords
transducer
spectral
matrix
fti
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2210079A
Other languages
French (fr)
Inventor
Guillemette Ribay
Ekaterina Iakovleva
Maxance MARMONIER
Sébastien Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR2210079A priority Critical patent/FR3140439A1/en
Priority to PCT/EP2023/073878 priority patent/WO2024074252A1/en
Publication of FR3140439A1 publication Critical patent/FR3140439A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

L’invention concerne une méthode d’imagerie ultrasonore d’un objet ayant deux faces opposées, à partir d’un couple de transducteurs multi-éléments comprenant un transducteur d’émission à L éléments et un transducteur de réception à N éléments, placés chacun sur la même face ou sur deux faces opposées de l’objet à imager. L’invention permet de faciliter l’imagerie en temps réel de défauts de forme et d’orientation quelconques dans des structures solides. Pour cela, l’algorithme décrit dans la demande WO 2020/128344A1 est modifié en ajoutant une étape de prise en compte de la distance entre les deux transducteurs dans l’écriture du spectre de l’image en fonction du spectre des signaux reçus. On ajoute les coordonnées du centre du récepteur qui sont alors distinctes de celui de l’émetteur. L’expression de l’onde cylindrique (ou sphérique en 3D) doit alors tenir compte de cette différence entre positions du transducteur multiéléments émetteur et du transducteur multiéléments récepteur. Figure 3The invention relates to a method of ultrasonic imaging of an object having two opposite faces, from a pair of multi-element transducers comprising a transmission transducer with L elements and a reception transducer with N elements, each placed on the same side or on two opposite sides of the object to be imaged. The invention makes it possible to facilitate real-time imaging of any shape and orientation defects in solid structures. For this, the algorithm described in application WO 2020/128344A1 is modified by adding a step of taking into account the distance between the two transducers in writing the spectrum of the image as a function of the spectrum of the signals received. We add the coordinates of the center of the receiver which are then distinct from that of the transmitter. The expression of the cylindrical wave (or spherical in 3D) must then take into account this difference between positions of the transmitting multi-element transducer and the receiving multi-element transducer. Figure 3

Description

Procédé d’imagerie ultrasonore par transformée de Fourier multidimensionnelle à l’aide de deux transducteurs multiéléments distinctsUltrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers

L’invention concerne le domaine de l’imagerie ultrasonore au moyen de transducteurs à ultrasons multiéléments, appliquée au contrôle non destructif par ultrasons d’objets.The invention relates to the field of ultrasonic imaging using multi-element ultrasonic transducers, applied to non-destructive ultrasonic testing of objects.

L’invention porte sur un procédé d’imagerie ultrasonore par transformée de Fourier mutli-dimensionnelle qui utilise deux transducteurs multiéléments distincts afin de permettre l’imagerie de certains types de défauts dans une structure solide.A multi-dimensional Fourier transform ultrasound imaging method uses two separate multi-element transducers to enable the imaging of certain types of defects in a solid structure.

L’invention s’applique généralement à la détection et l’imagerie de défauts du type porosité, fissure, inclusion ou autre dans une structure solide correspondant à une pièce ou un objet à imager qui peut être constitué de différents matériaux (métal, béton, composite…) et qui présente au moins une surface plane sur laquelle peuvent être positionnés deux transducteurs multiéléments.The invention generally applies to the detection and imaging of defects of the porosity, crack, inclusion or other type in a solid structure corresponding to a part or an object to be imaged which can be made up of different materials (metal, concrete, composite…) and which has at least one flat surface on which two multi-element transducers can be positioned.

Des défauts de fabrication ou de fatigue peuvent apparaitre dans des composants industriels, notamment métalliques. Ces défauts peuvent prendre toute orientation ou profondeur, il est donc nécessaire de disposer d’une méthode d’imagerie ultrasonore capable de les détecter avec un bon rapport signal à bruit, et qui soit compatible avec une imagerie en temps réel. En particulier, les défauts de type fissures d’épaisseur fine situées environ à mi-épaisseur de pièces épaisses peuvent être particulièrement difficiles à détecter avec un unique capteur. Un objectif est donc de proposer une méthode d’imagerie rapide capable de détecter des défauts présentant une orientation défavorable.Manufacturing or fatigue defects can appear in industrial components, particularly metallic ones. These defects can take any orientation or depth, it is therefore necessary to have an ultrasound imaging method capable of detecting them with a good signal-to-noise ratio, and which is compatible with real-time imaging. In particular, defects such as thin cracks located approximately halfway through the thickness of thick parts can be particularly difficult to detect with a single sensor. An objective is therefore to propose a rapid imaging method capable of detecting defects presenting an unfavorable orientation.

Il existe principalement deux types de méthodes d’imagerie en contrôle non destructif par ultrasons qui peuvent être séparées en méthodes dites ‘pulse-echo’ d’une part et en méthodes dites ‘pitch-catch’ d’autre part.There are mainly two types of imaging methods in non-destructive testing by ultrasound which can be separated into so-called 'pulse-echo' methods on the one hand and so-called 'pitch-catch' methods on the other hand.

On appelle méthode de contrôle ‘pulse-echo’ une méthode dans laquelle le même traducteur (mono ou multiéléments) est utilisé comme émetteur et récepteur d’ondes ultrasonores. Les plus anciennes méthodes ‘pulse-echo’ consistaient à utiliser les signaux enregistrés par un traducteur mono-élément (capable à la fois d’émettre et recevoir des ultrasons) en une multitude de positions de contrôle. La cadence d’imagerie était alors limitée par la vitesse de déplacement du traducteur, et les performances limitées par la forme du faisceau émis. Cette technique a été suivie d’une méthode exploitant un traducteur multiéléments (c’est-à-dire comportant un ensemble d’éléments pouvant émettre ou recevoir des ondes ultrasonores) dont l’excitation des différents éléments à des instants bien choisis permettait de moduler la forme du faisceau ultrasonore (et donc la profondeur inspectée) ; couplé à un déplacement mécanique du traducteur, cette technique souffrait des mêmes limitations de cadence (et impossibilité d’imagerie en temps réel).A pulse-echo control method is a method in which the same translator (single or multi-element) is used as transmitter and receiver of ultrasonic waves. The oldest 'pulse-echo' methods consisted of using the signals recorded by a single-element translator (capable of both emitting and receiving ultrasound) in a multitude of control positions. The imaging rate was then limited by the speed of movement of the translator, and the performance limited by the shape of the emitted beam. This technique was followed by a method using a multi-element translator (that is to say comprising a set of elements capable of emitting or receiving ultrasonic waves) whose excitation of the different elements at well-chosen instants made it possible to modulate the shape of the ultrasound beam (and therefore the depth inspected); coupled with mechanical movement of the translator, this technique suffered from the same cadence limitations (and impossibility of real-time imaging).

En 2005 (Holmes et al, ‘Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation’, NDT&E Int) une méthode d’imagerie avec une seule position du traducteur multiéléments a été proposée ; elle consiste à émettre successivement avec chacune des voies du traducteur, enregistrer séparément les signaux sur chaque voie en réception et enfin appliquer un algorithme de reconstruction sur ces signaux dans le domaine temporel appelé TFM (Total Focusing Method). La cadence, plus élevée, reste encore limitée dès lors qu’un grand nombre d’éléments est utilisé pour l’inspection.In 2005 (Holmes et al, ‘Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation’, NDT&E Int) an imaging method with a single position of the multi-element translator was proposed; it consists of transmitting successively with each of the channels of the translator, recording the signals separately on each receiving channel and finally applying a reconstruction algorithm on these signals in the time domain called TFM (Total Focusing Method). The rate, which is higher, still remains limited when a large number of elements are used for the inspection.

Des améliorations de l’algorithme TFM ont par la suite été proposées afin d’en accélérer la cadence et de rehausser le rapport signal sur bruit des images. Parmi elles, on note l’imagerie par ondes planes (Plane Wave Imaging), qui consiste à utiliser tous les éléments du transducteur simultanément en émission, avec des instants d’excitation sur chaque voie bien calculés pour conduire à la génération d’une onde ultrasonore plane dans le milieu selon un angle souhaité. Les signaux sont ensuite enregistrés sur chaque voie en réception avant d’appliquer un algorithme de reconstruction sur les signaux dans le domaine temporel (voir par exemple : “Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging”, L. Lejeune et al, Ultrasonics 2016). Si le temps d’acquisition des signaux est alors réduit, la cadence d’imagerie reste limitée par la complexité algorithmique.Improvements to the TFM algorithm were subsequently proposed in order to accelerate its speed and improve the signal-to-noise ratio of the images. Among them, we note plane wave imaging, which consists of using all the elements of the transducer simultaneously in emission, with excitation moments on each channel well calculated to lead to the generation of a wave ultrasound planes in the medium at a desired angle. The signals are then recorded on each reception channel before applying a reconstruction algorithm to the signals in the time domain (see for example: “Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging”, L. Lejeune et al, Ultrasonics 2016). If the signal acquisition time is then reduced, the imaging rate remains limited by the algorithmic complexity.

Enfin un autre axe d’amélioration a été étudié dans la littérature consistant à réduire cette complexité algorithmique en réalisant le post traitement des signaux reçus dans le domaine fréquentiel au lieu du domaine temporel (voir par exemple « 2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing », L. Merabet et al, IEEE-TUFFC 2019 ; ainsi que la demande de brevet FR3090965A1). Cela a permis de réaliser de l’imagerie en temps réel avec un transducteur comportant un grand nombre d’éléments (notamment pour l’imagerie dans un volume).Finally another area of improvement has been studied in the literature consisting of reducing this algorithmic complexity by carrying out post-processing of the signals received in the frequency domain instead of the time domain (see for example “2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing”, L. Merabet et al, IEEE-TUFFC 2019 as well as patent application FR3090965A1). This made it possible to perform real-time imaging with a transducer comprising a large number of elements (particularly for imaging in a volume).

Les méthodes d’inspection dites « pitch-catch », quant à elles, reposent sur l’utilisation de deux capteurs distincts, l’un servant à émettre des ondes ultrasonores, l’autre à les recevoir. L’un des avantages de ce dispositif est la capacité à détecter des défauts proches de la surface d’une structure, en particulier des défauts de type fissures orientées perpendiculairement à la surface de la structure, via l’écho de diffraction sur les extrémités de celle-ci (elles remplacent avantageusement les méthodes pulse-echo pour des défauts peu profonds, ces dernières souffrant d’une zone aveugle proche de la surface) ; on les appelle également ‘méthodes TOFD’ (time of flight diffraction).The so-called “pitch-catch” inspection methods, for their part, are based on the use of two separate sensors, one used to emit ultrasonic waves, the other to receive them. One of the advantages of this device is the ability to detect defects close to the surface of a structure, in particular defects such as cracks oriented perpendicular to the surface of the structure, via the diffraction echo on the ends of the structure. the latter (they advantageously replace pulse-echo methods for shallow defects, the latter suffering from a blind zone close to the surface); they are also called ‘TOFD’ (time of flight diffraction) methods.

La configuration TOFD a également été proposée en combinaison avec des transducteurs multiéléments (voir par exemple « TOFD Inspection with Phased Arrays », C BRILLON et al, 17th WCNDT, 2008 ; ou la demande de brevet EP2605009A1) pour réaliser une image du milieu sans déplacer mécaniquement les transducteurs. Des défauts à diverses profondeurs sont alors imagés, avec un algorithme de reconstruction basé sur les signaux reçus dans le domaine temporel.The TOFD configuration has also been proposed in combination with multi-element transducers (see for example “TOFD Inspection with Phased Arrays”, C BRILLON et al, 17th WCNDT, 2008; or patent application EP2605009A1) to produce an image of the environment without moving mechanically the transducers. Defects at various depths are then imaged, with a reconstruction algorithm based on the signals received in the time domain.

Enfin, outre la configuration ‘TOFD’, des solutions de contrôle à l’aide de capteurs positionnés de part et d’autre d’une structure à faces parallèles existent également (voir par exemple les techniques de l’ingénieur; M Castaings, ‘SIMULATION DU CONTRÔLE NON DESTRUCTIF PAR ULTRASONS’, Cofrend 2008 ; ou encore : ‘ Improving Adhesion Strength Analysis by the Combination of Ultrasonic and Mechanical Tests on Single-Lap Joints’, A Baudot, The journal of adhesion 2014), le plus souvent pour la détection de défauts par phénomène d’ombrage du champ transmis (voir par exemple M. Nieto et al, 6th International Symposium on NDT in Aerospace, 2014 « TTU Phased Array: Quality and Productivity »).Finally, in addition to the 'TOFD' configuration, control solutions using sensors positioned on either side of a structure with parallel faces also exist (see for example engineering techniques; M Castaings, ' SIMULATION OF NON-DESTRUCTIVE TESTING BY ULTRASOUND', Cofrend 2008; detection of defects by shading phenomenon of the transmitted field (see for example M. Nieto et al, 6th International Symposium on NDT in Aerospace, 2014 “TTU Phased Array: Quality and Productivity”).

Les méthodes présentées précédemment reposant sur le post-traitement dans le domaine temporel des signaux enregistrés par un transducteur multiéléments (que ce soit en mode « pulse-echo » ou « pitch catch ») souffrent d’une complexité algorithmique plus élevée que les méthodes d’imagerie dans le domaine fréquentiel, ce qui entraine une cadence d’imagerie plus faible.The methods presented previously based on the post-processing in the time domain of the signals recorded by a multi-element transducer (whether in “pulse-echo” or “pitch catch” mode) suffer from a higher algorithmic complexity than the methods presented previously. imaging in the frequency domain, which results in a lower imaging rate.

Par ailleurs, l’imagerie avec un unique capteur multiéléments (qu’elle soit en fréquentiel ou en temporel) ne permet pas de détecter tous les types de défauts prenant toute orientation. Les méthodes existantes proposent soit une détection dite ‘en mode direct’ (c’est-à-dire sans rebond du faisceau ultrasonore sur le fond de la pièce), soit une détection en mode après rebond. En mode direct, la réponse ultrasonore d’un défaut de type fissure d’orientation proche de la normale à la surface sera très faible (seul un écho de diffraction sur l’extrémité du défaut peut être détecté, mais son amplitude peut être très faible en cas d’ouverture fine de la fissure). En mode après rebond, géométriquement il n’est pas toujours possible de mesurer d’écho spéculaire pour des défauts à mi épaisseur avec un unique capteur, comme illustré sur la qui montre deux exemples d’imagerie d’une pièce P à partir d’un unique transducteur multiéléments TR.Furthermore, imaging with a single multi-element sensor (whether in frequency or time) does not make it possible to detect all types of defects taking any orientation. Existing methods offer either so-called 'direct mode' detection (i.e. without bouncing of the ultrasonic beam on the bottom of the part), or detection in post-bounce mode. In direct mode, the ultrasonic response of a crack-type defect with an orientation close to normal to the surface will be very weak (only a diffraction echo on the end of the defect can be detected, but its amplitude can be very low in case of fine opening of the crack). In post-bounce mode, geometrically it is not always possible to measure specular echo for defects at mid-thickness with a single sensor, as illustrated in the figure. which shows two examples of imaging a part P from a single phased array transducer TR.

Sur la figure de gauche, l’écho spéculaire réfléchi sur le défaut en fond de pièce D revient bien sur le capteur TR. Par contre, sur la figure de droite, le défaut D étant à cœur de la pièce P (et l’ouverture (i.e. dimension latérale) du capteur TR étant limitée par la combinaison de fréquence d’inspection admissible et du nombre d’éléments du transducteur maximal admissible), l’écho spéculaire sur le défaut D ne revient pas au capteur TR.In the figure on the left, the specular echo reflected on the defect at the bottom of room D returns to the TR sensor. On the other hand, in the figure on the right, the defect D being at the heart of the part P (and the opening (i.e. lateral dimension) of the sensor TR being limited by the combination of admissible inspection frequency and the number of elements of the maximum admissible transducer), the specular echo on the fault D does not return to the TR sensor.

Les documents « 2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing », L. Merabet et al, IEEE-TUFFC 2019 et WO 2020/128344A1 décrivent une méthode d’imagerie ultrasonore par transformée de Fourier multidimensionnelle basée sur un unique transducteur multiéléments.The documents “2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing”, L. Merabet et al, IEEE-TUFFC 2019 and WO 2020/128344A1 describe a transform ultrasound imaging method multidimensional Fourier based on a single multi-element transducer.

A partir d’une émission d’ondes planes par le transducteur, les signaux reçus sur chacune des voies de ce même transducteur sont post traités dans le domaine fréquence-nombre d’onde. L’algorithme consiste alors à :

  • Réaliser une transformée de Fourier de la matrice des signaux reçus M(t,xi) à la fois selon l’axe du temps t et selon chacun des axes xi du capteur multi-éléments (1≤i≤N, avec N=1 si le capteur est linéaire et N=2 si le capteur est matriciel)
  • Considérer un modèle simplifié de la propagation des ondes dans le milieu, sous forme d’onde plane en émission jusqu’à un diffuseur, puis onde cylindrique (cas d’une image 2D avec un transducteur linéaire) ou sphérique (cas d’une image 3D avec un transducteur matriciel) depuis le diffuseur jusqu’au récepteur
  • Ecrire le spectre de l’image en fonction du spectre des signaux reçus calculés à l’étape 1
  • En déduire l’image du milieu par transformée de Fourier inverse.
From an emission of plane waves by the transducer, the signals received on each of the channels of this same transducer are post-processed in the frequency-wavenumber domain. The algorithm then consists of:
  • Carry out a Fourier transform of the matrix of received signals M(t,xi) both along the time axis t and along each of the axes xi of the multi-element sensor (1≤i≤N, with N=1 if the sensor is linear and N=2 if the sensor is matrix)
  • Consider a simplified model of the propagation of waves in the medium, in the form of a plane wave in emission up to a diffuser, then a cylindrical wave (case of a 2D image with a linear transducer) or spherical (case of an image 3D with a matrix transducer) from the broadcaster to the receiver
  • Write the spectrum of the image based on the spectrum of the received signals calculated in step 1
  • Deduce the image of the middle by inverse Fourier transform.

La complexité algorithmique est alors réduite par rapport à celle d’une reconstruction des mêmes signaux dans le domaine temporel, permettant un gain significatif de cadence d’imagerie.The algorithmic complexity is then reduced compared to that of a reconstruction of the same signals in the time domain, allowing a significant gain in imaging rate.

Cette solution ne permet cependant pas de répondre au présent problème technique car un seul transducteur multi-éléments est considéré ici et l’algorithme n’est pas compatible en l’état avec l’utilisation d’un transducteur émetteur physiquement distinct d’un transducteur récepteur.This solution does not, however, make it possible to respond to the present technical problem because a single multi-element transducer is considered here and the algorithm is not compatible as it stands with the use of a transmitter transducer physically distinct from a transducer receiver.

Ainsi, aucune méthode existante ne permet d’imager tout type de défaut quelle que soit leur orientation.Thus, no existing method makes it possible to image all types of defects regardless of their orientation.

L’invention propose une amélioration à la méthode décrite dans la demande de brevet WO 2020/128344A1 afin de l’adapter à deux transducteurs multiéléments distincts fonctionnant respectivement en émission et en réception.The invention proposes an improvement to the method described in patent application WO 2020/128344A1 in order to adapt it to two separate multi-element transducers operating respectively in transmission and reception.

L’invention permet ainsi de faciliter l’imagerie en temps réel de défauts de forme et d’orientation quelconques dans des structures solides. Pour cela, l’algorithme décrit dans la demande WO 2020/128344A1 est modifié en ajoutant une étape de prise en compte de la distance entre les deux transducteurs dans l’écriture du spectre de l’image en fonction du spectre des signaux reçus. On ajoute les coordonnées du centre du récepteur qui sont alors distinctes de celui de l’émetteur. L’expression de l’onde cylindrique (ou sphérique en 3D) doit alors tenir compte de cette différence entre positions du transducteur multiéléments émetteur et du transducteur multiéléments récepteur.The invention thus makes it possible to facilitate real-time imaging of any shape and orientation defects in solid structures. For this, the algorithm described in application WO 2020/128344A1 is modified by adding a step of taking into account the distance between the two transducers in writing the spectrum of the image as a function of the spectrum of the signals received. We add the coordinates of the center of the receiver which are then distinct from that of the transmitter. The expression of the cylindrical wave (or spherical in 3D) must then take into account this difference between positions of the transmitting multi-element transducer and the receiving multi-element transducer.

L’invention a pour objet un procédé d’imagerie ultrasonore d’un objet ayant deux faces opposées, à partir d’un couple de transducteurs multi-éléments comprenant un transducteur d’émission à L éléments et un transducteur de réception à N éléments, placés chacun sur la même face ou sur deux faces opposées de l’objet à imager, le procédé comprenant les étapes de :

  • Commander le transducteur d’émission pour générer M émissions successives d’ondes ultrasonores,
  • Commander le transducteur de réception pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • Echantillonner temporellement chaque signal temporel de mesure en Ntéchantillons successifs,
  • Déterminer M matrices MRm, 1≤m≤M, de signaux temporels ultrasonores de taille NxNt, chaque coefficient MRm(ui,tj) de chaque matrice MRmreprésentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur de réception dû à la m-ième émission,
  • Appliquer une transformation de Fourier multi-dimensionnelle en lignes et colonnes à chaque matrice MRmpour obtenir M matrices spectrales FTMRm, 1≤m≤M,
  • Convertir chaque matrice spectrale FTMRmpour obtenir M images spectrales FTImdans un espace de nombres d’ondes spatiaux, cette conversion comportant l’application d’une relation de transformation matricielle des M matrices FTMRmen les M images spectrales FTImet l’application d’une transformation à l’aide d’un système d’équations de changement de repère, cette conversion comportant la prise en compte d’un facteur correctif dépendant de la position relative du transducteur de réception par rapport au transducteur d’émission,
  • Combiner les M images spectrales FTImet appliquer une transformation de Fourier multidimensionnelle inverse en lignes et colonnes à l’image spectrale résultante FTI pour obtenir une première image ultrasonore I de visualisation de l’objet.
The subject of the invention is a method for ultrasonic imaging of an object having two opposite faces, from a pair of multi-element transducers comprising a transmission transducer with L elements and a reception transducer with N elements, each placed on the same face or on two opposite faces of the object to be imaged, the method comprising the steps of:
  • Control the emission transducer to generate M successive emissions of ultrasonic waves,
  • Control the reception transducer to receive simultaneously and for a predetermined duration, for each transmission, N temporal measurement signals corresponding to echoes due to backscattering of the emission considered in the object,
  • Temporally sample each temporal measurement signal in N t successive samples,
  • Determine M matrices MR m , 1≤m≤M, of ultrasonic temporal signals of size NxN t , each coefficient MR m (u i ,t j ) of each matrix MR m representing the t j -th temporal sample of the measurement signal received by the u i -th element of the reception transducer due to the m-th emission,
  • Apply a multi-dimensional Fourier transform in rows and columns to each matrix MR m to obtain M spectral matrices FTMR m , 1≤m≤M,
  • Convert each FTMR spectral matrix m to obtain M FTI spectral images m in a space of spatial wavenumbers, this conversion comprising the application of a matrix transformation relation of the M FTMR matrices m into the M FTI spectral images m and l application of a transformation using a system of reference change equations, this conversion comprising the taking into account of a corrective factor depending on the relative position of the reception transducer with respect to the transmission transducer ,
  • Combine the M FTI spectral images m and apply an inverse multidimensional Fourier transform in rows and columns to the resulting FTI spectral image to obtain a first ultrasound image I for viewing the object.

Selon un aspect particulier de l’invention, les transducteurs multi-éléments sont matriciels et lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, la relation de transformation matricielle prend la forme suivante :According to a particular aspect of the invention, the multi-element transducers are matrix and during the conversion of each spectral matrix FTMR m into each spectral image FTI m , the matrix transformation relation takes the following form:

où ku, kvet ktsont les nombres d’ondes, respectivement spatiaux selon deux dimensions respectives et temporel, représentatifs des lignes et colonnes de chaque matrice spectrale FTMRm, est la pulsation des ondes ultrasonores et c leur vitesse de propagation, kx, kyet kzsont les nombres d’ondes spatiaux représentatifs des lignes et colonnes de chaque image spectrale FTImet correspondant à un repère (x,y,z) dont l’origine est le premier élément du transducteur d’émission, le plan (x,y) correspond à l’une des faces de l’objet et l’axe z étant perpendiculaire à cette face de l’objet, est un coefficient d’amplitude dépendant de la pulsation de l’onde ultrasonore, dx, dyet h sont les coordonnées respectives selon les axes x,y et z du transducteur de réception dans le dit repère, au moins l’une des valeurs de dx, dyou h étant non nulle.where k u , k v and k t are the wave numbers, respectively spatial in two respective dimensions and temporal, representative of the rows and columns of each FTMR spectral matrix m , is the pulsation of the ultrasonic waves and c their propagation speed, k x , k y and k z are the spatial wave numbers representative of the rows and columns of each FTI spectral image m and corresponding to a reference (x,y,z ) whose origin is the first element of the emission transducer, the plane (x,y) corresponds to one of the faces of the object and the z axis being perpendicular to this face of the object, is an amplitude coefficient dependent on the pulsation of the ultrasonic wave, d x , d y and h are the respective coordinates along the x, y and z axes of the reception transducer in said reference frame, at least one of the values of d x , d y or h being not zero.

Selon un aspect particulier de l’invention, lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, les équations de changement de repère prennent la forme suivante :According to a particular aspect of the invention, during the conversion of each spectral matrix FTMR m into each spectral image FTI m , the reference change equations take the following form:

et sont des angles incidents qui définissent la direction de propagation de l’onde plane émise par un élément du transducteur d’émissionOr And are incident angles which define the direction of propagation of the plane wave emitted by an element of the emission transducer

Selon un aspect particulier de l’invention, les transducteurs multi-éléments (TR_E, TR_R) sont linéaires et lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, la relation de transformation matricielle prend la forme suivante :According to a particular aspect of the invention, the multi-element transducers (TR_E, TR_R) are linear and during the conversion of each spectral matrix FTMR m into each spectral image FTI m , the matrix transformation relation takes the following form:

où kuet kt sont les nombres d’ondes, respectivement spatiaux et temporel représentatifs des lignes et colonnes de chaque matrice spectrale FTMRm est la pulsation des ondes ultrasonores et c leur vitesse de propagation, kxet kzsont les nombres d’ondes spatiaux représentatifs des lignes et colonnes de chaque image spectrale FTImet correspondant à un repère (x,z) dont l’origine est le premier élément du transducteur d’émission, l’axe x étant parallèle à l’une des faces de l’objet et l’axe z étant perpendiculaire à cette face de l’objet, est un coefficient d’amplitude dépendant de la pulsation de l’onde ultrasonore, d et h sont les coordonnées respectives selon les axes x et z du transducteur de réception dans le dit repère, au moins l’une des valeurs de d ou h étant non nulle.where k u and kt are the wave numbers, respectively spatial and temporal, representative of the rows and columns of each FTMR spectral matrix m is the pulsation of the ultrasonic waves and c their propagation speed, k x and k z are the spatial wave numbers representative of the rows and columns of each FTI spectral image m and corresponding to a reference point (x, z) whose origin is the first element of the emission transducer, the x axis being parallel to one of the faces of the object and the z axis being perpendicular to this face of the object, is an amplitude coefficient dependent on the pulsation of the ultrasonic wave, d and h are the respective coordinates along the x and z axes of the reception transducer in said reference frame, at least one of the values of d or h being non-zero.

Selon un aspect particulier de l’invention, lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, les équations de changement de repère prennent la forme suivante :According to a particular aspect of the invention, during the conversion of each spectral matrix FTMR m into each spectral image FTI m , the reference change equations take the following form:

est un angle incident qui définit la direction de propagation de l’onde plane émise par un élément du transducteur d’émission.Or is an incident angle which defines the direction of propagation of the plane wave emitted by an element of the emission transducer.

Selon un aspect particulier de l’invention, dans lequel les éléments du transducteur d’émission (TR_E) sont commandés pour M émissions successives d’ondes ultrasonores planes d’angles d’émission , successifs différents dans M zones d’émission.According to a particular aspect of the invention, in which the elements of the emission transducer (TR_E) are controlled for M successive emissions of plane ultrasonic waves of emission angles , successively different in M emission zones.

Selon un aspect particulier de l’invention, les fréquences centrales de fonctionnement respectives des transducteurs d’émission (TR_E) et de réception (TR_R) sont différentes.According to a particular aspect of the invention, the respective central operating frequencies of the transmission (TR_E) and reception (TR_R) transducers are different.

Dans une variante de réalisation le procédé selon l’invention comprend en outre les étapes suivantes :

  • Commander le transducteur d’émission pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N’ signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • Echantillonner temporellement chaque signal temporel de mesure en N’téchantillons successifs,
  • Déterminer M’ matrices MR’m, 1≤m≤M’, de signaux temporels ultrasonores de taille N’xN’t, chaque coefficient MR’m(ui,tj) de chaque matrice MR’mreprésentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur d’émission dû à la m-ième émission,
  • Appliquer une transformation de Fourier multi-dimensionnelle en lignes et colonnes à chaque matrice MR’mpour obtenir M’ matrices spectrales FTMR’m, 1≤m≤M’,
  • Convertir chaque matrice spectrale FTMR’mpour obtenir M’ images spectrales FTI’mdans un espace de nombres d’ondes spatiaux, cette conversion comportant l’application d’une relation de transformation matricielle des M’ matrices FTMR’men les M’ images spectrales FTI’met l’application d’une transformation à l’aide d’un système d’équations de changement de repère,
  • Combiner les M’ images spectrales FTI’met appliquer une transformation de Fourier multidimensionnelle inverse en lignes et colonnes à l’image spectrale résultante FTI’ pour obtenir une seconde image ultrasonore I’ de visualisation de l’objet,
  • Fusionner la première image ultrasonore I avec la seconde image ultrasonore I’ pour obtenir une image ultrasonore finale If.
In an alternative embodiment, the method according to the invention further comprises the following steps:
  • Control the transmission transducer to receive simultaneously and for a predetermined duration, for each emission, N' temporal measurement signals corresponding to echoes due to backscattering of the emission considered in the object,
  • Temporally sample each temporal measurement signal in N' t successive samples,
  • Determine M' matrices MR' m , 1≤m≤M', of ultrasonic temporal signals of size N'xN' t , each coefficient MR' m (u i ,t j ) of each matrix MR' m representing the t j - ith time sample of the measurement signal received by the u i -th element of the transmission transducer due to the m-th emission,
  • Apply a multi-dimensional Fourier transform in rows and columns to each matrix MR' m to obtain M' spectral matrices FTMR' m , 1≤m≤M',
  • Convert each spectral matrix FTMR' m to obtain M' spectral images FTI' m in a space of spatial wavenumbers, this conversion comprising the application of a matrix transformation relation of the M' matrices FTMR' m into the M'FTI' m spectral images and the application of a transformation using a system of reference change equations,
  • Combine the M' spectral images FTI' m and apply an inverse multidimensional Fourier transformation in rows and columns to the resulting spectral image FTI' to obtain a second ultrasound image I' for viewing the object,
  • Merge the first ultrasound image I with the second ultrasound image I' to obtain a final ultrasound image I f .

Dans une variante de réalisation, le procédé selon l’invention comprend l’affichage de la première image ultrasonore I ou l’image ultrasonore finale Ifau moyen d’un logiciel de conception assistée par ordinateur.In a variant embodiment, the method according to the invention comprises displaying the first ultrasound image I or the final ultrasound image I f by means of computer-aided design software.

L’invention a pour objet un programme d’ordinateur téléchargeable depuis un réseau de communication et/ou enregistré sur un support lisible par ordinateur et/ou exécutable par un processeur, caractérisé en ce qu’il comprend des instructions pour l’exécution des étapes d’un procédé d’imagerie selon l’invention, lorsque ledit programme est exécuté sur un ordinateur.The subject of the invention is a computer program downloadable from a communications network and/or recorded on a computer-readable medium and/or executable by a processor, characterized in that it comprises instructions for executing the steps of an imaging method according to the invention, when said program is executed on a computer.

L’invention a pour objet un dispositif de sondage à ultrasons, pour le sondage ultrasonore d’un objet, comprenant :

  • une sonde comprenant un couple de transducteurs multi-éléments comprenant un transducteur d’émission à L éléments et un transducteur de réception à N éléments et destinés à être placés chacun sur la même face ou sur deux faces opposées de l’objet à imager,
  • des moyens de commande des L éléments du transducteur d’émission pour M émissions successives d’ondes ultrasonores,
  • des moyens de commande des N éléments du transducteur de réception pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • et un processeur de reconstitution d’une image ultrasonore de visualisation de l’objet, configuré pour exécuter les étapes de la méthode selon l’invention
The subject of the invention is an ultrasonic probing device, for ultrasonic probing of an object, comprising:
  • a probe comprising a pair of multi-element transducers comprising a transmission transducer with L elements and a reception transducer with N elements and each intended to be placed on the same face or on two opposite faces of the object to be imaged,
  • means for controlling the L elements of the emission transducer for M successive emissions of ultrasonic waves,
  • means for controlling the N elements of the reception transducer to receive simultaneously and for a predetermined duration, for each transmission, N temporal measurement signals corresponding to echoes due to back-scattering of the emission considered in the object,
  • and a processor for reconstituting an ultrasound image for displaying the object, configured to execute the steps of the method according to the invention

Selon un aspect particulier de l’invention, les transducteurs multi-éléments sont linéaires ou matriciels.According to a particular aspect of the invention, the multi-element transducers are linear or matrix.

L’invention a encore pour objet un ensemble comprenant un dispositif de sondage à ultrasons selon l’invention et un objet à imager, le transducteur d’émission et le transducteur de réception étant positionnés sur une même face de l’objet ou sur deux faces opposées de l’objet.The invention also relates to an assembly comprising an ultrasonic probing device according to the invention and an object to be imaged, the emission transducer and the reception transducer being positioned on the same face of the object or on two faces opposites of the object.

D’autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés suivants.Other characteristics and advantages of the present invention will appear better on reading the description which follows in relation to the following appended drawings.

représente un schéma d’un dispositif d’imagerie par ultrasons selon l’art antérieur, represents a diagram of an ultrasound imaging device according to the prior art,

représente un schéma d’un dispositif d’imagerie par ultrasons selon un premier mode de réalisation de l’invention, represents a diagram of an ultrasound imaging device according to a first embodiment of the invention,

représente un organigramme des étapes de mise en œuvre d’une méthode d’imagerie par ultrasons selon un mode de réalisation de l’invention, represents a flowchart of the steps of implementing an ultrasound imaging method according to one embodiment of the invention,

représente un schéma illustratif de la mise en œuvre de la méthode d’imagerie par ultrasons selon l’invention au moyen du dispositif de la , represents an illustrative diagram of the implementation of the ultrasound imaging method according to the invention by means of the device of the ,

représente un schéma d’un dispositif d’imagerie par ultrasons selon un second mode de réalisation de l’invention, represents a diagram of an ultrasound imaging device according to a second embodiment of the invention,

représente un schéma illustratif de la mise en œuvre de la méthode d’imagerie selon l’invention au moyen du dispositif de la , represents an illustrative diagram of the implementation of the imaging method according to the invention by means of the device of the ,

représente un exemple d’image ultrasonore obtenue à l’aide du dispositif d’imagerie selon le second mode de réalisation, represents an example of an ultrasound image obtained using the imaging device according to the second embodiment,

représente une mise en œuvre particulière du dispositif d’imagerie par ultrasons selon le second mode de réalisation de l’invention pour imager un certain type de défauts. represents a particular implementation of the ultrasound imaging device according to the second embodiment of the invention for imaging a certain type of defects.

L’invention vise à réaliser une imagerie ultrasonore d’une pièce solide, par exemple dans l’objectif d’un contrôle non destructif de la pièce, au moyen de deux transducteurs ultrasonores multi-éléments, l’un fonctionnant en émission et l’autre en réception.The invention aims to carry out ultrasonic imaging of a solid part, for example with the aim of non-destructive testing of the part, by means of two multi-element ultrasonic transducers, one operating in emission and the other other in reception.

Le nombre d’éléments de chaque transducteur peut être différent, la distance inter-éléments est constante pour un même transducteur mais peut être différente entre les deux transducteurs.The number of elements of each transducer can be different, the inter-element distance is constant for the same transducer but can be different between the two transducers.

La illustre un premier mode de réalisation de l’invention pour lequel les deux transducteurs TR_E,TR_R sont positionnés sur une même surface plane d’un côté de la pièce P à imager.There illustrates a first embodiment of the invention for which the two transducers TR_E, TR_R are positioned on the same flat surface on one side of the part P to be imaged.

Les transducteurs d’émission TR_E et de réception TR_R comportent chacun une sonde à ultrasons présentant un boitier dans lequel sont disposés linéairement ou matriciellement un nombre d’éléments ultrasonores disposés en réseau. Chaque transducteur peut être réalisé par un capteur piézo-électrique, un capteur micro-usiné ou un transducteur électromagnétique acoustique (EMAT) ou tout autre élément permettant d’émettre et recevoir des ondes ultrasonores.The TR_E transmission and TR_R reception transducers each comprise an ultrasonic probe having a housing in which a number of ultrasonic elements arranged in a network are arranged linearly or matrixly. Each transducer can be made by a piezoelectric sensor, a micro-machined sensor or an electromagnetic acoustic transducer (EMAT) or any other element making it possible to emit and receive ultrasonic waves.

La pièce P à imager est par exemple une pièce mécanique que l’on souhaite examiner par contrôle non destructif. La pièce P peut être immergée dans un liquide, tel que de l’eau et la sonde à ultrasons est alors maintenue à distance de la pièce P afin que l’eau les sépare. Mais la sonde peut également être en contact direct de la pièce P.The part P to be imaged is for example a mechanical part that we wish to examine by non-destructive testing. The part P can be immersed in a liquid, such as water and the ultrasonic probe is then kept at a distance from the part P so that the water separates them. But the probe can also be in direct contact with part P.

Les éléments ultrasonores du transducteur d’émission TR_E sont conçus pour émettre individuellement des ondes ultrasonores en direction de la pièce P en réponse à des signaux de commande. Les ondes ultrasonores émises correspondent à une onde plane qui est alors créée dans la pièce P selon une direction donnée...The ultrasonic elements of the TR_E emission transducer are designed to individually emit ultrasonic waves towards the part P in response to control signals. The ultrasonic waves emitted correspond to a plane wave which is then created in the part P in a given direction...

Les éléments ultrasonores du transducteur de réception TR_R sont conçus pour détecter des échos des ondes ultrasonores se réfléchissant ou se rétro-diffusant sur et dans la pièce P et pour fournir des signaux de mesure correspondant à ces échos.The ultrasonic elements of the receiving transducer TR_R are designed to detect echoes of the ultrasonic waves reflecting or back-scattering on and in the part P and to provide measurement signals corresponding to these echoes.

Chaque transducteur TR_E,TR_R comporte en outre un circuit électronique de commande des éléments ultrasonores (en émission) et de traitement des signaux de mesure (en réception).Each TR_E, TR_R transducer further comprises an electronic circuit for controlling the ultrasonic elements (in transmission) and processing the measurement signals (in reception).

Le circuit électronique présente par exemple une unité centrale de traitement et une mémoire dans laquelle est enregistré un programme d’ordinateur configuré pour mettre en œuvre les traitements nécessaires à l’émission des ondes ultrasonores d’une part et au traitement des mesures en réception d’autre part en vue de générer une image de la pièce P.The electronic circuit has for example a central processing unit and a memory in which is recorded a computer program configured to implement the processing necessary for the emission of ultrasonic waves on the one hand and the processing of the measurements in reception of on the other hand in order to generate an image of the part P.

La illustre sur un organigramme les étapes de mise en œuvre d’une méthode d’imagerie ultrasonore selon un mode de réalisation de l’invention.There illustrates on a flowchart the steps of implementing an ultrasound imaging method according to one embodiment of the invention.

La première étape 301 consiste à activer les éléments ultrasonores du transducteur d’émission TR_E afin d’émettre au moins une onde plane selon une direction donnée par un angle d’émission. Dans une variante, plusieurs ondes planes sont émises successivement avec différents angles d’émission comme cela est schématisé sur la .The first step 301 consists of activating the ultrasonic elements of the emission transducer TR_E in order to emit at least one plane wave in a direction given by an emission angle. In a variant, several plane waves are emitted successively with different emission angles as shown schematically on the .

Une onde ultrasonore plane présentant un angle d’émission donné peut être obtenue en appliquant aux éléments ultrasonores du transducteur d’émission TR_E des lois de retards enregistrées en mémoire, par exemple dans une base de lois de retards. Chaque loi de retards définit des retards à appliquer aux différents éléments du transducteur d’émission de manière à engendrer une onde ultrasonore plane à un angle d’émission souhaité. Des lois de retards différentes peuvent être prévues pour différents angles d’émission.A plane ultrasonic wave having a given emission angle can be obtained by applying delay laws recorded in memory, for example in a delay law base, to the ultrasonic elements of the emission transducer TR_E. Each delay law defines delays to be applied to the different elements of the emission transducer so as to generate a plane ultrasonic wave at a desired emission angle. Different delay laws can be provided for different emission angles.

En faisant varier les angles d’émission, il est ainsi possible d’imager une zone contenue dans l’union de toutes les zones d’émissions successives correspondant à chaque angle d’émission.By varying the emission angles, it is thus possible to image a zone contained in the union of all the successive emission zones corresponding to each emission angle.

A l’étape 302, le transducteur de réception TR_R est activé pour recevoir, pour chaque émission d’onde plane, simultanément par les N éléments ultrasonores et pendant une durée d’acquisition prédéterminée, N signaux temporels de mesure, mesurant en particulier des échos dus à des rétro-diffusions de chaque émission considérée dans la pièce P. En particulier ces échos peuvent provenir d’un défaut D dans la pièce, par exemple un défaut de type fissure.In step 302, the reception transducer TR_R is activated to receive, for each plane wave emission, simultaneously by the N ultrasonic elements and for a predetermined acquisition duration, N temporal measurement signals, measuring in particular echoes due to backscattering of each emission considered in the room P. In particular, these echoes can come from a defect D in the room, for example a crack type defect.

A la réception des signaux résultant de chacune des M émissions successives, l’ensemble S des NxM signaux temporels de mesure reçus par les N éléments ultrasonores du transducteur TR_R est renvoyé par la sonde à l’unité centrale de traitement. De façon connue en soi, ces signaux temporels sont échantillonnés et numérisés en Nt échantillons successifs avant d’être soumis pour traitement par le programme d’ordinateur.On reception of the signals resulting from each of the M successive emissions, the set S of the NxM temporal measurement signals received by the N ultrasonic elements of the transducer TR_R is returned by the probe to the central processing unit. In a manner known per se, these time signals are sampled and digitized into Nt successive samples before being submitted for processing by the computer program.

A l’étape 303, on construit M matrices MRm, 1≤m≤M, de signaux temporels ultrasonores de taille NxNt, qualifiées de matrices des réponses aux ondes planes. Chaque coefficient MRm(ui,tj) de chaque matrice MRm représentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur TR_R de réception en réponse à la m-ième émission.In step 303, we construct M matrices MRm, 1≤m≤M, of ultrasonic temporal signals of size NxNt, qualified as matrices of responses to plane waves. Each coefficient MRm(ui,tj) of each matrix MRm representing the tj-th time sample of the measurement signal received by the ui-th element of the reception transducer TR_R in response to the m-th transmission.

De façon optionnelle, une étape de filtrage temporel est réalisée sur chaque matrice MRm, ce filtrage visant à supprimer toute information se trouvant à des temps de vol exclus de la zone d’intérêt dans l’objet P.Optionally, a temporal filtering step is carried out on each MRm matrix, this filtering aimed at removing any information found at flight times excluded from the zone of interest in the object P.

A l’étape 304, chaque matrice MRm est transformée en une matrice FTMRm de signaux fréquentiels par transformée de Fourier bidimensionnelle en lignes et colonnes, avantageusement par transformée de Fourier bidimensionnelle discrète et, plus avantageusement encore, par calcul bidimensionnel de FFT (de l’anglais « Fast Fourier Transform ») si les nombres N et Nt de lignes et colonnes de chaque matrice MRm le permettent, c’est-à-dire s’ils correspondent à des puissances de 2. On obtient ainsi M matrices spectrales FTMRm, 1≤m≤M, dont les coefficients FTMRm(kui, ωj) sont des valeurs spectrales prises en fonctions de valeurs discrètes kui, 1≤i≤N, d’un nombre d’onde spatial ku (relatif aux dispositions relatives des éléments du transducteur de réception) et de valeurs discrètes ωj, 1≤j≤Nt, d’une pulsation ω (relatif aux instants d’échantillonnages).In step 304, each matrix MRm is transformed into a matrix FTMRm of frequency signals by two-dimensional Fourier transform in rows and columns, advantageously by discrete two-dimensional Fourier transform and, even more advantageously, by two-dimensional calculation of FFT (from the English “Fast Fourier Transform”) if the numbers N and Nt of rows and columns of each matrix MRm allow it, that is to say if they correspond to powers of 2. We thus obtain M spectral matrices FTMRm, 1 ≤m≤M, whose coefficients FTMRm(kui, ωj) are spectral values taken as functions of discrete values kui, 1≤i≤N, of a spatial wavenumber ku (relating to the relative arrangements of the elements of the transducer reception) and discrete values ωj, 1≤j≤Nt, of a pulse ω (relative to the sampling instants).

La pulsation ω dépend de la fréquence et du nombre d’onde ktde par les relations suivantes :The pulsation ω depends on the frequency and the wave number k t through the following relationships:

, avec c la vitesse de propagation des ondes considérées et f leur fréquence. Les matrices spectrales FTMRm peuvent être indifféremment exprimées en fonction de la pulsation ω ou du nombre d’onde kt, le passage de l’une vers l’autre expression étant effectuée au moyen d’un changement de repère. , with c the propagation speed of the waves considered and f their frequency. The FTMRm spectral matrices can be expressed indifferently as a function of the pulsation ω or the wave number k t , the transition from one to the other expression being carried out by means of a change of reference.

A l’étape 305, chaque matrice spectrale FTMRmest ensuite convertie en une image spectrale FTImdans un espace de nombres d’ondes spatiaux respectivement relatifs aux axes en abscisses et ordonnées de l’image finale que l’on souhaite obtenir. On obtient ainsi M images spectrales FTIm, 1≤m≤M, de taille NxxNzet de coefficients FTIm(kxi,kzj) où les kxi, 1≤i≤Nx, sont des valeurs discrètes d’un nombre d’onde spatial kx relatif à l’axe des abscisses choisi (par exemple parallèle à celui des transducteurs) et où les kzj, 1≤j≤Nz, sont des valeurs discrètes d’un nombre d’onde spatial kz relatif à l’axe des ordonnées choisi (par exemple perpendiculaire à celui des transducteurs). Cette conversion comporte l’application d’une relation de transformation matricielle des M matrices FTMRmen les M images spectrales FTImet l’application d’une transformation à l’aide d’un système d’équations de changement de repère. Plus précisément, la transformation matricielle donne des valeurs pour les images spectrales en des points (kx’i,kz’j), 1≤i≤N et 1≤j≤Nt, qui ne correspondent pas aux valeurs discrètes (kxi,kzj) choisies mais dépendent du système d’équations de changement de repère qui lie les valeurs des nombres d’ondes kx et kz aux valeurs des nombres d’ondes ku et de pulsation ω ou du nombre d’onde kt. Les coefficients FTIm(kxi,kzj) souhaités, avec 1≤i≤Nxet 1≤j≤Nz, peuvent néanmoins être retrouvés facilement par interpolation des valeurs FTIm(kx’i,kz’j) obtenues par transformation matricielle, à l’aide du système d’équations de changement de repère qui permet de connaître le positionnement des points (kx’i,kz’j), 1≤i≤N et 1≤j≤Nt.In step 305, each FTMR spectral matrix m is then converted into an FTI spectral image m in a space of spatial wave numbers respectively relating to the abscissa and ordinate axes of the final image that we wish to obtain. We thus obtain M spectral images FTI m , 1≤m≤M, of size N x xN z and of coefficients FTI m (kx i ,kz j ) where the kx i , 1≤i≤N x , are discrete values d 'a spatial wave number kx relative to the chosen abscissa axis (for example parallel to that of the transducers) and where the kz j , 1≤j≤N z , are discrete values of a spatial wave number kz relative to the chosen ordinate axis (for example perpendicular to that of the transducers). This conversion comprises the application of a matrix transformation relation of the M FTMR matrices m into the M spectral images FTI m and the application of a transformation using a system of reference change equations. More precisely, the matrix transformation gives values for the spectral images at points (kx' i ,kz' j ), 1≤i≤N and 1≤j≤N t , which do not correspond to the discrete values (kx i , kz j ) chosen but depend on the system of reference change equations which links the values of the wave numbers kx and kz to the values of the wave numbers ku and pulsation ω or the wave number kt. The desired FTI coefficients m (kx i ,kz j ), with 1≤i≤N x and 1≤j≤N z , can nevertheless be easily found by interpolation of the FTI m values (kx' i ,kz' j ) obtained by matrix transformation, using the system of reference change equations which makes it possible to know the positioning of the points (kx' i ,kz' j ), 1≤i≤N and 1≤j≤N t .

Optionnellement, lorsque plusieurs ondes planes ont été émises selon différentes directions, une étape de combinaison des M images spectrales FTImen une seule image spectrale résultante FTI de coefficients FTI(kxi,kzj), 1≤i≤Nxet 1≤j≤Nzest réalisée. Dans un mode de réalisation simple et rapide, l’image spectrale FTI peut résulter d’une somme en chaque pixel (kxi,kzj) des M images spectrales FTIm.Optionally, when several plane waves have been emitted in different directions, a step of combining the M spectral images FTI m into a single resulting spectral image FTI with coefficients FTI(kx i ,kz j ), 1≤i≤N x and 1≤ j≤N z is achieved. In a simple and rapid embodiment, the FTI spectral image can result from a sum at each pixel (kx i , kz j ) of the M FTI spectral images m .

A l’étape 306, l’image spectrale FTI est transformée en une image ultrasonore I de visualisation de l’objet P par transformée de Fourier inverse bidimensionnelle en lignes et colonnes, avantageusement par transformée de Fourier discrète inverse, et, plus avantageusement encore, par calcul bidimensionnel de IFFT (de l’anglais « Inverse Fast Fourier Transform ») si les nombres Nxet Nzde lignes et colonnes de l’image spectrale résultante FTI le permettent, c’est-à-dire s’ils correspondent à des puissances de 2. L’image ultrasonore I de visualisation de l’objet P est de taille NxxNzet de valeurs de pixels I(xi,zj).In step 306, the spectral image FTI is transformed into an ultrasound image I for displaying the object P by two-dimensional inverse Fourier transform in rows and columns, advantageously by inverse discrete Fourier transform, and, even more advantageously, by two-dimensional calculation of IFFT (from the English “Inverse Fast Fourier Transform”) if the numbers N x and N z of rows and columns of the resulting FTI spectral image allow it, that is to say if they correspond to powers of 2. The ultrasound image I displaying the object P is of size N x xN z and of pixel values I(x i ,z j ).

Optionnellement, il est aussi possible de combiner les images ultrasonores obtenues pour différentes directions d’ondes planes émises après application de la transformée de Fourier inverse au lieu de combiner les images spectrales.Optionally, it is also possible to combine the ultrasound images obtained for different directions of plane waves emitted after application of the inverse Fourier transform instead of combining the spectral images.

La illustre un exemple d’application de l’invention selon le premier mode de réalisation de l’invention.There illustrates an example of application of the invention according to the first embodiment of the invention.

Dans cet exemple, les transducteurs TR_E et TR_R sont linéaires, c’est-à-dire que les éléments ultrasonores sont agencés selon une ligne et ils sont distants d’une distance d, séparés sur le même plan. Le dispositif d’imagerie est ainsi apte à réaliser une imagerie 2D de la pièce.In this example, the transducers TR_E and TR_R are linear, that is to say that the ultrasonic elements are arranged along a line and they are a distance d apart, separated on the same plane. The imaging device is thus capable of performing 2D imaging of the part.

Une onde plane est émise par le transducteur d’émission TR_E avec une direction θ. Sur la , on a représenté schématiquement les lois de retard LR appliquées aux différents éléments ultrasonores pour générer l’onde plane.A plane wave is emitted by the transmission transducer TR_E with a direction θ. On the , we have schematically represented the LR delay laws applied to the different ultrasonic elements to generate the plane wave.

On fixe un repère R dont l’origine est le premier élément EL_1_E du transducteur d’émission TR_E, l’axe x est parallèle à la surface de la pièce P sur laquelle sont disposés les transducteurs et l’axe z est perpendiculaire à cette surface.We fix a reference R whose origin is the first element EL_1_E of the emission transducer TR_E, the x axis is parallel to the surface of the part P on which the transducers are arranged and the z axis is perpendicular to this surface .

Le champ mesuré par l’élément U du transducteur récepteur TR_R suite à l’émission d’une onde plane de pulsation (et donc de nombre d’onde kt = /c, avec c la vitesse de propagation de l’onde dans le milieu) selon la direction par le transducteur émetteur TR_E et réfléchi sur le point de coordonnées (x,z) dans le repère R lié au transducteur émetteur, s’écrit sous la forme suivante, après application d’une transformation de Fourier selon la variable temporelle :The measured field by the element U of the receiving transducer TR_R following the emission of a pulsating plane wave (and therefore wave number kt = /c, with c the speed of propagation of the wave in the medium) according to the direction by the transmitter transducer TR_E and reflected on the point of coordinates (x,z) in the frame R linked to the transmitter transducer, is written in the following form, after application of a Fourier transformation according to the time variable:

rest le vecteur des coordonnées du point de calcul, etUest le vecteur des coordonnées de l’élément courant du transducteur récepteur TR_R, est le nombre d’onde ( /c) à la fréquence centrale d’émission (et x est le vecteur unitaire porté par l’axe x, z le vecteur unitaire porté par l’axe z). Il est alors nécessaire de prendre en compte le fait que les centres des transducteurs émetteur et récepteur sont distincts ; pour cela, de façon arbitraire, on exprime U et r dans le repère lié au transducteur émetteur (on peut indifféremment exprimer les coordonnées dans le repère lié au transducteur récepteur). Dans le cas particulier de l’exemple décrit à la ,U= (u+d,0) (u est la variable scalaire définissant la position horizontale de l’élément récepteur dans le repère lié au récepteur) et r = (x,z). d est la distance entre les deux transducteurs. r is the vector of coordinates of the calculation point, and U is the vector of coordinates of the current element of the receiving transducer TR_R, Or is the wave number ( /c) at the central transmission frequency (and x is the unit vector carried by the x axis, z the unit vector carried by the z axis). It is then necessary to take into account the fact that the centers of the transmitter and receiver transducers are distinct; to do this, arbitrarily, we express U and r in the frame linked to the transmitting transducer (we can indifferently express the coordinates in the frame linked to the receiving transducer). In the particular case of the example described in , U = (u+d,0) (u is the scalar variable defining the horizontal position of the receiver element in the frame linked to the receiver) and r = (x,z). d is the distance between the two transducers.

Dans l’équation (1.1), la fonction (fonction de Hankel d’ordre 0 et deuxième espèce) décrit la propagation «retour» d’une onde cylindrique entre le transducteur récepteur TR_R et le point d’image . La fonction s’écrit sous la forme suivante:In equation (1.1), the function (Hankel function of order 0 and second kind) describes the “return” propagation of a cylindrical wave between the receiving transducer TR_R and the image point . Function is written in the following form:

En injectant l’équation (1.2) dans (1.1), le spectre s’écrit alors:By injecting equation (1.2) into (1.1), the spectrum is then written:

En appliquant une transformée de Fourier selon la variable u, le spectre s’écrit:By applying a Fourier transform according to the variable u, the spectrum is written:

où F est le spectre de l’image ultrasonore f(x,z) de la pièce à imager. where F is the spectrum of the ultrasound image f(x,z) of the part to be imaged.

On en déduit :We can deduce :

L’image est ensuite obtenue en calculant la transformée de Fourier inverse :The image is then obtained by calculating the inverse Fourier transform:

Les équations ci-dessus font apparaitre un terme dans l’équation de conversion du spectre du champ mesuré en image spectrale. Ce terme est lié à la distance d entre les transducteurs d’émission et de réception.The equations above reveal a term in the equation for converting the spectrum of the measured field into a spectral image. This term is linked to the distance d between the transmitting and receiving transducers.

En appliquant ce principe à la méthode selon l’invention, on obtient la relation de transformation matricielle suivante entre les M matrices FTMRm et les M images spectrales FTIm (étape 305) :By applying this principle to the method according to the invention, we obtain the following matrix transformation relationship between the M matrices FTMRm and the M spectral images FTIm (step 305):

Plus précisément, selon les notations discrètes précédentes, pour tout m, 1≤m≤M, on obtient :More precisely, according to the previous discrete notations, for all m, 1≤m≤M, we obtain:

On obtient en outre le système d’équations de changement de repère général suivant, qui lie les valeurs des nombres d’ondes kxet kzaux valeurs des nombres d’ondes kuet kt :We further obtain the following system of general reference change equations, which links the values of the wave numbers k x and k z to the values of the wave numbers k u and kt:

Plus concrètement, selon les notations discrètes précédentes, pour tout m, 1≤m≤M, cela donne :More concretely, according to the previous discrete notations, for all m, 1≤m≤M, this gives:

Dans une variante de réalisation, cette étape est suivie d’une étape d’interpolation telle que décrite dans la demande de brevet WO 2020/128344A1 afin de définir kx’i et kz’j sur une grille régulière et donc être compatible avec des algorithmes de transformée de Fourier discrète plus ou moins rapides. Cela peut consister en tout type d’interpolation connu (plus proche voisin, linéaire, cubique, spline etc).In a variant embodiment, this step is followed by an interpolation step as described in patent application WO 2020/128344A1 in order to define kx'i and kz'j on a regular grid and therefore be compatible with algorithms discrete Fourier transform more or less fast. This can consist of any known type of interpolation (nearest neighbor, linear, cubic, spline etc).

Selon une variante de réalisation du premier mode de réalisation, les transducteurs TR_R et TR_E sont matriciels, c’est-à-dire qu’ils comportent chacun une matrice d’éléments ultrasonores. Un avantage à l’utilisation de capteurs matriciels est qu’ils permettent de réaliser une imagerie 3D et non simplement 2D.According to a variant of the first embodiment, the transducers TR_R and TR_E are matrix, that is to say they each comprise a matrix of ultrasonic elements. An advantage to using matrix sensors is that they allow 3D imaging and not simply 2D.

Dans ce cas, il faut considérer non plus un repère 2D plan (x,z) mais un repère 3D (x,y,z) avec par exemple le plan (x,y) correspondant au plan dans lequel sont disposés les deux transducteurs matriciels.In this case, it is no longer necessary to consider a 2D plan reference (x,z) but a 3D reference (x,y,z) with for example the plane (x,y) corresponding to the plane in which the two matrix transducers are arranged .

On note alors dx la distance entre les deux transducteurs selon l’axe x et dy la distance entre les deux transducteurs selon l’axe y.We then note dx the distance between the two transducers along the x axis and dy the distance between the two transducers along the y axis.

L’onde plane émise par le transducteur d’émission est alors définie par deux angles (au lieu d’un seul pour le cas 2D) qui définissent une direction de propagation dans le repère (x,y,z).The plane wave emitted by the emission transducer is then defined by two angles (instead of just one for the 2D case) which define a direction of propagation in the frame (x,y,z).

La direction de l’onde plane est ainsi donnée par le vecteur .The direction of the plane wave is thus given by the vector .

Un élément du transducteur de réception TR_R est également défini dans le repère 3D par les coordonnées )=( ), où (u,v) sont les distances respectives selon les axes x,y d’un élément du transducteur de réception par rapport au premier élément de ce transducteur.An element of the reception transducer TR_R is also defined in the 3D coordinate system by the coordinates )=( ), where (u,v) are the respective distances along the x,y axes of an element of the reception transducer relative to the first element of this transducer.

De façon similaire au cas 2D développé ci-dessus, le spectre du champ mesuré par l’élément ) du transducteur récepteur TR_R suite à l’émission d’une onde plane de pulsation selon la direction par l’émetteur s’écrit sous la forme suivante :Similar to the 2D case developed above, the spectrum of the measured field by the element ) of the receiving transducer TR_R following the emission of a pulsating plane wave depending on direction by the issuer is written in the following form:

Ici, la fonction décrit la propagation «retour» d’une onde sphérique entre le transducteur récepteur TR_R et le point d’image . La fonction s’écrit sous la forme suivante :Here, the function describes the “return” propagation of a spherical wave between the receiving transducer TR_R and the image point . Function is written in the following form:

En injectant l’équation (1.4) dans (1.3), le spectre s’écrit alors:By injecting equation (1.4) into (1.3), the spectrum is then written:

avecwith

En appliquant une transformée de Fourier selon les variables u et v, le spectre s’écrit alors :By applying a Fourier transform according to the variables u and v, the spectrum is then written:

où F est le spectre de l’image 3D f(x,y,z).where F is the spectrum of the 3D image f(x,y,z).

Ainsi, on obtient les équations de conversion et de changement de repère suivantes :Thus, we obtain the following conversion and change of reference equations:

L’image (x,y,z) est obtenue en calculant la transformée de Fourier inverse trilinéaire :The image (x,y,z) is obtained by calculating the trilinear inverse Fourier transform:

Le terme est lié à la position relative du transducteur de réception par rapport au transducteur d’émission.The term is linked to the relative position of the receiving transducer relative to the transmitting transducer.

En appliquant le principe ci-dessus à la méthode selon l’invention, et de façon similaire au cas 2D, on obtient la relation de transformation matricielle suivante entre les M matrices FTMRm et les M images spectrales FTIm (étape 305) :By applying the above principle to the method according to the invention, and similarly to the 2D case, we obtain the following matrix transformation relationship between the M matrices FTMRm and the M spectral images FTIm (step 305):

Plus précisément, selon les notations discrètes précédentes, pour tout m, 1≤m≤M, on obtient :More precisely, according to the previous discrete notations, for all m, 1≤m≤M, we obtain:

On obtient en outre le système d’équations de changement de repère général suivant, qui lie les valeurs des nombres d’ondes kx, ky et kz aux valeurs des nombres d’ondes ku, kv et kt :We further obtain the following system of general reference change equations, which links the values of the wave numbers kx, ky and kz to the values of the wave numbers ku, kv and kt:

On décrit à présent un second mode de réalisation de l’invention, illustré par la , pour lequel les transducteurs d’émission et de réception sont positionnés sur deux faces parallèles opposées de la pièce P à imager.We now describe a second embodiment of the invention, illustrated by the , for which the transmission and reception transducers are positioned on two opposite parallel faces of the part P to be imaged.

Dans l’exemple de la , le transducteur de réception TR_R est placé sur la face opposée de la pièce par rapport au transducteur d’émission TR_E. Autrement dit, le transducteur de réception TR_R est à une distance h du transducteur d’émission selon l’axe z du repère, h étant la profondeur de la pièce P. Mais le transducteur de réception peut également être positionné à une distance non nulle du transducteur d’émission selon l’axe x comme cela est également illustré à la .In the example of the , the reception transducer TR_R is placed on the opposite face of the part in relation to the emission transducer TR_E. In other words, the reception transducer TR_R is at a distance h from the transmission transducer along the z axis of the mark, h being the depth of the room P. But the reception transducer can also be positioned at a non-zero distance from the emission transducer along the x axis as is also illustrated in .

La schématise un autre exemple de réalisation pour lequel les deux transducteurs sont placés en vis-à-vis l’un de l’autre et la distance entre les deux transducteurs selon l’axe x est nulle.There schematizes another embodiment for which the two transducers are placed opposite each other and the distance between the two transducers along the x axis is zero.

La méthode d’imagerie ultrasonore décrite à la reste applicable à l’identique pour ce second mode de réalisation. Une différence est à prendre en compte cependant dans le facteur correctif qui dépend du positionnement relatif des deux transducteurs dans l’équation de conversion du spectre du champ mesuré en image spectrale.The ultrasound imaging method described in remains applicable identically for this second embodiment. A difference must be taken into account, however, in the corrective factor which depends on the relative positioning of the two transducers in the equation for converting the spectrum of the measured field into a spectral image.

En effet, dans ce second mode de réalisation, l’expression du spectre du champ reçu par un élément ultrasonore U=(u,h) du transducteur de réception suite à l’émission d’une onde plane de pulsation selon la direction par le transducteur émetteur s’écrit toujours :Indeed, in this second embodiment, the expression of the spectrum of the field received by an ultrasonic element U=(u,h) of the reception transducer following the emission of a pulsating plane wave depending on direction by the transmitting transducer is always written:

Cependant, cette fois, dans le repère cartésien (x,z) centré sur le premier élément du transducteur émetteur, la fonction s’écrit sous la forme suivante:However, this time, in the Cartesian coordinate system (x,z) centered on the first element of the transmitting transducer, the function is written in the following form:

(2.2) (2.2)

En injectant l’équation (2.2) dans (2.1), le spectre s’écrit alors:By injecting equation (2.2) into (2.1), the spectrum is then written:

En appliquant une transformée de Fourier selon la variable u, le spectre s’écrit alors :By applying a Fourier transform according to the variable u, the spectrum is then written:

On en déduit :We can deduce :

Un signe - apparait dans l’expression de qui traduit le fait que l’onde cylindrique depuis le point de calcul r jusqu’au récepteur se propage selon le sens positif de l’axe z.A sign - appears in the expression of which reflects the fact that the cylindrical wave from the calculation point r to the receiver propagates in the positive direction of the z axis.

Les mêmes étapes de calcul sont ensuite appliquées : moyenne éventuelle des pour tous les angles d’ondes planes émises, puis une transformée de Fourier bidimensionnelle inverse est réalisée pour remonter à l’image f(x,z).The same calculation steps are then applied: possible average of for all angles of plane waves emitted, then an inverse two-dimensional Fourier transform is carried out to go back to the image f(x,z).

Ainsi, dans le cas d’application de la et pour une imagerie 2D, on obtient la relation de transformation matricielle suivante entre les M matrices FTMRm et les M images spectrales FTIm (étape 305) :Thus, in the case of application of the and for 2D imaging, we obtain the following matrix transformation relationship between the M matrices FTMRm and the M spectral images FTIm (step 305):

On obtient en outre le système d’équations de changement de repère général suivant, qui lie les valeurs des nombres d’ondes kx et kz aux valeurs des nombres d’ondes ku et kt :We further obtain the following system of general reference change equations, which links the values of the wave numbers kx and kz to the values of the wave numbers ku and kt:

La montre une image ultrasonore I obtenue à l’aide d’un dispositif selon le second mode de réalisation pour lequel 6 ondes planes sont émises par un transducteur linéaire TR_E selon différentes directions. Les ondes planes interagissent avec des défauts D de type fissure situés à cœur de la pièce P. La configuration de positionnement des transducteurs TR_E,TR_R en vis-à-vis de chaque côté de la pièce (tel que représenté à la ) est optimale pour la détection d’échos spéculaires sur des défauts de type fissures fines contenues dans un plan perpendiculaire aux surfaces d’entrée de la pièce et dont la profondeur est proche de la mi-épaisseur (on voit sur la que le défaut situé le plus proche de la mi-épaisseur conduit à un écho spéculaire de plus forte amplitude sur l’image ultrasonore représentée à droite). Ce type de défaut est en effet particulièrement difficile à détecter avec un unique capteur puisque seuls les échos créés par diffraction sur les extrémités du défaut peuvent éventuellement être détectés, mais sont de très faible amplitude. En particulier, dans des composants constitués d’acier à gros grain pour lesquels la structure génère un bruit sur les images, l’amplitude des échos de diffraction peut être noyée dans ce bruit.There shows an ultrasound image I obtained using a device according to the second embodiment for which 6 plane waves are emitted by a linear transducer TR_E in different directions. The plane waves interact with crack-type defects D located at the heart of the part P. The positioning configuration of the transducers TR_E, TR_R facing each side of the part (as represented in Figure ) is optimal for the detection of specular echoes on defects such as fine cracks contained in a plane perpendicular to the entry surfaces of the part and whose depth is close to mid-thickness (we see on the that the defect located closest to mid-thickness leads to a specular echo of higher amplitude on the ultrasound image shown on the right). This type of defect is in fact particularly difficult to detect with a single sensor since only the echoes created by diffraction on the ends of the defect can possibly be detected, but are of very low amplitude. In particular, in components made of coarse-grained steel for which the structure generates noise on the images, the amplitude of the diffraction echoes can be drowned in this noise.

Dans le cas où, dans le repère lié au transducteur émetteur, le transducteur récepteur présente à la fois des coordonnées non nulles sur l’axe z et sur l’axe x, alors l’expression du spectre du champ d’onde mesuré sur un élément u du transducteur de réception devient :In the case where, in the frame linked to the transmitting transducer, the receiving transducer has both non-zero coordinates on the z axis and on the x axis, then the expression of the spectrum of the wave field measured on a element u of the reception transducer becomes:

Et on obtient les équations de conversion et de changement de repère suivantes :And we obtain the following conversion and change of reference equations:

Ainsi, on obtient la relation de transformation matricielle suivante plus générale entre les M matrices FTMRm et les M images spectrales FTIm (étape 305) :Thus, we obtain the following more general matrix transformation relation between the M matrices FTMRm and the M spectral images FTIm (step 305):

Cette variante présente un intérêt particulier pour des défauts de type fissures fines contenues dans un plan perpendiculaire aux surfaces d’entrée de la pièce, et qui ne seraient pas situés à mi-épaisseur. Les échos spéculaires sont alors plus facilement détectés lorsque l’émetteur et le récepteur sont décalés selon l’axe x. Un exemple de configuration de ce type est représenté en avec un transducteur de réception TR_R décalé du transducteur d’émission TR_E selon l’axe x et un défaut D situé plus proche du transducteur de réception que du transducteur d’émission.This variant is of particular interest for defects such as fine cracks contained in a plane perpendicular to the entry surfaces of the part, and which would not be located at mid-thickness. Specular echoes are then more easily detected when the transmitter and receiver are offset along the x axis. An example of this type of configuration is shown in with a reception transducer TR_R offset from the transmission transducer TR_E along the x axis and a fault D located closer to the reception transducer than to the transmission transducer.

Dans le cas d’une imagerie 3D utilisant des transducteurs matriciels, les équations de conversion et de changement de repère sont obtenues de façon similaire. On obtient au final la relation de transformation matricielle suivante :In the case of 3D imaging using matrix transducers, the conversion and reference change equations are obtained in a similar way. We finally obtain the following matrix transformation relation:

Ainsi, de façon générale et tel que décrit à l’appui des différents exemples précités, le dispositif selon l’invention comporte deux transducteurs agissant respectivement en émission et en réception qui peuvent être linéaires ou matriciels afin de réaliser une imagerie en 2D ou en 3D et qui peuvent être placés sur le même plan du même côté de la pièce à imager ou sur deux faces parallèles opposées de la pièce à imager. Dans ce dernier cas, les deux transducteurs peuvent être en vis-à-vis ou décalés selon l’axe parallèle aux plans des transducteurs.Thus, in general and as described in support of the various examples cited above, the device according to the invention comprises two transducers acting respectively in transmission and reception which can be linear or matrix in order to produce 2D or 3D imaging. and which can be placed on the same plane on the same side of the part to be imaged or on two opposite parallel faces of the part to be imaged. In the latter case, the two transducers can be opposite each other or offset along the axis parallel to the planes of the transducers.

Dans tous les scénarii, la méthode selon l’invention comporte une étape 305 de conversion entre les M matrices FTMRm et les M images spectrales FTIm qui est basée sur une relation de transformation matricielle qui prend en compte un coefficient traduisant la position relative du transducteur récepteur par rapport au transducteur émetteur.In all scenarios, the method according to the invention comprises a step 305 of conversion between the M matrices FTMRm and the M spectral images FTIm which is based on a matrix transformation relation which takes into account a coefficient reflecting the relative position of the receiving transducer relative to the transmitting transducer.

Selon une variante de réalisation, la méthode décrite dans ce document peut être combinée avec celle décrite dans la demande de brevet WO 2020/128344A1 du Demandeur de la manière suivante. Lors de chaque série d’émissions d’ondes planes effectuée par le transducteur émetteur TR_E, les signaux élémentaires mesurés à la fois sur le transducteur récepteur TR_R et sur le transducteur émetteur TR_E sont enregistrés. La méthode d’imagerie décrite dans la demande de brevet précitée est appliquée aux signaux mesurés par le transducteur émetteur TR_E et la méthode selon la présente invention est appliquée aux signaux mesurés par le transducteur récepteur TR_R.According to an alternative embodiment, the method described in this document can be combined with that described in the Applicant's patent application WO 2020/128344A1 in the following manner. During each series of plane wave emissions carried out by the transmitting transducer TR_E, the elementary signals measured both on the receiving transducer TR_R and on the transmitting transducer TR_E are recorded. The imaging method described in the aforementioned patent application is applied to the signals measured by the transmitting transducer TR_E and the method according to the present invention is applied to the signals measured by the receiving transducer TR_R.

Ensuite, les images ultrasonores obtenues via les deux méthodes sont fusionnées au moyen de toute méthode de fusion connue, par exemple une moyenne des pixels des deux images.Then, the ultrasound images obtained via the two methods are merged using any known fusion method, for example an average of the pixels of the two images.

Autrement dit, dans cette variante de réalisation, les traitements suivants sont exécutés par le transducteur d’émission TR_E en parallèle du transducteur de réception TR_R :

  • Le transducteur d’émission TR_E est commandé pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N’ signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • chaque signal temporel de mesure est échantillonné temporellement en N’téchantillons successifs,
  • On détermine ensuite M’ matrices MR’m, 1≤m≤M’, de signaux temporels ultrasonores de taille N’xN’t, chaque coefficient MR’m(ui,tj) de chaque matrice MR’mreprésentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur d’émission dû à la m-ième émission,
  • On applique ensuite une transformation de Fourier multi-dimensionnelle en lignes et colonnes à chaque matrice MR’mpour obtenir M’ matrices spectrales FTMR’m, 1≤m≤M’,
  • On converti ensuite chaque matrice spectrale FTMR’mpour obtenir M’ images spectrales FTI’mdans un espace de nombres d’ondes spatiaux, cette conversion comportant l’application d’une relation de transformation matricielle des M’ matrices FTMR’men les M’ images spectrales FTI’met l’application d’une transformation à l’aide d’un système d’équations de changement de repère, les équations de transformation étant données par (dans le cas 2D) :
In other words, in this alternative embodiment, the following processing operations are carried out by the transmission transducer TR_E in parallel with the reception transducer TR_R:
  • The transmission transducer TR_E is controlled to receive simultaneously and for a predetermined duration, for each emission, N' temporal measurement signals corresponding to echoes due to backscattering of the emission considered in the object,
  • each temporal measurement signal is sampled temporally in N't successive samples,
  • We then determine M' matrices MR' m , 1≤m≤M', of ultrasonic temporal signals of size N'xN' t , each coefficient MR' m (u i ,t j ) of each matrix MR' m representing the t j -th time sample of the measurement signal received by the u i -th element of the transmission transducer due to the m-th transmission,
  • We then apply a multi-dimensional Fourier transformation in rows and columns to each matrix MR' m to obtain M' spectral matrices FTMR' m , 1≤m≤M',
  • Each spectral matrix FTMR' m is then converted to obtain M' spectral images FTI' m in a space of spatial wave numbers, this conversion comprising the application of a matrix transformation relation of the M' matrices FTMR' m into them. M' spectral images FTI' m and the application of a transformation using a system of reference change equations, the transformation equations being given by (in the 2D case):

  • Ensuite on combine les M’ images spectrales FTI’met on applique une transformation de Fourier multidimensionnelle inverse en lignes et colonnes à l’image spectrale résultante FTI’ pour obtenir une seconde image ultrasonore I’ de visualisation de l’objet,Then we combine the M' spectral images FTI' m and we apply an inverse multidimensional Fourier transformation in rows and columns to the resulting spectral image FTI' to obtain a second ultrasound image I' for displaying the object,
  • Enfin on fusionne la première image ultrasonore I obtenue par le transducteur récepteur avec la seconde image ultrasonore I’ obtenue par le transducteur émetteur pour obtenir une image ultrasonore finale If.Finally, the first ultrasound image I obtained by the receiver transducer is merged with the second ultrasound image I' obtained by the transmitter transducer to obtain a final ultrasound image I f .

Un avantage à l’exploitation simultanée des deux transducteurs en réception pour générer deux images ultrasonores de la même pièce est que cela permet d’améliorer la précision de l’image finale pour une complexité de mise en œuvre limitée, les traitements nécessaires aux deux imageries pouvant être réalisés en parallèle à partir des mesures reçues simultanément par les deux transducteurs TR_E,TR_R.An advantage to the simultaneous operation of the two transducers in reception to generate two ultrasound images of the same part is that this makes it possible to improve the precision of the final image for a limited complexity of implementation, the processing necessary for the two images which can be carried out in parallel from the measurements received simultaneously by the two transducers TR_E, TR_R.

L’image ultrasonore obtenue au moyen de l’invention peut être affichée sur une interface à l’aide d’un logiciel de conception assistée par ordinateur 2D ou 3D.The ultrasound image obtained using the invention can be displayed on an interface using 2D or 3D computer-aided design software.

Dans une variante de réalisation, le transducteur récepteur peut présenter une fréquence centrale de fonctionnement différente de la fréquence centrale de fonctionnement du transducteur émetteur, cela permet notamment de réaliser de l’imagerie harmonique en fréquentiel. Autrement dit, dans ce cas, le transducteur récepteur reçoit des signaux de mesures à des fréquences harmoniques de la fréquence centrale de fonctionnement du transducteur émetteur.In a variant embodiment, the receiver transducer can have a central operating frequency different from the central operating frequency of the transmitter transducer, this makes it possible in particular to carry out frequency harmonic imaging. In other words, in this case, the receiver transducer receives measurement signals at harmonic frequencies of the central operating frequency of the transmitter transducer.

Chaque transducteur peut être positionné directement contre une face de la pièce à contrôler ou peut être séparé de la pièce par une hauteur d’eau.Each transducer can be positioned directly against one side of the part to be controlled or can be separated from the part by a height of water.

L’invention présente l’avantage notable de permettre une meilleure imagerie de défauts de type fissure d’épaisseur fine située à mi- épaisseur de pièces épaisses.The invention has the notable advantage of allowing better imaging of thin-thickness crack-type defects located at mid-thickness of thick parts.

Claims (13)

Procédé d’imagerie ultrasonore d’un objet ayant deux faces opposées, à partir d’un couple de transducteurs multi-éléments comprenant un transducteur d’émission (TR_E) à L éléments et un transducteur de réception (TR_R) à N éléments, placés chacun sur la même face ou sur deux faces opposées de l’objet à imager, le procédé comprenant les étapes de :
  • Commander (301) le transducteur d’émission (TR_E) pour générer M émissions successives d’ondes ultrasonores,
  • Commander (302) le transducteur de réception (TR_R) pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • Echantillonner temporellement chaque signal temporel de mesure en Ntéchantillons successifs,
  • Déterminer (303) M matrices MRm, 1≤m≤M, de signaux temporels ultrasonores de taille NxNt, chaque coefficient MRm(ui,tj) de chaque matrice MRmreprésentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur de réception dû à la m-ième émission,
  • Appliquer (304) une transformation de Fourier multi-dimensionnelle en lignes et colonnes à chaque matrice MRmpour obtenir M matrices spectrales FTMRm, 1≤m≤M,
  • Convertir (305) chaque matrice spectrale FTMRmpour obtenir M images spectrales FTImdans un espace de nombres d’ondes spatiaux, cette conversion comportant l’application d’une relation de transformation matricielle des M matrices FTMRmen les M images spectrales FTImet l’application d’une transformation à l’aide d’un système d’équations de changement de repère, cette conversion comportant la prise en compte d’un facteur correctif dépendant de la position relative du transducteur de réception (TR_R) par rapport au transducteur d’émission (TR_E),
  • Combiner les M images spectrales FTImet appliquer une transformation de Fourier multidimensionnelle inverse (306) en lignes et colonnes à l’image spectrale résultante FTI pour obtenir une première image ultrasonore I de visualisation de l’objet.
Ultrasound imaging method of an object having two opposite faces, using a pair of multi-element transducers comprising a transmission transducer (TR_E) with L elements and a reception transducer (TR_R) with N elements, placed each on the same face or on two opposite faces of the object to be imaged, the method comprising the steps of:
  • Control (301) the emission transducer (TR_E) to generate M successive emissions of ultrasonic waves,
  • Control (302) the reception transducer (TR_R) to receive simultaneously and for a predetermined duration, for each transmission, N temporal measurement signals corresponding to echoes due to backscattering of the emission considered in the object,
  • Temporally sample each temporal measurement signal in N t successive samples,
  • Determine (303) M matrices MR m , 1≤m≤M, of ultrasonic temporal signals of size NxN t , each coefficient MR m (u i ,t j ) of each matrix MR m representing the t j -th temporal sample of the signal measurement received by the u i -th element of the reception transducer due to the m-th transmission,
  • Apply (304) a multi-dimensional Fourier transformation in rows and columns to each MR matrix m to obtain M spectral matrices FTMR m , 1≤m≤M,
  • Convert (305) each FTMR spectral matrix m to obtain M FTI spectral images m in a space of spatial wavenumbers, this conversion comprising the application of a matrix transformation relation of the M FTMR matrices m into the M FTI spectral images m and the application of a transformation using a system of reference change equations, this conversion comprising the taking into account of a corrective factor depending on the relative position of the reception transducer (TR_R) by relative to the emission transducer (TR_E),
  • Combine the M FTI spectral images m and apply an inverse multidimensional Fourier transform (306) in rows and columns to the resulting FTI spectral image to obtain a first ultrasound image I for viewing the object.
Procédé d’imagerie ultrasonore selon la revendication 1 dans lequel, les transducteurs multi-éléments (TR_E, TR_R) sont matriciels et lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, la relation de transformation matricielle prend la forme suivante :

où ku, kvet ktsont les nombres d’ondes, respectivement spatiaux selon deux dimensions respectives et temporel, représentatifs des lignes et colonnes de chaque matrice spectrale FTMRm, est la pulsation des ondes ultrasonores et c leur vitesse de propagation, kx, kyet kzsont les nombres d’ondes spatiaux représentatifs des lignes et colonnes de chaque image spectrale FTImet correspondant à un repère (x,y,z) dont l’origine est le premier élément du transducteur d’émission, le plan (x,y) correspond à l’une des faces de l’objet et l’axe z étant perpendiculaire à cette face de l’objet, est un coefficient d’amplitude dépendant de la pulsation de l’onde ultrasonore, dx, dyet h sont les coordonnées respectives selon les axes x,y et z du transducteur de réception dans le dit repère, au moins l’une des valeurs de dx, dyou h étant non nulle.
Ultrasound imaging method according to claim 1 in which, the multi-element transducers (TR_E, TR_R) are matrix and during the conversion of each spectral matrix FTMR m into each spectral image FTI m , the matrix transformation relation takes the form next :

where k u , k v and k t are the wave numbers, respectively spatial in two respective dimensions and temporal, representative of the rows and columns of each FTMR spectral matrix m , is the pulsation of the ultrasonic waves and c their propagation speed, k x , k y and k z are the spatial wave numbers representative of the rows and columns of each FTI spectral image m and corresponding to a reference (x,y,z ) whose origin is the first element of the emission transducer, the plane (x,y) corresponds to one of the faces of the object and the z axis being perpendicular to this face of the object, is an amplitude coefficient dependent on the pulsation of the ultrasonic wave, d x , d y and h are the respective coordinates along the x, y and z axes of the reception transducer in said reference frame, at least one of the values of d x , d y or h being not zero.
Procédé d’imagerie ultrasonore selon la revendication 2 dans lequel, lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, les équations de changement de repère prennent la forme suivante :

et sont des angles incidents qui définissent la direction de propagation de l’onde plane émise par un élément du transducteur d’émission
Ultrasound imaging method according to claim 2 in which, during the conversion of each FTMR spectral matrix m into each FTI spectral image m , the reference change equations take the following form:

Or And are incident angles which define the direction of propagation of the plane wave emitted by an element of the emission transducer
Procédé d’imagerie ultrasonore selon la revendication 1 dans lequel, les transducteurs multi-éléments (TR_E, TR_R) sont linéaires et lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, la relation de transformation matricielle prend la forme suivante :

où kuet kt sont les nombres d’ondes, respectivement spatiaux et temporel représentatifs des lignes et colonnes de chaque matrice spectrale FTMRm est la pulsation des ondes ultrasonores et c leur vitesse de propagation, kxet kzsont les nombres d’ondes spatiaux représentatifs des lignes et colonnes de chaque image spectrale FTImet correspondant à un repère (x,z) dont l’origine est le premier élément du transducteur d’émission, l’axe x étant parallèle à l’une des faces de l’objet et l’axe z étant perpendiculaire à cette face de l’objet, est un coefficient d’amplitude dépendant de la pulsation de l’onde ultrasonore, d et h sont les coordonnées respectives selon les axes x et z du transducteur de réception dans le dit repère, au moins l’une des valeurs de d ou h étant non nulle.
Ultrasound imaging method according to claim 1 in which, the multi-element transducers (TR_E, TR_R) are linear and during the conversion of each FTMR spectral matrix m into each FTI spectral image m , the matrix transformation relation takes the form next :

where k u and kt are the wave numbers, respectively spatial and temporal, representative of the rows and columns of each FTMR spectral matrix m is the pulsation of the ultrasonic waves and c their propagation speed, k x and k z are the spatial wave numbers representative of the rows and columns of each FTI spectral image m and corresponding to a reference point (x, z) whose origin is the first element of the emission transducer, the x axis being parallel to one of the faces of the object and the z axis being perpendicular to this face of the object, is an amplitude coefficient dependent on the pulsation of the ultrasonic wave, d and h are the respective coordinates along the x and z axes of the reception transducer in said reference frame, at least one of the values of d or h being non-zero.
Procédé d’imagerie ultrasonore selon la revendication 4 dans lequel, lors de la conversion de chaque matrice spectrale FTMRmen chaque image spectrale FTIm, les équations de changement de repère prennent la forme suivante :

est un angle incident qui définit la direction de propagation de l’onde plane émise par un élément du transducteur d’émission.
Ultrasound imaging method according to claim 4 in which, during the conversion of each FTMR spectral matrix m into each FTI spectral image m , the reference change equations take the following form:

Or is an incident angle which defines the direction of propagation of the plane wave emitted by an element of the emission transducer.
Procédé d’imagerie ultrasonore selon l’une quelconque des revendications précédentes, dans lequel les éléments du transducteur d’émission (TR_E) sont commandés pour M émissions successives d’ondes ultrasonores planes d’angles d’émission , successifs différents dans M zones d’émission.Ultrasound imaging method according to any one of the preceding claims, in which the elements of the emission transducer (TR_E) are controlled for M successive emissions of plane ultrasonic waves of emission angles , successively different in M emission zones. Procédé d’imagerie ultrasonore selon l’une quelconque des revendications précédentes dans lequel les fréquences centrales de fonctionnement respectives des transducteurs d’émission (TR_E) et de réception (TR_R) sont différentes.Ultrasound imaging method according to any one of the preceding claims in which the respective central operating frequencies of the transmission (TR_E) and reception (TR_R) transducers are different. Procédé d’imagerie ultrasonore selon l’une quelconque des revendications précédentes comprenant en outre les étapes suivantes :
  • Commander le transducteur d’émission (TR_E) pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N’ signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • Echantillonner temporellement chaque signal temporel de mesure en N’téchantillons successifs,
  • Déterminer M’ matrices MR’m, 1≤m≤M’, de signaux temporels ultrasonores de taille N’xN’t, chaque coefficient MR’m(ui,tj) de chaque matrice MR’mreprésentant le tj-ième échantillon temporel du signal de mesure reçu par le ui-ième élément du transducteur d’émission dû à la m-ième émission,
  • Appliquer une transformation de Fourier multi-dimensionnelle en lignes et colonnes à chaque matrice MR’mpour obtenir M’ matrices spectrales FTMR’m, 1≤m≤M’,
  • Convertir chaque matrice spectrale FTMR’mpour obtenir M’ images spectrales FTI’mdans un espace de nombres d’ondes spatiaux, cette conversion comportant l’application d’une relation de transformation matricielle des M’ matrices FTMR’men les M’ images spectrales FTI’met l’application d’une transformation à l’aide d’un système d’équations de changement de repère,
  • Combiner les M’ images spectrales FTI’met appliquer une transformation de Fourier multidimensionnelle inverse en lignes et colonnes à l’image spectrale résultante FTI’ pour obtenir une seconde image ultrasonore I’ de visualisation de l’objet,
  • Fusionner la première image ultrasonore I avec la seconde image ultrasonore I’ pour obtenir une image ultrasonore finale If.
Ultrasound imaging method according to any one of the preceding claims further comprising the following steps:
  • Control the transmission transducer (TR_E) to receive simultaneously and for a predetermined duration, for each emission, N' temporal measurement signals corresponding to echoes due to backscattering of the emission considered in the object,
  • Temporally sample each temporal measurement signal in N' t successive samples,
  • Determine M' matrices MR' m , 1≤m≤M', of ultrasonic temporal signals of size N'xN' t , each coefficient MR' m (u i ,t j ) of each matrix MR' m representing the t j - ith time sample of the measurement signal received by the u i -th element of the transmission transducer due to the m-th emission,
  • Apply a multi-dimensional Fourier transform in rows and columns to each matrix MR' m to obtain M' spectral matrices FTMR' m , 1≤m≤M',
  • Convert each spectral matrix FTMR' m to obtain M' spectral images FTI' m in a space of spatial wavenumbers, this conversion comprising the application of a matrix transformation relation of the M' matrices FTMR' m into the M'FTI' m spectral images and the application of a transformation using a system of reference change equations,
  • Combine the M' spectral images FTI' m and apply an inverse multidimensional Fourier transformation in rows and columns to the resulting spectral image FTI' to obtain a second ultrasound image I' for viewing the object,
  • Merge the first ultrasound image I with the second ultrasound image I' to obtain a final ultrasound image I f .
Procédé d’imagerie ultrasonore selon l’une quelconque des revendications précédentes comprenant l’affichage de la première image ultrasonore I ou l’image ultrasonore finale Ifau moyen d’un logiciel de conception assistée par ordinateur.An ultrasound imaging method according to any one of the preceding claims comprising displaying the first ultrasound image I or the final ultrasound image I f by means of computer-aided design software. Programme d’ordinateur téléchargeable depuis un réseau de communication et/ou enregistré sur un support lisible par ordinateur et/ou exécutable par un processeur, caractérisé en ce qu’il comprend des instructions pour l’exécution des étapes d’un procédé d’imagerie selon l’une quelconque des revendications 1 à 9, lorsque ledit programme est exécuté sur un ordinateur.Computer program downloadable from a communications network and/or recorded on a computer-readable medium and/or executable by a processor, characterized in that it comprises instructions for executing the steps of an imaging process according to any one of claims 1 to 9, when said program is executed on a computer. Dispositif de sondage à ultrasons, pour le sondage ultrasonore d’un objet (P), comprenant :
  • une sonde comprenant un couple de transducteurs multi-éléments comprenant un transducteur d’émission (TR_E) à L éléments et un transducteur de réception (TR_R) à N éléments et destinés à être placés chacun sur la même face ou sur deux faces opposées de l’objet à imager (P),
  • des moyens de commande des L éléments du transducteur d’émission (TR_E) pour M émissions successives d’ondes ultrasonores,
  • des moyens de commande des N éléments du transducteur de réception (TR_R) pour recevoir simultanément et pendant une durée prédéterminée, pour chaque émission, N signaux temporels de mesure correspondant à des échos dus à des rétro-diffusions de l’émission considérée dans l’objet,
  • et un processeur de reconstitution d’une image ultrasonore de visualisation de l’objet, configuré pour exécuter les étapes de la méthode selon l’une quelconque des revendications 1 à 9.
Ultrasonic probing device, for ultrasonic probing of an object (P), comprising:
  • a probe comprising a pair of multi-element transducers comprising a transmission transducer (TR_E) with L elements and a reception transducer (TR_R) with N elements and intended to be each placed on the same face or on two opposite faces of the 'object to be imaged (P),
  • means for controlling the L elements of the emission transducer (TR_E) for M successive emissions of ultrasonic waves,
  • means for controlling the N elements of the reception transducer (TR_R) to receive simultaneously and for a predetermined duration, for each transmission, N temporal measurement signals corresponding to echoes due to backscattering of the transmission considered in the object,
  • and a processor for reconstituting an ultrasound image for displaying the object, configured to execute the steps of the method according to any one of claims 1 to 9.
Dispositif de sondage à ultrasons selon la revendication 11 dans lequel les transducteurs multi-éléments (TR_E, TR_R) sont linéaires ou matriciels.Ultrasonic sounding device according to claim 11 in which the multi-element transducers (TR_E, TR_R) are linear or matrix. Ensemble comprenant un dispositif de sondage à ultrasons selon l’une quelconque des revendications 11 à 12 et un objet à imager, le transducteur d’émission et le transducteur de réception étant positionnés sur une même face de l’objet ou sur deux faces opposées de l’objet.Assembly comprising an ultrasonic probing device according to any one of claims 11 to 12 and an object to be imaged, the emission transducer and the reception transducer being positioned on the same face of the object or on two opposite faces of the object.
FR2210079A 2022-10-03 2022-10-03 Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers Pending FR3140439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR2210079A FR3140439A1 (en) 2022-10-03 2022-10-03 Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers
PCT/EP2023/073878 WO2024074252A1 (en) 2022-10-03 2023-08-31 Method for achieving ultrasound imaging through multi-dimensional fourier transform using two separate multi-element transducers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2210079 2022-10-03
FR2210079A FR3140439A1 (en) 2022-10-03 2022-10-03 Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers

Publications (1)

Publication Number Publication Date
FR3140439A1 true FR3140439A1 (en) 2024-04-05

Family

ID=84820212

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2210079A Pending FR3140439A1 (en) 2022-10-03 2022-10-03 Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers

Country Status (2)

Country Link
FR (1) FR3140439A1 (en)
WO (1) WO2024074252A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605009A1 (en) 2011-12-16 2013-06-19 Institut de Soudure Device for non-destructive array ultrasonic testing
US20160157828A1 (en) * 2014-06-05 2016-06-09 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
WO2020128344A1 (en) 2018-12-20 2020-06-25 Commissariat à l'énergie atomique et aux énergies alternatives Method for ultrasound imaging using two-dimensional fourier transform, corresponding ultrasound probe device and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605009A1 (en) 2011-12-16 2013-06-19 Institut de Soudure Device for non-destructive array ultrasonic testing
US20160157828A1 (en) * 2014-06-05 2016-06-09 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
WO2020128344A1 (en) 2018-12-20 2020-06-25 Commissariat à l'énergie atomique et aux énergies alternatives Method for ultrasound imaging using two-dimensional fourier transform, corresponding ultrasound probe device and computer program
FR3090965A1 (en) 2018-12-20 2020-06-26 Commissariat à l'énergie atomique et aux énergies alternatives Two-dimensional Fourier transform ultrasound imaging method, computer program and corresponding ultrasound probing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. MERABET ET AL.: "2-D and 3-D Reconstruction Algorithms in the Fourier Domain for Plane-Wave Imaging in Nondestructive Testing", IEEE-TUFFC, 2019

Also Published As

Publication number Publication date
WO2024074252A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
CA2878545C (en) Method for processing signals acquired by echo sounding, and corresponding computer program and echo sounding device
EP0904535B1 (en) Method and device for detecting and locating a reverberating source of sound
EP2780699B1 (en) Method for reconstructing the geometry of a surface of an object via echographic sounding, corresponding computer program and device for ultrasonic sounding
EP0124442B1 (en) Method and device for acoustic holographyx using an altrasonic beam limited in space
EP3899523B1 (en) Method for ultrasound imaging using two-dimensional fourier transform, corresponding ultrasound probe device and computer program
EP3084416B1 (en) Method for processing signals from an ultrasound probe acquisition, corresponding computer program and ultrasound probe device
Carcreff et al. Comparison of conventional technique and migration approach for total focusing
Carcreff et al. Fast total focusing method for ultrasonic imaging
CA3041166A1 (en) Method for nondestructive inspection by ultrasound of a bonded assembly
EP3526597B1 (en) Method and device for detecting and characterizing a reflecting element in an object
FR3140439A1 (en) Ultrasound imaging method by multidimensional Fourier transform using two separate multi-element transducers
FR3029636A1 (en) ULTRASONIC IMAGING METHOD AND DEVICE WITH GEOMETRY ECHO ARRAY FILTERING
WO2014086695A1 (en) Ultrasonic imaging device and method including filtering of artifacts resulting from interferences between reconstruction modes
FR3085095A1 (en) IMPROVED IMAGING METHOD AND DEVICE FOR IMAGING AN OBJECT
FR3013850A1 (en) METHOD FOR RECONSTRUCTING A SURFACE OF A PIECE
FR3045165A1 (en) METHOD AND SYSTEM ON ULTRASOUND IMAGING CHIP
Iriarte et al. Synthetic aperture ultrasound imaging using GPUs
WO2021023933A1 (en) Method and system for non-invasively characterising a heterogeneous medium using ultrasound
EP3555611A1 (en) Method of processing signals arising from an acquisition by ultrasound probing, corresponding computer program and ultrasound-based probing device
WO2004104632A1 (en) Method for scanning and analysing a three-dimensional structure

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20240405