FR3118503B1 - Procédé et dispositif de détection d'anormalité de données - Google Patents
Procédé et dispositif de détection d'anormalité de données Download PDFInfo
- Publication number
- FR3118503B1 FR3118503B1 FR2014189A FR2014189A FR3118503B1 FR 3118503 B1 FR3118503 B1 FR 3118503B1 FR 2014189 A FR2014189 A FR 2014189A FR 2014189 A FR2014189 A FR 2014189A FR 3118503 B1 FR3118503 B1 FR 3118503B1
- Authority
- FR
- France
- Prior art keywords
- sample
- detection method
- outputs
- data
- abnormality detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title abstract 3
- 230000005856 abnormality Effects 0.000 title abstract 2
- 238000013528 artificial neural network Methods 0.000 abstract 2
- 230000001788 irregular Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D46/00—Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs
- A01D46/24—Devices for picking apples or like fruit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/174—Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/88—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
- B60T8/885—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/406—Test-mode; Self-diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Fuzzy Systems (AREA)
- Environmental Sciences (AREA)
- Image Analysis (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Procédé et dispositif de détection d'anormalité de données La présente description concerne un procédé de détection d'anomalies utilisant un réseau neuronal artificiel entraîné (502) configuré pour mettre en œuvre au moins une fonction auto-associative destinée à répliquer un échantillon de données d'entrée au niveau d'une ou de plusieurs sorties (A), le procédé comprenant : a) l'injection d'un échantillon de données d'entrée dans le réseau neuronal artificiel entraîné (502) afin de générer un premier échantillon répliqué au niveau desdites une ou plusieurs sorties (A) ; b) l'exécution d'au moins une opération de réinjection ; c) le calcul d'un premier paramètre sur la base d'une distance entre une valeur d'un n-ième échantillon répliqué présent au niveau desdites une ou plusieurs sorties et une valeur d'une des valeurs précédemment injectées ou réinjectées ; et d) la comparaison du premier paramètre avec un premier seuil (), et le traitement de l'échantillon de données d'entrée comme étant un échantillon de données irrégulières si le premier seuil est dépassé. Figure pour l'abrégé : Fig. 5
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2014189A FR3118503B1 (fr) | 2020-12-28 | 2020-12-28 | Procédé et dispositif de détection d'anormalité de données |
EP21845064.1A EP4268132A1 (fr) | 2020-12-28 | 2021-12-27 | Procédé et dispositif de détection d'anomalie de données |
US18/252,163 US20230409881A1 (en) | 2020-12-28 | 2021-12-27 | Method and device for data abnormality detection |
PCT/EP2021/087687 WO2022144340A1 (fr) | 2020-12-28 | 2021-12-27 | Procédé et dispositif de détection d'anomalie de données |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2014189A FR3118503B1 (fr) | 2020-12-28 | 2020-12-28 | Procédé et dispositif de détection d'anormalité de données |
FR2014189 | 2020-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3118503A1 FR3118503A1 (fr) | 2022-07-01 |
FR3118503B1 true FR3118503B1 (fr) | 2024-01-12 |
Family
ID=75539454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2014189A Active FR3118503B1 (fr) | 2020-12-28 | 2020-12-28 | Procédé et dispositif de détection d'anormalité de données |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230409881A1 (fr) |
EP (1) | EP4268132A1 (fr) |
FR (1) | FR3118503B1 (fr) |
WO (1) | WO2022144340A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4439483A1 (fr) * | 2023-03-31 | 2024-10-02 | Iceye Oy | Systèmes et procédés de détection d'anomalies pour images |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL148395B (nl) | 1968-06-25 | 1976-01-15 | Philips Nv | Regelafsluiter. |
KR20200108523A (ko) * | 2019-03-05 | 2020-09-21 | 주식회사 엘렉시 | 이상 패턴 감지 시스템 및 방법 |
-
2020
- 2020-12-28 FR FR2014189A patent/FR3118503B1/fr active Active
-
2021
- 2021-12-27 US US18/252,163 patent/US20230409881A1/en active Pending
- 2021-12-27 WO PCT/EP2021/087687 patent/WO2022144340A1/fr active Application Filing
- 2021-12-27 EP EP21845064.1A patent/EP4268132A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230409881A1 (en) | 2023-12-21 |
FR3118503A1 (fr) | 2022-07-01 |
EP4268132A1 (fr) | 2023-11-01 |
WO2022144340A1 (fr) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10119845B2 (en) | Optical fibre sensor system | |
Jyothsna et al. | A review of anomaly based intrusion detection systems | |
Kim et al. | Applying recurrent neural network to intrusion detection with hessian free optimization | |
Lei et al. | XSS detection technology based on LSTM-attention | |
CN113240211B (zh) | 废水排放预测方法、装置、计算机设备和存储介质 | |
FR3118503B1 (fr) | Procédé et dispositif de détection d'anormalité de données | |
CN108229731B (zh) | 一种热点话题下多消息互影响的用户行为预测系统及方法 | |
CN113657651B (zh) | 基于深度迁移学习的柴油车排放预测方法、介质及设备 | |
CN105844501A (zh) | 一种消费行为的风险控制系统及方法 | |
CN111510368A (zh) | 家庭群组识别方法、装置、设备及计算机可读存储介质 | |
CN113669142B (zh) | 一种发动机原排碳烟质量流量估算方法及装置 | |
CN115774875A (zh) | 基于差分隐私联邦深度学习的安卓恶意应用检测方法 | |
CN113077019B (zh) | 污染类型识别方法及装置和存储介质 | |
Wu et al. | An Effective Machine Learning Scheme to Analyze and Predict the Concentration of Persistent Pollutants in the Great Lakes | |
Brogi | Real-time detection of advanced persistent threats using information flow tracking and hidden Markov models | |
Ma et al. | Learning code representations using multifractal-based graph networks | |
CN117150882A (zh) | 发动机油耗预测方法、系统、电子设备及存储介质 | |
Ayaz et al. | Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks | |
Ju et al. | A robust approach to adversarial attack on tabular data for classification algorithm testing | |
Gavrila | Ozone concentration prediction using artificial neural networks | |
Hussain et al. | Discovering data-aware mode-switching constraints to monitor mode-switching decisions in supervisory control | |
CN114579962A (zh) | 一种ai安全攻防测试方法 | |
Tsunewaki et al. | LSTM-based ransomware detection using API call information | |
Avdoshin et al. | Machine learning use cases in cybersecurity | |
Rong et al. | A new water quality evaluation model based on simplified Hopfield neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20220701 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |