FR3098350A1 - Lithium bis (fluorosulfonyl) imide salt and its uses - Google Patents

Lithium bis (fluorosulfonyl) imide salt and its uses Download PDF

Info

Publication number
FR3098350A1
FR3098350A1 FR2007186A FR2007186A FR3098350A1 FR 3098350 A1 FR3098350 A1 FR 3098350A1 FR 2007186 A FR2007186 A FR 2007186A FR 2007186 A FR2007186 A FR 2007186A FR 3098350 A1 FR3098350 A1 FR 3098350A1
Authority
FR
France
Prior art keywords
ppb
ppm
fluorosulfonyl
lithium bis
imide salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2007186A
Other languages
French (fr)
Inventor
Gregory Schmidt
Remy Teissier
Philippe Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to FR2007186A priority Critical patent/FR3098350A1/en
Publication of FR3098350A1 publication Critical patent/FR3098350A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • C01B21/0935Imidodisulfonic acid; Nitrilotrisulfonic acid; Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

Sel de bis(fluorosulfonyl)imide de lithium et ses utilisations La présente invention concerne un sel de bis(fluorosulfonyl)imide de lithium, caractérisé en ce que, après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH compris entre 4 et 8, en particulier à une température de 25°C, et ses utilisations dans les batteries Li-ion. La présente invention concerne également un sel de bis(fluorosulfonyl)imide de lithium, comprenant une teneur en ions H+ comprise entre 0,08 ppb et 0,80 ppm, entre 0,08 ppb et 0,63 ppm ou entre 0,25 ppb et 2,53 ppb. Pas de figureLithium bis (fluorosulfonyl) imide salt and uses thereof The present invention relates to a lithium bis (fluorosulfonyl) imide salt, characterized in that, after dissolving in water to form an aqueous solution, said aqueous solution has a pH between 4 and 8, in particular at a temperature of 25 ° C, and its uses in Li-ion batteries. The present invention also relates to a lithium bis (fluorosulfonyl) imide salt, comprising an H + ion content of between 0.08 ppb and 0.80 ppm, between 0.08 ppb and 0.63 ppm or between 0.25 ppb and 2.53 ppb. No figure

Description

Sel de bis(fluorosulfonyl)imide de lithium et ses utilisationsLithium bis(fluorosulfonyl)imide salt and uses thereof

DOMAINE DE L’INVENTIONFIELD OF THE INVENTION

La présente invention concerne un sel de bis(fluorosulfonyl)imide de lithium ayant une teneur spécifique en protons H+.The present invention relates to a lithium bis(fluorosulfonyl)imide salt having a specific content of H + protons.

La présente invention concerne également diverses utilisations dudit sel de bis(fluorosulfonyl)imide de lithium.The present invention also relates to various uses of said lithium bis(fluorosulfonyl)imide salt.

Le marché des batteries Li-ion nécessite de développer des batteries de plus forte puissance. Cela passe par l’augmentation du voltage nominal des batteries Li-ion. Pour atteindre les voltages visés, des électrolytes de grande pureté sont nécessaires.The Li-ion battery market requires the development of higher power batteries. This involves increasing the nominal voltage of Li-ion batteries. To achieve the targeted voltages, high purity electrolytes are required.

Dans le domaine spécifique des batteries Li-ion, le sel actuellement le plus utilisé est le LiPF6. Ce sel montre de nombreux désavantages tels qu’une stabilité thermique limitée, une sensibilité à l’hydrolyse et donc une plus faible sécurité de la batterie.In the specific field of Li-ion batteries, the salt currently most widely used is LiPF 6 . This salt shows many disadvantages such as limited thermal stability, susceptibility to hydrolysis and therefore lower battery safety.

De nouveaux sels de lithium de type sulfonylimide ont été récemment développés pour tenter d’améliorer les performances des batteries secondaires. Nous pouvons citer le LiTFSI (bis(trifluoromethanesulfonyl)imidure de lithium) et le LiFSI (bis(fluorosulfonyl)imidure de lithium). Ces sels présentent peu ou pas de décomposition spontanée, et sont plus stables vis-à-vis de l’hydrolyse que LiPF6. Néanmoins le LiTFSI présente le désavantage d’être corrosif vis-à-vis des collecteurs de courant en aluminium.New sulfonylimide type lithium salts have recently been developed in an attempt to improve the performance of secondary batteries. We can cite LiTFSI (lithium bis(trifluoromethanesulfonyl)imide) and LiFSI (lithium bis(fluorosulfonyl)imide). These salts exhibit little or no spontaneous decomposition, and are more stable with respect to hydrolysis than LiPF 6 . However, LiTFSI has the disadvantage of being corrosive to aluminum current collectors.

Toutefois, il existe un besoin pour de nouveaux sels présentant des performances électroniques améliorées et/ou une durée de vie plus longue dans les batteries Li-ion.However, there is a need for new salts with improved electronic performance and/or longer life in Li-ion batteries.

Il existe également un besoin pour de nouveaux sels pouvant être utilisés à des tensions de coupure de charge élevées.There is also a need for new salts that can be used at high load cut-off voltages.

DESCRIPTION DE L’INVENTIONDESCRIPTION OF THE INVENTION

La présente invention concerne un sel de bis(fluorosulfonyl)imide de lithium, caractérisé en ce que, après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH compris entre 4 et 8, en particulier à une température de 25°C.The present invention relates to a lithium bis(fluorosulfonyl)imide salt, characterized in that, after dissolving in water to form an aqueous solution, said aqueous solution has a pH of between 4 and 8, in particular at a temperature of 25°C.

Selon un mode de réalisation préféré, le sel LiFSI est tel qu’après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH par exemple compris entre 4,1 et 8, entre 4,2 et 8, entre 4,3 et 8, entre 4,4 et 8, entre 4,5 et 8, entre 4,6 et 8, entre 4,7 et 8, entre 4,8 et 8, entre 4,9 et 8, entre 5 et 8, entre 5,1 et 8, entre 5,2 et 8, entre 5,3 et 8, entre 5,4 et 8, entre 5,5 et 8, entre 5,6 et 8, entre 5,7 et 8, entre 5,8 et 8, entre 5,9 et 8, entre 6 et 8, entre 6,1 et 8, entre 6,2 et 8, entre 6,3 et 8, entre 6,4 et 8, entre 6,5 et 8, entre 6,6 et 8, entre 6,7 et 8, entre 6,8 et 8, entre 6,9 et 8, entre 7 et 8, entre 4 et 7,5, entre 4,1 et 7,5, entre 4,2 et 7,5, entre 4,3 et 7,5, entre 4,4 et 7,5, entre 4,5 et 7,5, entre 4,6 et 7,5, entre 4,7 et 7,5, entre 4,8 et 7,5, entre 4,9 et 7,5, entre 5 et 7,5, entre 5,1 et 7,5, entre 5,2 et 7,5, entre 5,3 et 7,5, entre 5,4 et 7,5, entre 5,5 et 7,5, entre 5,6 et 7,5, entre 5,7 et 7,5, entre 5,8 et 7,5, entre 5,9 et 7,5, entre 6 et 7,5, entre 6,1 et 7,5, entre 6,2 et 7,5, entre 6,3 et 7,5, entre 6,4 et 7,5, ou entre 6,5 et 7,5. De préférence, le sel LiFSI selon l’invention est tel qu’après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH compris entre 6 et 8, de préférence entre 6,5 et 8, et en particulier entre 6,5 et 7,5.According to a preferred embodiment, the LiFSI salt is such that after dissolving in water to form an aqueous solution, said aqueous solution has a pH for example between 4.1 and 8, between 4.2 and 8 , between 4.3 and 8, between 4.4 and 8, between 4.5 and 8, between 4.6 and 8, between 4.7 and 8, between 4.8 and 8, between 4.9 and 8, between 5 and 8, between 5.1 and 8, between 5.2 and 8, between 5.3 and 8, between 5.4 and 8, between 5.5 and 8, between 5.6 and 8, between 5, 7 and 8, between 5.8 and 8, between 5.9 and 8, between 6 and 8, between 6.1 and 8, between 6.2 and 8, between 6.3 and 8, between 6.4 and 8 , between 6.5 and 8, between 6.6 and 8, between 6.7 and 8, between 6.8 and 8, between 6.9 and 8, between 7 and 8, between 4 and 7.5, between 4 ,1 and 7.5, between 4.2 and 7.5, between 4.3 and 7.5, between 4.4 and 7.5, between 4.5 and 7.5, between 4.6 and 7, 5, between 4.7 and 7.5, between 4.8 and 7.5, between 4.9 and 7.5, between 5 and 7.5, between 5.1 and 7.5, between 5.2 and 7.5, between 5.3 and 7.5, between 5.4 and 7.5, between 5.5 and 7.5, between 5.6 and 7.5, between 5.7 and 7.5, between 5.8 and 7.5, between 5.9 and 7.5, between 6 and 7.5, between 6.1 and 7.5, between 6.2 and 7.5, between 6.3 and 7.5, between 6.4 and 7, 5, or between 6.5 and 7.5. Preferably, the LiFSI salt according to the invention is such that after dissolution in water to form an aqueous solution, said aqueous solution has a pH of between 6 and 8, preferably between 6.5 and 8, and in particular between 6.5 and 7.5.

Dans le cadre de l’invention, on utilise de manière équivalente les termes « sel de lithium de bis(fluorosulfonyl)imide », « lithium bis(sulfonyl)imidure », « LiFSI », « LiN(FSO2)2», « lithium de bis(sulfonyl)imide », ou « bis(fluorosulfonyl)imidure de lithium ».In the context of the invention, the terms "lithium salt of bis(fluorosulfonyl)imide", "lithium bis(sulfonyl)imide", "LiFSI", "LiN(FSO 2 ) 2 ", " bis(sulfonyl)imide lithium”, or “lithium bis(fluorosulfonyl)imide”.

Typiquement, le pH se définit comme le logarithme négatif de l’activité de l’ion hydrogène, selon la formule suivante :Typically, the pH is defined as the negative logarithm of the activity of the hydrogen ion, according to the following formula:

Le pH d’une solution peut être mesuré par toute méthode connue de l’homme du métier. On peut par exemple mesurer le pH à l’aide d’une électrode de verre, dont le potentiel peut varier en fonction de la concentration des ions hydrogène suivant l’équation de Nernst. Ce potentiel peut être mesuré par rapport à une électrode de référence à l’aide d’un potentiomètre à haute impédance, communément appelé pH-mètre. Comme pH-mètre, on peut par exemple utiliser le modèle pHM210 de la marque Radiometer.The pH of a solution can be measured by any method known to those skilled in the art. For example, the pH can be measured using a glass electrode, the potential of which can vary according to the concentration of hydrogen ions according to the Nernst equation. This potential can be measured against a reference electrode using a high impedance potentiometer, commonly known as a pH meter. As a pH meter, one can for example use the pHM210 model from the Radiometer brand.

Le pH de la solution de LiFSI peut être mesuré à l’aide d’un pH-mètre, en particulier préalablement étalonné à l’aide de trois solutions tampons (pH=4,0, 7,0 et 10,0). Le sel de LiFSI peut mis en solution dans l’eau (ladite eau ayant de préférence un pH de 7,45 ± 0,5), pour obtenir une concentration massique en LiFSI de 0,125 g/mL. La solution aqueuse peut être agitée pendant la mesure du pH.The pH of the LiFSI solution can be measured using a pH meter, in particular previously calibrated using three buffer solutions (pH=4.0, 7.0 and 10.0). The LiFSI salt can be dissolved in water (said water preferably having a pH of 7.45 ± 0.5), to obtain a mass concentration of LiFSI of 0.125 g/mL. The aqueous solution can be stirred during the pH measurement.

Selon un mode de réalisation, la concentration en LiFSI dans la solution aqueuse selon l’invention est comprise entre 0,050 et 0,250 g/mL, de préférence entre 0,080 et 0,200 g/mL, préférentiellement entre 0,1 et 0,2, en particulier la concentration est de 0,125 g/mL.According to one embodiment, the LiFSI concentration in the aqueous solution according to the invention is between 0.050 and 0.250 g/mL, preferably between 0.080 and 0.200 g/mL, preferentially between 0.1 and 0.2, in particular the concentration is 0.125 g/mL.

Selon un mode de réalisation, le sel de bis(fluorosulfonyl)imide de lithium susmentionné comprend une teneur en ions H+comprise entre 0,08 ppb et 0,80 ppm, entre 0,08 ppb et 0,63 ppm, entre 0,08 ppb et 0,50 ppm, entre 0,08 ppb et 0,40 ppm, entre 0,08 ppb et 0,32 ppm, entre 0,08 ppb et 0,25 ppm, entre 0,08 ppb et 0,20 ppm, entre 0,08 ppb et 0,16 ppm, entre 0,08 ppb et 0,13 ppm, entre 0,08 ppb et 0,10 ppm, entre 0,08 ppb et 0,08 ppm, entre 0,08 ppb et 0,06 ppm, entre 0,08 ppb et 0,05 ppm, entre 0,08 ppb et 0,04 ppm, entre 0,08 ppb et 0,032 ppm, entre 0,08 ppb et 0,025 ppm, entre 0,08 ppb et 0,020 ppm, entre 0,08 ppb et 0,016 ppm, entre 0,08 ppb et 0,013 ppm, entre 0,08 ppb et 10 ppb, entre 0,08 ppb et 8 ppb, entre 0,08 ppb et 6,35 ppb, entre 0,08 ppb et 5,05 ppb, entre 0,08 ppb et 4 ppb, entre 0,08 ppb et 3,18 ppb, entre 0,08 ppb et 2,53 ppb, entre 0,08 ppb et 2,01 ppb, entre 0,08 ppb et 1,59 ppb, entre 0,08 ppb et 1,27 ppb, entre 0,08 ppb et 1,01 ppb, entre 0,25 ppb et 0,8 ppm, entre 0,25 ppb et 0,63 ppm, entre 0,25 ppb et 0,50 ppm, entre 0,25 ppb et 0,40 ppm, entre 0,25 ppb et 0,32 ppm, entre 0,25 ppb et 0,25 ppm, entre 0,25 ppb et 0,20 ppm, entre 0,25 ppb et 0,16 ppm, entre 0,25 ppb et 0,13 ppm, entre 0,25 ppb et 0,10 ppm, entre 0,25 ppb et 0,08 ppm, entre 0,25 ppb et 0,06 ppm, entre 0,25 ppb et 0,05 ppm, entre 0,25 ppb et 0,04 ppm, entre 0,25 ppb et 0,032 ppm, entre 0,25 ppb et 0,025 ppm, entre 0,25 ppb et 0,020 ppm, entre 0,25 ppb et 0,016 ppm, entre 0,25 ppb et 0,013 ppm, entre 0,25 ppb et 10 ppb, entre 0,25 ppb et 8 ppb, entre 0,25 ppb et 6,35 ppb, entre 0,25 ppb et 5,05 ppb, entre 0,25 ppb et 4 ppb, entre 0,25 ppb et 3,18 ppb, ou entre 0,25 ppb et 2,53 ppb.According to one embodiment, the aforementioned lithium bis(fluorosulfonyl)imide salt comprises an H + ion content of between 0.08 ppb and 0.80 ppm, between 0.08 ppb and 0.63 ppm, between 0, 08 ppb to 0.50 ppm, 0.08 ppb to 0.40 ppm, 0.08 ppb to 0.32 ppm, 0.08 ppb to 0.25 ppm, 0.08 ppb to 0.20 ppm, between 0.08 ppb and 0.16 ppm, between 0.08 ppb and 0.13 ppm, between 0.08 ppb and 0.10 ppm, between 0.08 ppb and 0.08 ppm, between 0.08 ppb and 0.06 ppm, between 0.08 ppb and 0.05 ppm, between 0.08 ppb and 0.04 ppm, between 0.08 ppb and 0.032 ppm, between 0.08 ppb and 0.025 ppm, between 0, 08 ppb and 0.020 ppm, between 0.08 ppb and 0.016 ppm, between 0.08 ppb and 0.013 ppm, between 0.08 ppb and 10 ppb, between 0.08 ppb and 8 ppb, between 0.08 ppb and 6, 35 ppb, 0.08 ppb to 5.05 ppb, 0.08 ppb to 4 ppb, 0.08 ppb to 3.18 ppb, 0.08 ppb to 2.53 ppb, 0.08 ppb and 2.01 ppb, between 0.08 ppb and 1.59 ppb, between 0.08 ppb and 1.27 ppb, between 0.08 ppb and 1.01 ppb, between 0.25 ppb and 0.8 ppm, between 0.25 ppb to 0.63 ppm, 0.25 ppb to 0.50 ppm, 0.25 ppb to 0.40 ppm, 0.25 ppb to 0.32 ppm, 0.25 ppb to 0 .25 ppm, between 0.25 ppb and 0.20 ppm, between 0.25 ppb and 0.16 ppm, between 0.25 ppb and 0.13 ppm, between 0.25 ppb and 0.10 ppm, between 0 .25 ppb to 0.08 ppm, 0.25 ppb to 0.06 ppm, 0.25 ppb to 0.05 ppm, 0.25 ppb to 0.04 ppm, 0.25 ppb to 0.032 ppm , between 0.25 ppb and 0.025 ppm, between 0.25 ppb and 0.020 ppm, between 0.25 ppb and 0.016 ppm, between 0.25 ppb and 0.013 ppm, between 0.25 ppb and 10 ppb, between 0.25 ppb and 8 ppb, between 0.25 ppb and 6.35 ppb, between 0.25 ppb and 5.05 ppb, between 0.25 ppb and 4 ppb, between 0.25 ppb and 3.18 ppb, or between 0 .25 ppb and 2.53 ppb.

Dans le cadre de l’invention, le terme de « ppm » correspond à « partie par million » et s’entend de ppm en poids.In the context of the invention, the term “ppm” corresponds to “part per million” and is understood to mean ppm by weight.

Dans le cadre de l’invention, le terme de « ppb » correspond à « partie par milliard », et s’entend de ppb en poids.In the context of the invention, the term “ppb” corresponds to “part per billion”, and is understood to mean ppb by weight.

Dans le cadre de l’invention, on entend par exemple par « sel ayant une teneur en ions H+égale à 8 ppm en poids », un sel ayant une teneur en ions H+égale à 8 ppm en poids par rapport au poids total dudit sel.In the context of the invention, the term “salt having a content of H + ions equal to 8 ppm by weight” is understood to mean, for example, a salt having a content of H + ions equal to 8 ppm by weight relative to the total weight. of said salt.

La présente invention concerne également un sel de bis(fluorosulfonyl)imide de lithium, comprenant une teneur en ions H+comprise entre 0,08 ppb et 0,80 ppm, 0,08 ppb et 0,63 ppm, entre 0,08 ppb et 0,50 ppm, entre 0,08 ppb et 0,40 ppm, entre 0,08 ppb et 0,32 ppm, entre 0,08 ppb et 0,25 ppm, entre 0,08 ppb et 0,20 ppm, entre 0,08 ppb et 0,16 ppm, entre 0,08 ppb et 0,13 ppm, entre 0,08 ppb et 0,10 ppm, entre 0,08 ppb et 0,08 ppm, entre 0,08 ppb et 0,06 ppm, entre 0,08 ppb et 0,05 ppm, entre 0,08 ppb et 0,04 ppm, entre 0,08 ppb et 0,032 ppm, entre 0,08 ppb et 0,025 ppm, entre 0,08 ppb et 0,020 ppm, entre 0,08 ppb et 0,016 ppm, entre 0,08 ppb et 0,013 ppm, entre 0,08 ppb et 10 ppb, entre 0,08 ppb et 8 ppb, entre 0,08 ppb et 6,35 ppb, entre 0,08 ppb et 5,05 ppb, entre 0,08 ppb et 4 ppb, entre 0,08 ppb et 3,18 ppb, entre 0,08 ppb et 2,53 ppb, entre 0,08 ppb et 2,01 ppb, entre 0,08 ppb et 1,59 ppb, entre 0,08 ppb et 1,27 ppb, entre 0,08 ppb et 1,01 ppb, entre 0,25 ppb et 0,8 ppm, entre 0,25 ppb et 0,63 ppm, entre 0,25 ppb et 0,50 ppm, entre 0,25 ppb et 0,40 ppm, entre 0,25 ppb et 0,32 ppm, entre 0,25 ppb et 0,25 ppm, entre 0,25 ppb et 0,20 ppm, entre 0,25 ppb et 0,16 ppm, entre 0,25 ppb et 0,13 ppm, entre 0,25 ppb et 0,10 ppm, entre 0,25 ppb et 0,08 ppm, entre 0,25 ppb et 0,06 ppm, entre 0,25 ppb et 0,05 ppm, entre 0,25 ppb et 0,04 ppm, entre 0,25 ppb et 0,032 ppm, entre 0,25 ppb et 0,025 ppm, entre 0,25 ppb et 0,020 ppm, entre 0,25 ppb et 0,016 ppm, entre 0,25 ppb et 0,013 ppm, entre 0,25 ppb et 10 ppb, entre 0,25 ppb et 8 ppb, entre 0,25 ppb et 6,35 ppb, entre 0,25 ppb et 5,05 ppb, entre 0,25 ppb et 4 ppb, entre 0,25 ppb et 3,18 ppb, ou entre 0,25 ppb et 2,53 ppb.The present invention also relates to a lithium bis(fluorosulfonyl)imide salt, comprising an H + ion content of between 0.08 ppb and 0.80 ppm, 0.08 ppb and 0.63 ppm, between 0.08 ppb and 0.50 ppm, between 0.08 ppb and 0.40 ppm, between 0.08 ppb and 0.32 ppm, between 0.08 ppb and 0.25 ppm, between 0.08 ppb and 0.20 ppm, between 0.08 ppb and 0.16 ppm, between 0.08 ppb and 0.13 ppm, between 0.08 ppb and 0.10 ppm, between 0.08 ppb and 0.08 ppm, between 0.08 ppb and 0.06 ppm, between 0.08 ppb and 0.05 ppm, between 0.08 ppb and 0.04 ppm, between 0.08 ppb and 0.032 ppm, between 0.08 ppb and 0.025 ppm, between 0.08 ppb and 0.020 ppm, between 0.08 ppb and 0.016 ppm, between 0.08 ppb and 0.013 ppm, between 0.08 ppb and 10 ppb, between 0.08 ppb and 8 ppb, between 0.08 ppb and 6.35 ppb , between 0.08 ppb and 5.05 ppb, between 0.08 ppb and 4 ppb, between 0.08 ppb and 3.18 ppb, between 0.08 ppb and 2.53 ppb, between 0.08 ppb and 2 .01 ppb, between 0.08 ppb and 1.59 ppb, between 0.08 ppb and 1.27 ppb, between 0.08 ppb and 1.01 ppb, between 0.25 ppb and 0.8 ppm, between 0 .25 ppb and 0.63 ppm, between 0.25 ppb and 0.50 ppm, between 0.25 ppb and 0.40 ppm, between 0.25 ppb and 0.32 ppm, between 0.25 ppb and 0.25 ppm , between 0.25 ppb and 0.20 ppm, between 0.25 ppb and 0.16 ppm, between 0.25 ppb and 0.13 ppm, between 0.25 ppb and 0.10 ppm, between 0.25 ppb and 0.08 ppm, between 0.25 ppb and 0.06 ppm, between 0.25 ppb and 0.05 ppm, between 0.25 ppb and 0.04 ppm, between 0.25 ppb and 0.032 ppm, between 0 .25 ppb to 0.025 ppm, 0.25 ppb to 0.020 ppm, 0.25 ppb to 0.016 ppm, 0.25 ppb to 0.013 ppm, 0.25 ppb to 10 ppb, 0.25 ppb to 8 ppb, between 0.25 ppb and 6.35 ppb, between 0.25 ppb and 5.05 ppb, between 0.25 ppb and 4 ppb, between 0.25 ppb and 3.18 ppb, or between 0.25 ppb and 2.53 ppb.

La détermination de la teneur en protons H+dans le sel de bis(fluorosulfonyl)imide de lithium est de préférence réalisée par pH-mètrie, en particulier selon la méthode mentionnée précédemment.The determination of the H + proton content in the lithium bis(fluorosulfonyl)imide salt is preferably carried out by pH-metry, in particular according to the method mentioned above.

La demanderesse a découvert que l’utilisation du sel de LiFSI selon l’invention dans un électrolyte de batterie Li-ion, permet avantageusement d’avoir un courant résiduel faible à une tension de coupure de charge par exemple de 4,2V ou de 4,4V. Ce courant résiduel traduit les réactions parasites qui ont lieu dans une batterie Li-ion lors de son utilisation. Ces réactions parasites consomment des électrons et donc diminuent l’autonomie des batteries Li-ion au cours de leur utilisation. Par ailleurs, ces réactions parasites ont également un fort impact sur la sécurité des batteries car de telles réactions peuvent créer des réactions en chaîne pouvant provoquer l’emballement et l’explosion de la batterie Li-ion.The applicant has discovered that the use of the LiFSI salt according to the invention in a Li-ion battery electrolyte advantageously makes it possible to have a low residual current at a charging cut-off voltage of, for example, 4.2 V or 4 ,4V. This residual current translates the parasitic reactions which take place in a Li-ion battery during its use. These parasitic reactions consume electrons and therefore reduce the autonomy of Li-ion batteries during their use. Moreover, these parasitic reactions also have a strong impact on battery safety because such reactions can create chain reactions that can cause the Li-ion battery to runaway and explode.

Ainsi, l’utilisation du sel de LiFSI selon l’invention dans un électrolyte de batterie Li-ion, permet avantageusement d’améliorer la durée de vie de batterie Li-ion et/ou les performances électroniques d’une batterie Li-ion, et/ou la sécurité de ladite batterie, en particulier à une tension de coupure de charge élevée telle que par exemple à 4,4V.Thus, the use of the LiFSI salt according to the invention in a Li-ion battery electrolyte advantageously makes it possible to improve the Li-ion battery lifetime and/or the electronic performance of a Li-ion battery, and/or the safety of said battery, in particular at a high charging cut-off voltage such as for example at 4.4V.

L’utilisation du sel de LiFSI selon l’invention dans une batterie Li-ion permet avantageusement d’atteindre une tension de coupure de charge élevée, notamment supérieure ou égale à 4,4V.The use of the LiFSI salt according to the invention in a Li-ion battery advantageously makes it possible to achieve a high charging cut-off voltage, in particular greater than or equal to 4.4V.

Dans le cadre de l’invention, et sauf mention contraire, on entend par « tension de coupure de charge » (cut-off voltage), la limite de tension haute d’une batterie considérée comme totalement chargée. La tension de coupure est habituellement choisie afin d’obtenir la capacité maximum de la batterie.In the context of the invention, and unless otherwise stated, the term "cut-off voltage" means the high voltage limit of a battery considered to be fully charged. The cut-off voltage is usually chosen in order to obtain the maximum capacity of the battery.

La présente invention concerne également l’utilisation du sel de bis(fluorosulfonyl)imide de lithium dans une batterie Li-ion.The present invention also relates to the use of lithium bis(fluorosulfonyl)imide salt in a Li-ion battery.

La présente invention concerne également l’utilisation du sel de bis(fluorosulfonyl)imide de lithium dans une batterie Li-ion fonctionnant à une tension de coupure de charge supérieure ou égale à 4,2V, de préférence supérieure ou égale à 4,4V.The present invention also relates to the use of lithium bis(fluorosulfonyl)imide salt in a Li-ion battery operating at a charge cut-off voltage greater than or equal to 4.2V, preferably greater than or equal to 4.4V.

La présente invention concerne également l’utilisation du sel de bis(fluorosulfonyl)imide de lithium dans un électrolyte, notamment dans un électrolyte de batterie Li-ion.The present invention also relates to the use of lithium bis(fluorosulfonyl)imide salt in an electrolyte, in particular in a Li-ion battery electrolyte.

La présente invention concerne également une composition d’électrolyte comprenant le sel de bis(fluorosulfonyl)imide de lithium tel que défini selon l’invention, et un solvant organique.The present invention also relates to an electrolyte composition comprising the lithium bis(fluorosulfonyl)imide salt as defined according to the invention, and an organic solvent.

Des exemples de solvants organiques comprennent des éthers tels que l’éthylène glycol diméthyl éther (1,2-diméthoxyéthane), l’éthylène glycol diéthyl éther, le tétrahydrofurane, le 2-méthyltétrahydrofurane, le 2,6-diméthyltétrahydrofurane, le tétrahydropyrane, un éther couronne, le triéthylène glycol diméthyl éther, le tétraéthylène glycol diméthyl éther, le 1,4- dioxane et le 1,3-dioxolane ; les esters d’acide carbonique tels que le carbonate de diméthyle, le carbonate d’éthyle méthyle, le carbonate de diéthyle, le carbonate de diphényle et le carbonate de méthyle phényle ; les esters de carbonate cycliques tels que le carbonate d’éthylène, le carbonate de propylène, l’éthylène 2,3-diméthylcarbonate, le carbonate de butylène, le vinylène carbonate et l’éthylène 2-vinylcarbonate ; les esters d’acide carboxylique aliphatique tels que le formate de méthyle, l’acétate de méthyle, le propionate de méthyle, l’acétate d’éthyle, l’acétate de propyle, l’acétate de butyle et l’acétate d’amyle ; les esters d’acide carboxylique aromatique tels que le benzoate de méthyle et le benzoate d’éthyle; les esters d’acide carboxylique tels que la γ-butyrolactone, la γ-valérolactone et la 5-valérolactone ; les esters d’acide phosphorique tels que le triméthyl phosphate, l’éthyl diméthyl phosphate, le diéthyl méthyl phosphate et le triéthyl phosphate ; les nitriles tels que l’acétonitrile, le propionitrile, le méthoxypropionitrile, le glutaronitrile, l’adiponitrile, le 2-méthylglutaronitrile, le valéronitrile, le butyronitrile et l’isobutyronitrile ; les amides tels que le N-méthylformamide, le N-éthylformamide, le N,N-diméthylformamide, le N,N-diméthylacetamide, la N-méthylpyrrolidinone, la N-méthylpyrrolidone et la N-vinylpyrrolidone ; les composés soufrés tels que le diméthylsulfone, l’éthylméthylsulfone, le diéthylsulfone, le sulfolane, le 3-méthylsulfolane et le 2,4-diméthylsulfolane ; les alcools tels que l’éthylène glycol, le propylène glycol, l’éthylene glycol monométhyléther et l’éthylène glycol monoéthyl éther ; les sulfoxydes tels que le diméthyl sulfoxyde, le méthyl éthyl sulfoxyde et le diéthyl sulfoxyde ; les nitriles aromatiques tels que le benzonitrile et le tolunitrile ; le nitrométhane ; la 1,3-diméthyl-2-imidazolidinone ; la 1,3-diméthyl-3,4,5,6-tétrahydro-2(1,H)-pyrimidinone ; la 3-méthyl-2-oxazolidinone. Ces solvants peuvent être utilisés individuellement ou en combinaisons.Examples of organic solvents include ethers such as ethylene glycol dimethyl ether (1,2-dimethoxyethane), ethylene glycol diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 2,6-dimethyltetrahydrofuran, tetrahydropyran, a crown ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 1,4-dioxane and 1,3-dioxolane; carbonic acid esters such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, diphenyl carbonate and methyl phenyl carbonate; cyclic carbonate esters such as ethylene carbonate, propylene carbonate, ethylene 2,3-dimethylcarbonate, butylene carbonate, vinylene carbonate and ethylene 2-vinylcarbonate; aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl acetate, propyl acetate, butyl acetate and amyl acetate ; aromatic carboxylic acid esters such as methyl benzoate and ethyl benzoate; carboxylic acid esters such as γ-butyrolactone, γ-valerolactone and 5-valerolactone; phosphoric acid esters such as trimethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate and triethyl phosphate; nitriles such as acetonitrile, propionitrile, methoxypropionitrile, glutaronitrile, adiponitrile, 2-methylglutaronitrile, valeronitrile, butyronitrile and isobutyronitrile; amides such as N-methylformamide, N-ethylformamide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone, N-methylpyrrolidone and N-vinylpyrrolidone; sulfur compounds such as dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane and 2,4-dimethylsulfolane; alcohols such as ethylene glycol, propylene glycol, ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; sulfoxides such as dimethyl sulfoxide, methyl ethyl sulfoxide and diethyl sulfoxide; aromatic nitriles such as benzonitrile and tolunitrile; nitromethane; 1,3-dimethyl-2-imidazolidinone; 1,3-dimethyl-3,4,5,6-tetrahydro-2(1,H)-pyrimidinone; 3-methyl-2-oxazolidinone. These solvents can be used individually or in combinations.

Les esters d’acide carbonique, les esters d’acide carboxylique aliphatique, les esters d’acide carboxylique et les éthers sont préférés, et les esters d’acide carbonique sont encore davantage préférés. En particulier, le solvant organique est le mélange carbonate d’éthylène/carbonate d’éthyle méthyle, en particulier dans un ratio volumique 3/7.Carbonic acid esters, aliphatic carboxylic acid esters, carboxylic acid esters and ethers are preferred, and carbonic acid esters are even more preferred. In particular, the organic solvent is the ethylene carbonate/ethyl methyl carbonate mixture, in particular in a volume ratio of 3/7.

La concentration en sel LiFSI selon l’invention peut varier entre 0,1% et 15 %, de préférence entre 1% et 10% en poids par rapport au poids total de la composition d’électrolyte.The concentration of LiFSI salt according to the invention can vary between 0.1% and 15%, preferably between 1% and 10% by weight relative to the total weight of the electrolyte composition.

Selon un mode de réalisation, la composition d’électrolyte peut comprendre un ou plusieurs additifs. On peut par exemple citer le carbonate de fluoroéthylène, le carbonate de vinylène, les liquides ioniques, les anhydrides tels que par exemple l’anhydride succinique, et leurs mélanges.According to one embodiment, the electrolyte composition may comprise one or more additives. Mention may be made, for example, of fluoroethylene carbonate, vinylene carbonate, ionic liquids, anhydrides such as for example succinic anhydride, and mixtures thereof.

La teneur en additifs dans la composition d’électrolyte selon l’invention peut varier entre 0,1 et 10 %, de préférence entre 1% et 5% en poids par rapport au poids total de la composition d’électrolyte.The content of additives in the electrolyte composition according to the invention can vary between 0.1 and 10%, preferably between 1% and 5% by weight relative to the total weight of the electrolyte composition.

La présente invention concerne également l’utilisation dudit sel de bis(fluorosulfonyl)imide de lithium ou de la composition d’électrolyte le contenant, dans des batteries Li-ion, en particulier dans des batteries Li-ion d’appareils nomades, par exemple les téléphones portables ou les ordinateurs portables, de véhicules électriques, de stockage d’énergie renouvelable par exemple le photovoltaïque ou l’éolien.The present invention also relates to the use of said lithium bis(fluorosulfonyl)imide salt or of the electrolyte composition containing it, in Li-ion batteries, in particular in Li-ion batteries of mobile devices, for example mobile phones or laptop computers, electric vehicles, renewable energy storage, for example photovoltaics or wind power.

La présente demande concerne l’utilisation du sel de bis(fluorosulfonyl)imide de lithium selon l’invention pour améliorer la durée de vie de batterie Li-ion et/ou les performances électroniques d’une batterie Li-ion et/ou la sécurité de ladite batterie, en particulier à une tension de coupure de charge élevée telle que par exemple à 4,4V.The present application relates to the use of the lithium bis(fluorosulfonyl)imide salt according to the invention to improve the life of a Li-ion battery and/or the electronic performance of a Li-ion battery and/or the safety of said battery, in particular at a high charging cut-off voltage such as for example at 4.4V.

De préférence, l’invention concerne l’utilisation du sel de bis(fluorosulfonyl)imide de lithium selon l’invention pour diminuer le courant résiduel lors de l’application d’une tension de coupure de charge, par exemple de 4,2 volt ou 4,4 volt.Preferably, the invention relates to the use of the lithium bis(fluorosulfonyl)imide salt according to the invention to reduce the residual current during the application of a load cut-off voltage, for example of 4.2 volts or 4.4 volts.

Le sel de bis(fluorosulfonyl)imide de lithium selon l’invention, ayant une teneur spécifique en ions H+ou un pH spécifique en solution aqueuse, peut être obtenu par mise en œuvre d’une étape d’ajustement du pH d’un sel de bis(fluorosulfonyl)imide de lithium dans l’eau préparé initialement par tout procédé connu de l’état de la technique.The lithium bis(fluorosulfonyl)imide salt according to the invention, having a specific content of H + ions or a specific pH in aqueous solution, can be obtained by implementing a step of adjusting the pH of a lithium bis(fluorosulfonyl)imide salt in water initially prepared by any process known to the state of the art.

La présente invention concerne également un procédé de préparation d’un sel de bis(fluorosulfonyl)imide de lithium susmentionné, comprenant :The present invention also relates to a process for the preparation of the aforementioned lithium bis(fluorosulfonyl)imide salt, comprising:

- i) une étape de préparation d’un sel de bis(fluorosulfonyl)imide de lithium ; et- i) a step of preparing a lithium bis(fluorosulfonyl)imide salt; And

- ii) une étape d’ajustement du pH,- ii) a pH adjustment step,

pour obtenir un sel de bis(fluorosulfonyl)imide de lithium formant, après mise en solution dans l’eau, une solution aqueuse ayant un pH compris entre 4 et 8, en particulier à une température de 25°C.to obtain a lithium bis(fluorosulfonyl)imide salt forming, after dissolving in water, an aqueous solution having a pH of between 4 and 8, in particular at a temperature of 25°C.

La présente invention concerne également un procédé de préparation d’un sel de bis(fluorosulfonyl)imide de lithium susmentionné, comprenant :The present invention also relates to a process for the preparation of the aforementioned lithium bis(fluorosulfonyl)imide salt, comprising:

- i) une étape de préparation d’un sel de bis(fluorosulfonyl)imide de lithium ; et- i) a step of preparing a lithium bis(fluorosulfonyl)imide salt; And

- ii) une étape d’ajustement du pH,- ii) a pH adjustment step,

pour obtenir un sel de bis(fluorosulfonyl)imide de lithium, comprenant une teneur en ions H+comprise entre 0,08 ppb et 0,80 ppm.to obtain a lithium bis(fluorosulfonyl)imide salt, comprising an H + ion content of between 0.08 ppb and 0.80 ppm.

L’étape d’ajustement du pH peut consister en un ou plusieurs lavages avec de l’eau, notamment de l’eau désionisée, ou en l’ajout de solution aqueuse basique.The pH adjustment step may consist of one or more washes with water, in particular deionized water, or the addition of basic aqueous solution.

Le procédé de préparation peut comprendre des étapes ultérieures d’extraction du sel de bis(fluorosulfonyl)imide de lithium obtenu à l’issue de l’étape ii) en phase organique (par exemple par ajout de solvant organique tel que l’acétate de butyle), de concentration par exemple à une température inférieure à 60°C, de cristallisation …The preparation process may comprise subsequent stages of extraction of the lithium bis(fluorosulfonyl)imide salt obtained at the end of stage ii) in the organic phase (for example by adding an organic solvent such as acetate of butyl), concentration for example at a temperature below 60°C, crystallization, etc.

Tous les modes de réalisation décrits ci-dessus peuvent être combinés les uns avec les autres.All the embodiments described above can be combined with each other.

Les exemples suivants permettent d’illustrer l’invention, sans toutefois la limiter.The following examples illustrate the invention, without however limiting it.

EXEMPLESEXAMPLES

Des tests de chronoampérométrie ont été réalisés. Pour cela des piles boutons CR2032 ont été fabriquées munies d’une feuille d’aluminium de diamètre 20 mm comme électrode de travail, d’une pastille de lithium métal de diamètre 8 mm comme électrode de référence et d’un séparateur en fibre de verre de diamètre 18 mm imbibé avec 12 gouttes (0.6 mL) d’une solution de LiFSI à 1 mol/L dans un mélange de solvant composé de carbonate d’éthylène et de carbonate d’éthyle méthyle (CAS = 623-53-0) dans un rapport 3/7 en volume. Ensuite un voltage a été appliqué aux bornes de la pile bouton et le courant généré a été mesuré et enregistré.Chronoamperometry tests were carried out. For this, CR2032 button cells were manufactured equipped with a 20 mm diameter aluminum foil as the working electrode, an 8 mm diameter lithium metal pellet as the reference electrode and a fiberglass separator. diameter 18 mm soaked with 12 drops (0.6 mL) of a 1 mol/L LiFSI solution in a mixture of solvent composed of ethylene carbonate and ethyl methyl carbonate (CAS = 623-53-0) in a 3/7 volume ratio. Then a voltage was applied to the terminals of the button cell and the current generated was measured and recorded.

Exemple 1 : Etude de Chronoampérométrie à une tension de coupure de charge de 4,2 volts Example 1 : Chronoamperometry study at a load cut-off voltage of 4.2 volts

Des mesures de chronoampérométrie ont été réalisées dans un système avec une électrode d’aluminium en électrode de travail et du lithium métal comme électrode de référence.Chronoamperometry measurements were performed in a system with an aluminum electrode as the working electrode and lithium metal as the reference electrode.

Mesure du pH : Le pH des solutions de LiFSI est mesuré à l’aide d’un pH-mètre (modèle pHM210 de la marque Radiometer) préalablement étalonné à l’aide de trois solutions tampons (pH=4,0, 7,0 et 10,0). Le sel de LiFSI a été mis en solution dans une quantité d’eau (ayant un pH de 7,45 ± 0,5), pour obtenir une concentration massique en LiFSI de 0,125 g/mL. La solution aqueuse est agitée pendant la mesure du pH. pH measurement : The pH of the LiFSI solutions is measured using a pH meter (model pHM210 from the Radiometer brand) previously calibrated using three buffer solutions (pH=4.0, 7.0 and 10.0). The LiFSI salt was dissolved in a quantity of water (having a pH of 7.45±0.5), to obtain a mass concentration of LiFSI of 0.125 g/mL. The aqueous solution is stirred during the pH measurement.

Le sel LiFSI de la solution N°3 a été obtenu selon le procédé décrit dans Abouimrane et al. « Liquid Electrolyte based on lithium bis-fluorosulfonyl imide salt: Al corrosion studies and lithium ion battery investigation », Journal of Power Sources 189 (2009), p. 693-696 (paragraphe 3. Résultats). Les sels LiFSI des solutions N°1 et N°2 ont été obtenus à partir de sel de LiFSI préparé selon le procédé décrit dans l’article de Abouimrane et al. susmentionné, suivi d’une étape d’ajustement du pH. Les solutions 1 à 3 suivantes ont été préparées, et leur pH a été mesuré selon la méthode mentionnée ci-dessus :The LiFSI salt of solution No. 3 was obtained according to the method described in Abouimrane et al. "Liquid Electrolyte based on lithium bis-fluorosulfonyl imide salt: Al corrosion studies and lithium ion battery investigation", Journal of Power Sources 189 (2009), p. 693-696 (paragraph 3. Results). The LiFSI salts of solutions No. 1 and No. 2 were obtained from LiFSI salt prepared according to the method described in the article by Abouimrane et al. above, followed by a pH adjustment step. The following solutions 1 to 3 were prepared, and their pH was measured according to the method mentioned above:

Solution de LiFSILiFSI Solution N°1#1 N°2#2 N°3#3 pH (à 25°C)pH (at 25°C) 7,297.29 6,796.79 2,272.27

Préparation des électrolytesPreparation of electrolytes ::

Pour la réalisation des tests de chronoampérométrie, différents électrolytes de batteries Li-ion à partir des solutions de LiFSI N°1 à N°3 (cf. tableau ci-dessus) ont été préparés.To carry out the chronoamperometry tests, various Li-ion battery electrolytes from LiFSI solutions No. 1 to No. 3 (see table above) were prepared.

Trois électrolytes ont été préparés par mise en solution d’un sel LiFSI (N°1 à N°3) dans un mélange de solvant composé de carbonate d’éthylène et de carbonate d’éthyle méthyle (CAS = 623-53-0) dans un rapport 3/7 en volume, pour obtenir des solutions ayant une teneur de 1 mol/L en LiFSI :Three electrolytes were prepared by dissolving a LiFSI salt (No. 1 to No. 3) in a solvent mixture composed of ethylene carbonate and methyl ethyl carbonate (CAS = 623-53-0) in a 3/7 volume ratio, to obtain solutions with a content of 1 mol/L of LiFSI:

ElectrolyteElectrolyte N°1E
(invention)
No. 1E
(invention)
N°2E
(invention)
No. 2E
(invention)
N°3E
(comparatif)
#3E
(comparative)
Solution de LiFSILiFSI Solution N°1#1 N°2#2 N°3#3 pH (à 25°C)pH (at 25°C) 7,297.29 6,796.79 2,272.27

Chronoampérométrie : Chronoamperometry :

Le test de chronoampérométrie a été réalisé à 25°C, par l’application d’une tension de coupure de charge constante (4,2 volt) et le courant obtenu a été observé. Au bout de 5h, la valeur du courant résiduel a été mesurée et retranscrite dans le tableau suivant. Ce courant résiduel est l’indicateur des réactions secondaires qui peuvent se produire lors du fonctionnement d’une batterie Li-ion.The chronoamperometry test was carried out at 25°C, by applying a constant load cut-off voltage (4.2 volts) and the current obtained was observed. After 5 hours, the value of the residual current was measured and transcribed in the following table. This residual current is the indicator of the side reactions that can occur during the operation of a Li-ion battery.

pHpH 2,272.27 7,297.29 I à 4.2V
(t =5H)
I at 4.2V
(t=5H)
3131 14.414.4

Les résultats montrent que l’électrolyte N°3E (LiFSI : pH = 2,27) conduit à un courant résiduel deux fois plus élevé que l’électrolyte N°1E (LiFSI : pH = 7,29), après 5h de fonctionnement (soit après la formation des couches de passivation sur l’électrode d’aluminium). Or ce courant est directement relié à la durée de vie de la batterie Li-ion. En effet, chaque électron consommé dans une réaction parasite ne participe plus à la capacité ou autonomie de la batterie.The results show that electrolyte No. 3E (LiFSI: pH = 2.27) leads to a residual current twice as high as electrolyte No. 1E (LiFSI: pH = 7.29), after 5 hours of operation (i.e. after the formation of the passivation layers on the aluminum electrode). However, this current is directly linked to the life of the Li-ion battery. Indeed, each electron consumed in a parasitic reaction no longer participates in the capacity or autonomy of the battery.

Ainsi, l’utilisation d’un sel de LiFSI selon l’invention (ayant un pH de 7,29 après mise en solution dans l’eau), conduit à un courant résiduel plus faible, et de ce fait à une meilleure durée de vie de la batterie Li-ion, qu’avec un sel LiFSI ayant un pH de 2,27 après mise en solution dans l’eau.Thus, the use of a LiFSI salt according to the invention (having a pH of 7.29 after dissolution in water), leads to a lower residual current, and therefore to a better duration of life of the Li-ion battery, than with a LiFSI salt having a pH of 2.27 after dissolving in water.

Exemple 2 : Etude de Chronoampérométrie à 4,4 volts Example 2 : Chronoamperometry study at 4.4 volts

Une expérience similaire à celle de l’exemple 2 a été réalisée mais à une tension de coupure de charge de 4,4 V.An experiment similar to Example 2 was performed but at a load cut-off voltage of 4.4 V.

Au bout de 5h, la valeur du courant résiduel a été mesurée et retranscrite dans le tableau suivant.After 5 hours, the value of the residual current was measured and transcribed in the following table.

pHpH 2.272.27 6.796.79 7.297.29 I à 4.4V
(t =5H)
I at 4.4V
(t=5H)
401401 203203 130130

Les résultats démontrent que l’électrolyte N°3E (LiFSI : pH = 2.27) conduit à un courant résiduel 3 plus élevé que l’électrolyte N°1E (LiFSI : pH = 7,29), après 5h de fonctionnement (soit après la formation des couches de passivation sur l’électrode d’aluminium).The results demonstrate that electrolyte No. 3E (LiFSI: pH = 2.27) leads to a residual current 3 higher than electrolyte No. 1E (LiFSI: pH = 7.29), after 5 hours of operation (i.e. after the formation of the passivation layers on the aluminum electrode).

Ainsi, l’utilisation d’un sel de LiFSI selon l’invention (ayant un pH de 7,29 après mise en solution dans l’eau), conduit à un courant résiduel plus faible, et de ce fait à une meilleure durée de vie de la batterie Li-ion, qu’avec un sel LiFSI ayant un pH de 2.27.Thus, the use of a LiFSI salt according to the invention (having a pH of 7.29 after dissolution in water), leads to a lower residual current, and therefore to a better duration of life of the Li-ion battery, than with a LiFSI salt having a pH of 2.27.

Des résultats similaires sont obtenus avec un de LiFSI ayant un pH de 6,79 après mise en solution dans l’eau par rapport à celui avec un pH de 2.27.Similar results are obtained with a LiFSI having a pH of 6.79 after dissolution in water compared to that with a pH of 2.27.

Claims (9)

Sel de bis(fluorosulfonyl)imide de lithium, caractérisé en ce que, après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH compris entre 4 et 8, en particulier à une température de 25°C.Lithium bis(fluorosulfonyl)imide salt, characterized in that, after dissolving in water to form an aqueous solution, said aqueous solution has a pH of between 4 and 8, in particular at a temperature of 25°C . Sel de bis(fluorosulfonyl)imide de lithium selon la revendication 1, caractérisé en ce que, après mise en solution dans l’eau pour former une solution aqueuse, ladite solution aqueuse possède un pH compris entre 4,1 et 8, entre 4,2 et 8, entre 4,3 et 8, entre 4,4 et 8, entre 4,5 et 8, entre 4,6 et 8, entre 4,7 et 8, entre 4,8 et 8, entre 4,9 et 8, entre 5 et 8, entre 5,1 et 8, entre 5,2 et 8, entre 5,3 et 8, entre 5,4 et 8, entre 5,5 et 8, entre 5,6 et 8, entre 5,7 et 8, entre 5,8 et 8, entre 5,9 et 8, entre 6 et 8, entre 6,1 et 8, entre 6,2 et 8, entre 6,3 et 8, entre 6,4 et 8, entre 6,5 et 8, entre 6,6 et 8, entre 6,7 et 8, entre 6,8 et 8, entre 6,9 et 8, entre 7 et 8, entre 4 et 7,5, entre 4,1 et 7,5, entre 4,2 et 7,5, entre 4,3 et 7,5, entre 4,4 et 7,5, entre 4,5 et 7,5, entre 4,6 et 7,5, entre 4,7 et 7,5, entre 4,8 et 7,5, entre 4,9 et 7,5, entre 5 et 7,5, entre 5,1 et 7,5, entre 5,2 et 7,5, entre 5,3 et 7,5, entre 5,4 et 7,5, entre 5,5 et 7,5, entre 5,6 et 7,5, entre 5,7 et 7,5, entre 5,8 et 7,5, entre 5,9 et 7,5, entre 6 et 7,5, entre 6,1 et 7,5, entre 6,2 et 7,5, entre 6,3 et 7,5, entre 6,4 et 7,5, ou entre 6,5 et 7,5.Lithium bis(fluorosulfonyl)imide salt according to Claim 1, characterized in that, after dissolving in water to form an aqueous solution, the said aqueous solution has a pH of between 4.1 and 8, between 4, 2 and 8, between 4.3 and 8, between 4.4 and 8, between 4.5 and 8, between 4.6 and 8, between 4.7 and 8, between 4.8 and 8, between 4.9 and 8, between 5 and 8, between 5.1 and 8, between 5.2 and 8, between 5.3 and 8, between 5.4 and 8, between 5.5 and 8, between 5.6 and 8, between 5.7 and 8, between 5.8 and 8, between 5.9 and 8, between 6 and 8, between 6.1 and 8, between 6.2 and 8, between 6.3 and 8, between 6, 4 and 8, between 6.5 and 8, between 6.6 and 8, between 6.7 and 8, between 6.8 and 8, between 6.9 and 8, between 7 and 8, between 4 and 7.5 , between 4.1 and 7.5, between 4.2 and 7.5, between 4.3 and 7.5, between 4.4 and 7.5, between 4.5 and 7.5, between 4.6 and 7.5, between 4.7 and 7.5, between 4.8 and 7.5, between 4.9 and 7.5, between 5 and 7.5, between 5.1 and 7.5, between 5 ,2 and 7.5, between 5.3 and 7.5, between 5.4 and 7.5, between 5.5 and 7.5, between 5.6 and 7.5, between 5.7 and 7, 5, between 5.8 and 7.5, between 5.9 and 7.5, between 6 and 7.5, between 6.1 and 7.5, between 6.2 and 7.5, between 6.3 and 7, 5, between 6.4 and 7.5, or between 6.5 and 7.5. Sel de bis(fluorosulfonyl)imide de lithium selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que la concentration dudit sel dans la solution aqueuse est comprise entre 0,050 et 0,250 g/mL, de préférence entre 0,080 et 0,200 g/mL, préférentiellement entre 0,1 et 0,2, en particulier la concentration est de 0,125 g/mL.Lithium bis(fluorosulfonyl)imide salt according to any one of Claims 1 or 2, characterized in that the concentration of the said salt in the aqueous solution is between 0.050 and 0.250 g/mL, preferably between 0.080 and 0.200 g/ mL, preferably between 0.1 and 0.2, in particular the concentration is 0.125 g/mL. Sel de bis(fluorosulfonyl)imide de lithium selon l’une quelconque des revendications 1 à 3, caractérisé en ce que qu’il comprend une teneur en ions H+comprise entre 0,08 ppb et 0,80 ppm, entre 0,08 ppb et 0,63 ppm, entre 0,08 ppb et 0,50 ppm, entre 0,08 ppb et 0,40 ppm, entre 0,08 ppb et 0,32 ppm, entre 0,08 ppb et 0,25 ppm, entre 0,08 ppb et 0,20 ppm, entre 0,08 ppb et 0,16 ppm, entre 0,08 ppb et 0,13 ppm, entre 0,08 ppb et 0,10 ppm, entre 0,08 ppb et 0,08 ppm, entre 0,08 ppb et 0,06 ppm, entre 0,08 ppb et 0,05 ppm, entre 0,08 ppb et 0,04 ppm, entre 0,08 ppb et 0,032 ppm, entre 0,08 ppb et 0,025 ppm, entre 0,08 ppb et 0,020 ppm, entre 0,08 ppb et 0,016 ppm, entre 0,08 ppb et 0,013 ppm, entre 0,08 ppb et 10 ppb, entre 0,08 ppb et 8 ppb, entre 0,08 ppb et 6,35 ppb, entre 0,08 ppb et 5,05 ppb, entre 0,08 ppb et 4 ppb, entre 0,08 ppb et 3,18 ppb, entre 0,08 ppb et 2,53 ppb, entre 0,08 ppb et 2,01 ppb, entre 0,08 ppb et 1,59 ppb, entre 0,08 ppb et 1,27 ppb, entre 0,08 ppb et 1,01 ppb, entre 0,25 ppb et 0,8 ppm, entre 0,25 ppb et 0,63 ppm, entre 0,25 ppb et 0,50 ppm, entre 0,25 ppb et 0,40 ppm, entre 0,25 ppb et 0,32 ppm, entre 0,25 ppb et 0,25 ppm, entre 0,25 ppb et 0,20 ppm, entre 0,25 ppb et 0,16 ppm, entre 0,25 ppb et 0,13 ppm, entre 0,25 ppb et 0,10 ppm, entre 0,25 ppb et 0,08 ppm, entre 0,25 ppb et 0,06 ppm, entre 0,25 ppb et 0,05 ppm, entre 0,25 ppb et 0,04 ppm, entre 0,25 ppb et 0,032 ppm, entre 0,25 ppb et 0,025 ppm, entre 0,25 ppb et 0,020 ppm, entre 0,25 ppb et 0,016 ppm, entre 0,25 ppb et 0,013 ppm, entre 0,25 ppb et 10 ppb, entre 0,25 ppb et 8 ppb, entre 0,25 ppb et 6,35 ppb, entre 0,25 ppb et 5,05 ppb, entre 0,25 ppb et 4 ppb, entre 0,25 ppb et 3,18 ppb, ou entre 0,25 ppb et 2,53 ppb.Lithium bis(fluorosulfonyl)imide salt according to any one of Claims 1 to 3, characterized in that it comprises an H + ion content of between 0.08 ppb and 0.80 ppm, between 0.08 ppb and 0.63 ppm, between 0.08 ppb and 0.50 ppm, between 0.08 ppb and 0.40 ppm, between 0.08 ppb and 0.32 ppm, between 0.08 ppb and 0.25 ppm , between 0.08 ppb and 0.20 ppm, between 0.08 ppb and 0.16 ppm, between 0.08 ppb and 0.13 ppm, between 0.08 ppb and 0.10 ppm, between 0.08 ppb and 0.08 ppm, between 0.08 ppb and 0.06 ppm, between 0.08 ppb and 0.05 ppm, between 0.08 ppb and 0.04 ppm, between 0.08 ppb and 0.032 ppm, between 0 .08 ppb to 0.025 ppm, 0.08 ppb to 0.020 ppm, 0.08 ppb to 0.016 ppm, 0.08 ppb to 0.013 ppm, 0.08 ppb to 10 ppb, 0.08 ppb to 8 ppb, between 0.08 ppb and 6.35 ppb, between 0.08 ppb and 5.05 ppb, between 0.08 ppb and 4 ppb, between 0.08 ppb and 3.18 ppb, between 0.08 ppb and 2.53 ppb, between 0.08 ppb and 2.01 ppb, between 0.08 ppb and 1.59 ppb, between 0.08 ppb and 1.27 ppb, between 0.08 ppb and 1.01 ppb, in between 0.25 ppb and 0.8 ppm, between 0.25 ppb and 0.63 ppm, between 0.25 ppb and 0.50 ppm, between 0.25 ppb and 0.40 ppm, between 0.25 ppb and 0.32 ppm, between 0.25 ppb and 0.25 ppm, between 0.25 ppb and 0.20 ppm, between 0.25 ppb and 0.16 ppm, between 0.25 ppb and 0.13 ppm, between 0.25 ppb to 0.10 ppm, 0.25 ppb to 0.08 ppm, 0.25 ppb to 0.06 ppm, 0.25 ppb to 0.05 ppm, 0.25 ppb to 0 .04 ppm, between 0.25 ppb and 0.032 ppm, between 0.25 ppb and 0.025 ppm, between 0.25 ppb and 0.020 ppm, between 0.25 ppb and 0.016 ppm, between 0.25 ppb and 0.013 ppm, between 0.25 ppb to 10 ppb, 0.25 ppb to 8 ppb, 0.25 ppb to 6.35 ppb, 0.25 ppb to 5.05 ppb, 0.25 ppb to 4 ppb, 0 .25 ppb and 3.18 ppb, or between 0.25 ppb and 2.53 ppb. Sel de bis(fluorosulfonyl)imide de lithium comprenant une teneur en ions H+comprise
entre 0,08 ppb et 0,80 ppm, entre 0,08 ppb et 0,63 ppm, entre 0,08 ppb et 0,50 ppm, entre 0,08 ppb et 0,40 ppm, entre 0,08 ppb et 0,32 ppm, entre 0,08 ppb et 0,25 ppm, entre 0,08 ppb et 0,20 ppm, entre 0,08 ppb et 0,16 ppm, entre 0,08 ppb et 0,13 ppm, entre 0,08 ppb et 0,10 ppm, entre 0,08 ppb et 0,08 ppm, entre 0,08 ppb et 0,06 ppm, entre 0,08 ppb et 0,05 ppm, entre 0,08 ppb et 0,04 ppm, entre 0,08 ppb et 0,032 ppm, entre 0,08 ppb et 0,025 ppm, entre 0,08 ppb et 0,020 ppm, entre 0,08 ppb et 0,016 ppm, entre 0,08 ppb et 0,013 ppm, entre 0,08 ppb et 10 ppb, entre 0,08 ppb et 8 ppb, entre 0,08 ppb et 6,35 ppb, entre 0,08 ppb et 5,05 ppb, entre 0,08 ppb et 4 ppb, entre 0,08 ppb et 3,18 ppb, entre 0,08 ppb et 2,53 ppb, entre 0,08 ppb et 2,01 ppb, entre 0,08 ppb et 1,59 ppb, entre 0,08 ppb et 1,27 ppb, entre 0,08 ppb et 1,01 ppb, entre 0,25 ppb et 0,8 ppm, entre 0,25 ppb et 0,63 ppm, entre 0,25 ppb et 0,50 ppm, entre 0,25 ppb et 0,40 ppm, entre 0,25 ppb et 0,32 ppm, entre 0,25 ppb et 0,25 ppm, entre 0,25 ppb et 0,20 ppm, entre 0,25 ppb et 0,16 ppm, entre 0,25 ppb et 0,13 ppm, entre 0,25 ppb et 0,10 ppm, entre 0,25 ppb et 0,08 ppm, entre 0,25 ppb et 0,06 ppm, entre 0,25 ppb et 0,05 ppm, entre 0,25 ppb et 0,04 ppm, entre 0,25 ppb et 0,032 ppm, entre 0,25 ppb et 0,025 ppm, entre 0,25 ppb et 0,020 ppm, entre 0,25 ppb et 0,016 ppm, entre 0,25 ppb et 0,013 ppm, entre 0,25 ppb et 10 ppb, entre 0,25 ppb et 8 ppb, entre 0,25 ppb et 6,35 ppb, entre 0,25 ppb et 5,05 ppb, entre 0,25 ppb et 4 ppb, entre 0,25 ppb et 3,18 ppb, ou entre 0,25 ppb et 2,53 ppb.
Bis(fluorosulfonyl)imide salt of lithium comprising an H + ion content comprised
between 0.08 ppb and 0.80 ppm, between 0.08 ppb and 0.63 ppm, between 0.08 ppb and 0.50 ppm, between 0.08 ppb and 0.40 ppm, between 0.08 ppb and 0.32 ppm, between 0.08 ppb and 0.25 ppm, between 0.08 ppb and 0.20 ppm, between 0.08 ppb and 0.16 ppm, between 0.08 ppb and 0.13 ppm, between 0.08 ppb to 0.10 ppm, 0.08 ppb to 0.08 ppm, 0.08 ppb to 0.06 ppm, 0.08 ppb to 0.05 ppm, 0.08 ppb to 0 .04 ppm, between 0.08 ppb and 0.032 ppm, between 0.08 ppb and 0.025 ppm, between 0.08 ppb and 0.020 ppm, between 0.08 ppb and 0.016 ppm, between 0.08 ppb and 0.013 ppm, between 0.08 ppb to 10 ppb, 0.08 ppb to 8 ppb, 0.08 ppb to 6.35 ppb, 0.08 ppb to 5.05 ppb, 0.08 ppb to 4 ppb, 0 .08 ppb and 3.18 ppb, between 0.08 ppb and 2.53 ppb, between 0.08 ppb and 2.01 ppb, between 0.08 ppb and 1.59 ppb, between 0.08 ppb and 1, 27 ppb, between 0.08 ppb and 1.01 ppb, between 0.25 ppb and 0.8 ppm, between 0.25 ppb and 0.63 ppm, between 0.25 ppb and 0.50 ppm, between 0, 25 ppb and 0.40 ppm, between 0.25 ppb and 0.32 ppm, between 0.25 ppb and 0.25 p pm, between 0.25 ppb and 0.20 ppm, between 0.25 ppb and 0.16 ppm, between 0.25 ppb and 0.13 ppm, between 0.25 ppb and 0.10 ppm, between 0.25 ppb and 0.08 ppm, between 0.25 ppb and 0.06 ppm, between 0.25 ppb and 0.05 ppm, between 0.25 ppb and 0.04 ppm, between 0.25 ppb and 0.032 ppm, between 0.25 ppb to 0.025 ppm, 0.25 ppb to 0.020 ppm, 0.25 ppb to 0.016 ppm, 0.25 ppb to 0.013 ppm, 0.25 ppb to 10 ppb, 0.25 ppb to 8 ppb, between 0.25 ppb and 6.35 ppb, between 0.25 ppb and 5.05 ppb, between 0.25 ppb and 4 ppb, between 0.25 ppb and 3.18 ppb, or between 0.25 ppb and 2.53 ppb.
Utilisation d’un sel de bis(fluorosulfonyl)imide de lithium selon l’une quelconque des revendications 1 à 4 ou selon la revendication 5, dans une batterie Li-ion, en particulier dans des batteries Li-ion d’appareils nomades, par exemple les téléphones portables ou les ordinateurs portables, de véhicules électriques, de stockage d’énergie renouvelable par exemple le photovoltaïque ou l’éolien.Use of a lithium bis(fluorosulphonyl)imide salt according to any one of Claims 1 to 4 or according to Claim 5, in a Li-ion battery, in particular in Li-ion batteries of mobile devices, by mobile phones or laptop computers, electric vehicles, renewable energy storage, for example photovoltaics or wind power. Utilisation selon la revendication 6, dans une batterie Li-ion fonctionnant à une tension de coupure de charge supérieure ou égale à 4,2V, de préférence supérieure ou égale à 4,4V.Use according to claim 6, in a Li-ion battery operating at a charge cut-off voltage greater than or equal to 4.2V, preferably greater than or equal to 4.4V. Composition d’électrolyte comprenant un sel de bis(fluorosulfonyl)imide de lithium selon l’une quelconque des revendications 1 à 4 ou selon la revendication 5, et un solvant organique.An electrolyte composition comprising a lithium bis(fluorosulfonyl)imide salt according to any one of claims 1 to 4 or according to claim 5, and an organic solvent. Utilisation d’un sel de bis(fluorosulfonyl)imide de lithium selon l’une quelconque des revendications 1 à 4 ou selon la revendication 5, pour améliorer la durée de vie de batterie Li-ion et/ou les performances électroniques d’une batterie Li-ion, en particulier à une tension de coupure de charge supérieure ou égale à 4,4V.Use of a lithium bis(fluorosulfonyl)imide salt according to any one of Claims 1 to 4 or according to Claim 5, for improving the life of a Li-ion battery and/or the electronic performance of a battery Li-ion, especially at a charging cut-off voltage greater than or equal to 4.4V.
FR2007186A 2020-07-07 2020-07-07 Lithium bis (fluorosulfonyl) imide salt and its uses Pending FR3098350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR2007186A FR3098350A1 (en) 2020-07-07 2020-07-07 Lithium bis (fluorosulfonyl) imide salt and its uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007186 2020-07-07
FR2007186A FR3098350A1 (en) 2020-07-07 2020-07-07 Lithium bis (fluorosulfonyl) imide salt and its uses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
FR1751183A Division FR3062961B1 (en) 2017-02-14 2017-02-14 BIS SALT (FLUOROSULFONYL) IMID LITHIUM AND ITS USES

Publications (1)

Publication Number Publication Date
FR3098350A1 true FR3098350A1 (en) 2021-01-08

Family

ID=74046987

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2007186A Pending FR3098350A1 (en) 2020-07-07 2020-07-07 Lithium bis (fluorosulfonyl) imide salt and its uses

Country Status (1)

Country Link
FR (1) FR3098350A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415709A1 (en) * 2009-03-31 2012-02-08 Mitsubishi Materials Corporation Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt
WO2014035464A1 (en) * 2012-08-29 2014-03-06 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415709A1 (en) * 2009-03-31 2012-02-08 Mitsubishi Materials Corporation Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt
WO2014035464A1 (en) * 2012-08-29 2014-03-06 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABOUIMRANE A ET AL: "Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 189, no. 1, 1 April 2009 (2009-04-01), pages 693 - 696, XP025982779, ISSN: 0378-7753, [retrieved on 20080903], DOI: 10.1016/J.JPOWSOUR.2008.08.077 *
ABOUIMRANE ET AL.: "Liquid Electrolyte based on lithium bis-fluorosulfonyl imide salt: Al corrosion studies and lithium ion battery investigation", JOURNAL OF POWER SOURCES, vol. 189, 2009, pages 693 - 696, XP025982779, DOI: 10.1016/j.jpowsour.2008.08.077
REBER DAVID ET AL: "Stability of aqueous electrolytes based on LiFSI and NaFSI", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 321, 6 August 2019 (2019-08-06), XP085788248, ISSN: 0013-4686, [retrieved on 20190806], DOI: 10.1016/J.ELECTACTA.2019.134644 *

Similar Documents

Publication Publication Date Title
EP3293807B1 (en) Use of mixtures of lithium salts as li-ion battery electrolytes
FR3069959B1 (en) MIXTURE OF LITHIUM SALTS AND USES THEREOF AS BATTERY ELECTROLYTE
EP2740133B1 (en) Ionic liquids usable for electrolyte composition in energy storage device
FR3018519B1 (en) IMPROVING IONIC ELECTROLYTE CONDUCTIVITY BASED ON IMIDAZOLATE LITHIUM SALTS
FR3064822B1 (en) MIXTURE OF LITHIUM SALTS AND USES THEREOF AS BATTERY ELECTROLYTE
CA3054396A1 (en) Electrolyte composition and use thereof in lithium-ion batteries
EP3430671B1 (en) Lithium bis(fluorosulfonyl)imide salt and uses thereof
US20190157721A1 (en) Lithium bis(fluorosulfonyl)imide Salt and Uses Thereof
FR3098350A1 (en) Lithium bis (fluorosulfonyl) imide salt and its uses
FR3059835A1 (en) IMPROVING IONIC ELECTROLYTE CONDUCTIVITY BASED ON IMIDAZOLATE LITHIUM SALTS
EP2721623A1 (en) Specific electrolytic composition for energy storage device
EP3155684B1 (en) Specific ionic liquid and method for producing same
FR3063836A1 (en) ELECTROLYTE COMPOSITION AND ITS USE IN LITHIUM-ION BATTERIES
FR3142293A1 (en) Electrolyte with high local concentration in LiFSI
FR3124326A1 (en) Liquid electrolyte for metal/oxygen battery

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLSC Publication of the preliminary search report

Effective date: 20210521

RX Complete rejection

Effective date: 20220407