FR3127289B1 - Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser - Google Patents
Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser Download PDFInfo
- Publication number
- FR3127289B1 FR3127289B1 FR2110048A FR2110048A FR3127289B1 FR 3127289 B1 FR3127289 B1 FR 3127289B1 FR 2110048 A FR2110048 A FR 2110048A FR 2110048 A FR2110048 A FR 2110048A FR 3127289 B1 FR3127289 B1 FR 3127289B1
- Authority
- FR
- France
- Prior art keywords
- laser sintering
- situ
- homogeneity
- characterizing
- real time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000149 argon plasma sintering Methods 0.000 title abstract 5
- 239000002184 metal Substances 0.000 title abstract 5
- 238000011065 in-situ storage Methods 0.000 title abstract 3
- 238000000034 method Methods 0.000 title abstract 3
- 238000012512 characterization method Methods 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000006378 damage Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 abstract 1
- 230000001360 synchronised effect Effects 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/90—Means for process control, e.g. cameras or sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Powder Metallurgy (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser L’invention concerne un procédé de fabrication d’une pièce métallique par frittage laser et de caractérisation in-situ et non destructive de la pièce métallique, comprenant les étapes suivantes : (a) formation d’au moins une couche (C) de la pièce métallique par frittage laser, comprenant l’émission par un dispositif laser (3) d’au moins un faisceau laser (9a-b) sur un lit de poudre (P) du matériau constitutif de la couche ; (b) émission d’au moins un faisceau laser (14a-c) par le même dispositif laser ayant servi au frittage laser selon l’étape (a), de sorte à irradier et par-là chauffer au moins une partie de la surface de la couche formée, afin d’en réaliser sa caractérisation par radiométrie photothermique modulée à détection synchrone. Figure pour l’abrégé : Fig. 2
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2110048A FR3127289B1 (fr) | 2021-09-23 | 2021-09-23 | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser |
PCT/EP2022/076170 WO2023046722A1 (fr) | 2021-09-23 | 2022-09-21 | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l'homogénéité de pièces métalliques fabriquées par frittage laser |
EP22786026.9A EP4405672A1 (fr) | 2021-09-23 | 2022-09-21 | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l'homogénéité de pièces métalliques fabriquées par frittage laser |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2110048A FR3127289B1 (fr) | 2021-09-23 | 2021-09-23 | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser |
FR2110048 | 2021-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3127289A1 FR3127289A1 (fr) | 2023-03-24 |
FR3127289B1 true FR3127289B1 (fr) | 2024-06-28 |
Family
ID=79602209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2110048A Active FR3127289B1 (fr) | 2021-09-23 | 2021-09-23 | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4405672A1 (fr) |
FR (1) | FR3127289B1 (fr) |
WO (1) | WO2023046722A1 (fr) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013003760A1 (de) * | 2013-03-06 | 2014-09-11 | MTU Aero Engines AG | Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils |
FR3007523B1 (fr) | 2013-06-21 | 2016-06-17 | Commissariat Energie Atomique | Procede de determination de la diffusivite thermique et systeme pour la mise en oeuvre |
FR3075377B1 (fr) | 2017-12-19 | 2020-10-16 | Commissariat Energie Atomique | Procede de caracterisation et de controle de l'homogeneite de pieces metalliques fabriquees par frittage laser |
-
2021
- 2021-09-23 FR FR2110048A patent/FR3127289B1/fr active Active
-
2022
- 2022-09-21 WO PCT/EP2022/076170 patent/WO2023046722A1/fr active Application Filing
- 2022-09-21 EP EP22786026.9A patent/EP4405672A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2023046722A1 (fr) | 2023-03-30 |
FR3127289A1 (fr) | 2023-03-24 |
EP4405672A1 (fr) | 2024-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tenbrock et al. | Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion | |
Gualtieri et al. | Increasing nanohardness and reducing friction of nitride steel by laser surface texturing | |
Liu et al. | Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components | |
Avilés et al. | Influence of laser polishing on the high cycle fatigue strength of medium carbon AISI 1045 steel | |
Miraoui et al. | High‐Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis | |
Pfeiffer et al. | Ripple formation in various metals and super-hard tetrahedral amorphous carbon films in consequence of femtosecond laser irradiation | |
Adak et al. | Development of a direct correlation of bead geometry, grain size and HAZ width with the GMAW process parameters on bead-on-plate welds of mild steel | |
Kulchin et al. | Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses | |
FR3127289B1 (fr) | Procédé non destructif de contrôle et de caractérisation, in situ et en temps réel de l’homogénéité de pièces métalliques fabriquées par frittage laser | |
He et al. | Tribological behavior of femtosecond laser textured surfaces of 20CrNiMo/beryllium bronze tribo-pairs | |
Priymak et al. | Residual stresses and microstructural features of rotary-friction-welded from dissimilar medium carbon steels | |
Baiocco et al. | Prediction of laser drilled hole geometries from linear cutting operation by way of artificial neural networks | |
Thejasree et al. | Weldability Investigations on Laser Welding of Inconel 718 Plates Using Taguchi Approach | |
Marefat et al. | Design strategies for bi-metallic additive manufacturing in the context of wire and arc directed energy deposition | |
Sharma et al. | Laser beam treatment of nimonic C263 alloy: study of mechanical and metallurgical properties | |
Masoumi et al. | Metallurgical and mechanical characterization of laser spot welded low carbon steel sheets | |
Scheitler et al. | Experimental investigation of direct diamond laser cladding in combination with high speed camera based process monitoring | |
Vashukov et al. | Effect of laser perforation of elements of a diffusion-bonded ceramic–copper–ceramic joint on its mechanical properties | |
Lu et al. | The local microscale reverse deformation of metallic material under laser shock | |
Letyagin et al. | Benefits and prospects of laser welding application in vacuum | |
Danilov | Laser technology and nanotechnology applying diffractive optical elements | |
Geethapriyan et al. | Influence of process parameters on laser beam machining of leather for oil hydraulic system application | |
Singh et al. | Use of backing mediums increase penetration during TIG welding of P91 steel | |
Dzyubyk et al. | Investigation in structure of fusion zone of welded joint of high-strength steel with austenite weld | |
Wessel et al. | Micronotches for studying growth of small cracks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20230324 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |