FR3104759B1 - Location of electrical network elements in aerial images - Google Patents
Location of electrical network elements in aerial images Download PDFInfo
- Publication number
- FR3104759B1 FR3104759B1 FR1914221A FR1914221A FR3104759B1 FR 3104759 B1 FR3104759 B1 FR 3104759B1 FR 1914221 A FR1914221 A FR 1914221A FR 1914221 A FR1914221 A FR 1914221A FR 3104759 B1 FR3104759 B1 FR 3104759B1
- Authority
- FR
- France
- Prior art keywords
- location
- convolution kernel
- training database
- network elements
- electrical network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 abstract 4
- 239000011159 matrix material Substances 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/176—Urban or other man-made structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/28—Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Processing Or Creating Images (AREA)
- Image Analysis (AREA)
Abstract
La présente invention concerne un procédé de remplissage d’une base de données d’entraînement destinée à permettre l’entraînement d’un algorithme de localisation d’un élément de réseau, comprenant les étapes suivantes :génération d’un noyau de convolution, le noyau de convolution étant formé d’une matrice ayant un nombre de lignes et un nombre de colonnes choisis aléatoirement, et enregistrement en mémoire du noyau de convolution,application, à une pluralité de pixels d’au moins une image de zone géographique, d’un filtre de floutage correspondant au noyau de convolution, résultant en une image floutée,ajout de l’image floutée à la base de données d’entraînement, pour obtenir une base de données d’entraînement complétée.La présente invention concerne également un procédé de localisation d’un élément de réseau au sein d’une zone géographique d’intérêt, à l’aide d’un algorithme de localisation préalablement entraîné selon un procédé d’apprentissage comprenant un procédé de remplissage de base de données d’entraînement tel que défini ci-avant. Figure pour l’abrégé : Fig. 2 FIGURESThe present invention relates to a method for filling a training database intended to allow training of an algorithm for locating a network element, comprising the following steps: generation of a convolution kernel, the convolution kernel being formed of a matrix having a number of rows and a number of columns chosen randomly, and recording in memory of the convolution kernel, application, to a plurality of pixels of at least one image of geographical area, of a blurring filter corresponding to the convolution kernel, resulting in a blurred image, adding the blurred image to the training database, to obtain a completed training database. The present invention also relates to a method of location of a network element within a geographical area of interest, using a location algorithm previously trained according to a learning method comprising a method of filling training database as defined above. Figure for the abstract: Fig. 2 FIGURES
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1914221A FR3104759B1 (en) | 2019-12-12 | 2019-12-12 | Location of electrical network elements in aerial images |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1914221 | 2019-12-12 | ||
FR1914221A FR3104759B1 (en) | 2019-12-12 | 2019-12-12 | Location of electrical network elements in aerial images |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3104759A1 FR3104759A1 (en) | 2021-06-18 |
FR3104759B1 true FR3104759B1 (en) | 2021-12-10 |
Family
ID=70613900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1914221A Active FR3104759B1 (en) | 2019-12-12 | 2019-12-12 | Location of electrical network elements in aerial images |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3104759B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018038720A1 (en) * | 2016-08-24 | 2018-03-01 | Google Inc. | Change detection based imagery acquisition tasking system |
US10140544B1 (en) * | 2018-04-02 | 2018-11-27 | 12 Sigma Technologies | Enhanced convolutional neural network for image segmentation |
-
2019
- 2019-12-12 FR FR1914221A patent/FR3104759B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3104759A1 (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109445457B (en) | Method for determining distribution information, and method and device for controlling unmanned aerial vehicle | |
US11048948B2 (en) | System and method for counting objects | |
US11532071B2 (en) | Creating super-resolution images | |
Streit et al. | Patchy delivery of functions undermines functional redundancy in a high diversity system | |
WO2017101690A1 (en) | Advertisement detection method and device | |
US20190156501A1 (en) | Three-dimensional reconstruction method using a plenoptic camera | |
JPWO2020191391A5 (en) | ||
TW200735337A (en) | Method and apparatus for setting black level in an imager using both optically black and tied pixels | |
FR2973162B1 (en) | VERY HIGH DYNAMIC IMAGE SENSOR | |
Chamaillé-Jammes et al. | Spatial distribution of a large herbivore community at waterholes: an assessment of its stability over years in Hwange National Park, Zimbabwe | |
Mackenzie et al. | The Shoreline Video Assessment Method (S-VAM): Using dynamic hyperlapse image acquisition to evaluate shoreline mangrove forest structure, values, degradation and threats | |
MY162211A (en) | Method and apparatus for manufacturing a security document comprising a lenticular array and blurred pixel tracks | |
CN101729778A (en) | Image processing apparatus and method | |
CN103453881A (en) | Distance measuring device and distance measuring method | |
JP2017010534A (en) | High capacity 2d color barcode design and processing method for camera based applications | |
Elleouet et al. | A trait‐based approach for assessing and mapping niche overlap between native and exotic species: the M editerranean coastal fish fauna as a case study | |
DE112010003748B4 (en) | METHOD AND APPARATUS FOR IMAGE CORRECTION | |
Dubuc et al. | Patterns of reef fish taxonomic and functional diversity in the Eastern Tropical Pacific | |
FR3104759B1 (en) | Location of electrical network elements in aerial images | |
Humber et al. | Placing Madagascar's marine turtle populations in a regional context using community-based monitoring | |
Sáenz et al. | Value creation through marketing data analytics: The distinct contribution of data analytics assets and capabilities to unit and firm performance | |
Peng et al. | MND-GAN: A research on image deblurring algorithm based on generative adversarial network | |
CN105989072A (en) | Duplicate removal counting method and device | |
CN114154680A (en) | Urban ground collapse prediction method and device and electronic equipment | |
CN114529483B (en) | Data processing method, device, terminal and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20210618 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |