FR3097592A1 - Constant volume combustion system with synchronized injection - Google Patents

Constant volume combustion system with synchronized injection Download PDF

Info

Publication number
FR3097592A1
FR3097592A1 FR1906729A FR1906729A FR3097592A1 FR 3097592 A1 FR3097592 A1 FR 3097592A1 FR 1906729 A FR1906729 A FR 1906729A FR 1906729 A FR1906729 A FR 1906729A FR 3097592 A1 FR3097592 A1 FR 3097592A1
Authority
FR
France
Prior art keywords
combustion
combustion chamber
injection
fuel
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1906729A
Other languages
French (fr)
Other versions
FR3097592B1 (en
Inventor
Quentin BOUYSSOU
Guillaume Alain TALIERCIO
Christophe Nicolas Henri Viguier
Daniel Mejia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Safran SA
Original Assignee
Safran Helicopter Engines SAS
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS, Safran SA filed Critical Safran Helicopter Engines SAS
Priority to FR1906729A priority Critical patent/FR3097592B1/en
Priority to EP20743208.9A priority patent/EP3987165A1/en
Priority to CN202080045186.6A priority patent/CN114008313A/en
Priority to US17/596,864 priority patent/US20220316393A1/en
Priority to PCT/FR2020/050994 priority patent/WO2020254743A1/en
Publication of FR3097592A1 publication Critical patent/FR3097592A1/en
Application granted granted Critical
Publication of FR3097592B1 publication Critical patent/FR3097592B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/12Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

Système de combustion à volume constant avec injection synchronisée Un système de combustion à volume constant (1) pour turbomachine comprend une pluralité de chambres de combustion (100) réparties de manière annulaire autour d’un axe (XX’), chaque chambre de combustion comprenant un orifice d’entrée (102) et un orifice de sortie (103), un élément d’obturation sélective (200) mobile en rotation par rapport aux chambres de combustion (100), l’élément d’obturation sélective comprenant une virole (210) en regard des orifices d’entrée et de sortie (102, 103) des chambres de combustion (100). La virole (210) comportant sur une première portion annulaire (211) au moins une lumière d’admission destinée à coopérer avec l’orifice d’entrée (102) de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective (200) et sur une deuxième portion annulaire (212) au moins une lumière d’échappement destinée à coopérer avec l’orifice de sortie (103) de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective. Chaque chambre de combustion (100) comprend un dispositif d’injection de carburant (140) dont l’ouverture et la fermeture sont synchronisées par l’élément d’obturation (200). Figure pour l’abrégé : Fig. 1.Constant volume combustion system with synchronized injection A constant volume combustion system (1) for a turbomachine comprises a plurality of combustion chambers (100) distributed annularly around an axis (XX '), each combustion chamber comprising an inlet port (102) and an outlet port (103), a selective closure element (200) movable in rotation with respect to the combustion chambers (100), the selective closure element comprising a ferrule ( 210) opposite the inlet and outlet openings (102, 103) of the combustion chambers (100). The ferrule (210) comprising on a first annular portion (211) at least one inlet port intended to cooperate with the inlet orifice (102) of each combustion chamber during the rotation of the closure element selective (200) and on a second annular portion (212) at least one exhaust port intended to cooperate with the outlet orifice (103) of each combustion chamber during the rotation of the selective shutter element. Each combustion chamber (100) includes a fuel injection device (140) whose opening and closing are synchronized by the shutter element (200). Figure for the abstract: Fig. 1.

Description

Système de combustion à volume constant avec injection synchroniséeConstant volume combustion system with synchronized injection

La présente invention concerne le domaine des chambres de combustion de turbomachines d'aéronef, du type à combustion à volume constant. L'invention s'applique à tout type de turbomachines, en particulier aux turboréacteurs, turbopropulseurs, et turbomachines à soufflantes non carénées, aussi connues sous le vocable anglo-saxon de « Open Rotor ».The present invention relates to the field of combustion chambers of aircraft turbomachines, of the constant-volume combustion type. The invention applies to all types of turbomachines, in particular to turbojets, turboprops, and turbomachines with unducted fans, also known by the Anglo-Saxon term “Open Rotor”.

Une turbomachine d'aéronef conventionnelle comporte de manière connue une ou plusieurs chambres de combustion. Une telle chambre de combustion est alimentée en air sous pression par un module de compresseur et il comporte un ou plusieurs injecteurs de carburant qui sont aptes à injecter du carburant dans le flux d'air admis pour le brûler et provoquer ainsi l'émission de gaz chauds qui sont utilisés pour entraîner une turbine, qui entraîne à son tour le module de compresseur et qui peut également entraîner une soufflante de la turbomachine.
Dans une telle chambre, le débit de carburant est continu et la combustion fonctionne selon un cycle dit de Brayton, c'est-à-dire selon un cycle de combustion à pression constante. Néanmoins, pour obtenir des gains de consommation spécifiques, il a été envisagé de remplacer la chambre de combustion fonctionnant selon un cycle de Brayton par une pluralité de chambres de combustion fonctionnant selon un cycle de Humphrey, c'est-à-dire selon un cycle de combustion à volume constant ou « CVC ». Le document WO 2016/120551 divulgue un module de combustion à volume constant comportant des chambres de combustion agencées autour d'un axe, chaque chambre comprenant un orifice d’entrée ou port d'admission de gaz comprimé et un orifice de sortie ou port d'échappement de gaz brûlés, et une vanne rotative d'admission/d'échappement. Chaque orifice d’entrée/sortie est configuré pour être ouvert ou fermé par la vanne rotative d'admission/d'échappement.
A conventional aircraft turbomachine comprises, in known manner, one or more combustion chambers. Such a combustion chamber is supplied with pressurized air by a compressor module and it comprises one or more fuel injectors which are capable of injecting fuel into the air flow admitted in order to burn it and thus cause the emission of gas which are used to drive a turbine, which in turn drives the compressor module and which may also drive a turbine engine fan.
In such a chamber, the fuel flow is continuous and the combustion operates according to a so-called Brayton cycle, that is to say according to a combustion cycle at constant pressure. Nevertheless, to obtain specific consumption savings, it has been envisaged to replace the combustion chamber operating according to a Brayton cycle by a plurality of combustion chambers operating according to a Humphrey cycle, that is to say according to a cycle Constant Volume Combustion or "CVC". Document WO 2016/120551 discloses a constant volume combustion module comprising combustion chambers arranged around an axis, each chamber comprising an inlet orifice or compressed gas inlet port and an outlet orifice or port for burnt gas exhaust, and a rotary intake/exhaust valve. Each inlet/outlet port is configured to be opened or closed by the rotary inlet/exhaust valve.

Dans ce type de module de combustion, la gestion des temps de transvasement et d’injection conditionne la qualité du processus de combustion. Le rendement de combustion a un impact direct sur le rendement du système global. Or, le pilotage de l’injection de carburant dans des systèmes de combustion à volume constant s’avère délicat et complexe à mettre en œuvre. Il existe, par conséquent, un besoin pour optimiser la gestion des temps d’injection de carburant et la synchronisation avec les autres éléments (orifices d’entrée/sortie) dans ce type de système et simplifier sa mise en œuvre.In this type of combustion module, the management of transfer and injection times determines the quality of the combustion process. Combustion efficiency has a direct impact on overall system efficiency. However, controlling fuel injection in constant volume combustion systems is tricky and complex to implement. There is therefore a need to optimize the management of fuel injection times and the synchronization with the other elements (inlet/outlet ports) in this type of system and to simplify its implementation.

A cet effet, la présente invention propose un système de combustion à volume constant pour turbomachine comprenant une pluralité de chambres de combustion réparties de manière annulaire autour d’un axe, chaque chambre de combustion comprenant un orifice d’entrée ou port d’admission et un orifice de sortie ou port d’échappement, un élément d’obturation sélective mobile en rotation autour de l’axe par rapport aux chambres de combustion, l’élément d’obturation sélective comprenant une virole en regard des orifice d’entrée et sortie des chambres de combustion, la virole comportant sur une première portion annulaire au moins une lumière d’admission destinée à coopérer avec l’orifice d’entrée de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective et sur une deuxième portion annulaire au moins une lumière d’échappement destinée à coopérer avec l’orifice de sortie de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective, caractérisé en ce que chaque chambre de combustion comprend un dispositif d’injection de carburant dont l’ouverture et la fermeture sont synchronisées par l’élément d’obturation.To this end, the present invention proposes a constant-volume combustion system for a turbomachine comprising a plurality of combustion chambers distributed in an annular manner around an axis, each combustion chamber comprising an inlet orifice or inlet port and an outlet orifice or exhaust port, a selective shutter element movable in rotation around the axis relative to the combustion chambers, the selective shutter element comprising a ferrule facing the inlet and outlet orifices combustion chambers, the shroud comprising on a first annular portion at least one intake port intended to cooperate with the inlet orifice of each combustion chamber during rotation of the selective shutter element and on a second annular portion at least one exhaust port intended to cooperate with the outlet orifice of each combustion chamber during rotation of the selective shutter element, characterized in that each combustion chamber comprises a device for fuel injection whose opening and closing are synchronized by the shutter element.

L’utilisation d’une même pièce mécanique, à savoir l’élément d’obturation, pour assurer à la fois la fonction de séquencement des ouvertures et fermetures en air et d’alimentation en carburant permet d’assurer une synchronisation efficace entre les temps critiques dans le système de combustion. On optimise la gestion des temps d’injection vis-à-vis des temps ou phases de combustion et d’échappement améliorant ainsi le rendement du système de combustion.The use of the same mechanical part, namely the obturation element, to ensure both the function of sequencing the openings and closings of air and of supplying fuel makes it possible to ensure effective synchronization between the times critical in the combustion system. The management of the injection times is optimized in relation to the combustion and exhaust times or phases, thus improving the efficiency of the combustion system.

Selon une caractéristique particulière du système de l’invention, le dispositif d’injection de carburant comprend une vanne d’injection présente entre un circuit d’alimentation en carburant et une chambre de combustion et un culbuteur configuré pour commander l’ouverture de la vanne d’injection, le culbuteur coopérant avec une ou plusieurs cames d’injection présentes sur l’élément d’obturation pour commander l’ouverture de la vanne d’injection. Cette injection est réalisée directement dans la chambre de combustion. Par sa conception, la came d’injection permet à la fois une mise en pression du carburant injecté et une maîtrise de la quantité injectée.According to a particular characteristic of the system of the invention, the fuel injection device comprises an injection valve present between a fuel supply circuit and a combustion chamber and a rocker arm configured to control the opening of the valve injection, the rocker arm cooperating with one or more injection cams present on the closure element to control the opening of the injection valve. This injection is carried out directly in the combustion chamber. By design, the injection cam allows both pressurization of the injected fuel and control of the quantity injected.

Selon une autre caractéristique particulière du système selon l’invention, celui-ci comprend en outre un dispositif d’injection aérodynamique configuré pour alimenter en carburant chaque chambre de combustion de manière synchronisée via un ou plusieurs orifices d’injection présents sur l’élément d’obturation. Cela permet de réaliser une fonction de carburation des chambres de combustion avec des faibles tailles de gouttes de carburant sans avoir à mettre en œuvre des niveaux élevés de pression de carburant. Il est ainsi possible d’obtenir des gains en consommation par rapport à une injection uniquement à forte pression.According to another particular characteristic of the system according to the invention, the latter further comprises an aerodynamic injection device configured to supply fuel to each combustion chamber in a synchronized manner via one or more injection orifices present on the element of shutter. This makes it possible to perform a function of carburizing the combustion chambers with small sizes of fuel drops without having to implement high levels of fuel pressure. It is thus possible to obtain savings in consumption compared to an injection only at high pressure.

L’invention a également pour objet une turbomachine comprenant un compresseur axial ou centrifuge et une turbine axiale ou centripète, la turbomachine comprenant en outre un système de combustion selon l’invention, le système de combustion étant présent entre le compresseur et la turbine.The invention also relates to a turbomachine comprising an axial or centrifugal compressor and an axial or centripetal turbine, the turbomachine further comprising a combustion system according to the invention, the combustion system being present between the compressor and the turbine.

L’invention a encore pour objet un aéronef comprenant au moins un turbopropulseur, le turbopropulseur comprenant une turbomachine selon l’invention.Another subject of the invention is an aircraft comprising at least one turboprop engine, the turboprop engine comprising a turbomachine according to the invention.

La figure 1 est une vue schématique en coupe longitudinale d’une turbomachine comprenant un système de combustion conformément à un mode de réalisation de l’invention, Figure 1 is a schematic view in longitudinal section of a turbomachine comprising a combustion system according to one embodiment of the invention,

La figure 2A est une vue schématique en perspective éclatée du système de combustion de la figure 1, Figure 2A is a schematic exploded perspective view of the combustion system of Figure 1,

La figure 2B est une vue de détail de la figure 2A montrant des chambre de combustion, Figure 2B is a detail view of Figure 2A showing combustion chambers,

La figure 3 est une vue schématique en perspective de l’élément d’obturation du système de combustion de la figure 1, Figure 3 is a schematic perspective view of the shutter element of the combustion system of Figure 1,

La figure 4 est une vue partielle en coupe radiale du système de combustion de la figure 1 montrant une injection aérodynamique dans une chambre de combustion, Figure 4 is a partial view in radial section of the combustion system of Figure 1 showing an aerodynamic injection in a combustion chamber,

La figure 5 est une autre vue partielle en coupe radiale du système de combustion de la figure 1 montrant une injection directe dans une chambre de combustion. FIG. 5 is another partial view in radial section of the combustion system of FIG. 1 showing direct injection into a combustion chamber.

L'invention s'applique d'une manière générale à une turbomachine comprenant un compresseur axial ou centrifuge et d’une turbine axiale ou centripète.The invention applies generally to a turbine engine comprising an axial or centrifugal compressor and an axial or centripetal turbine.

Les figures 1, 2A et 2B illustrent un système de combustion 1 conformément à un mode de réalisation de l’invention. Dans l’exemple décrit ici et tel que représenté sur la figure 1, le système de combustion 1 est intégré dans une turbomachine ou turbomoteur 10 pour turbopropulseur, le système de combustion étant placé dans le turbomoteur en aval d’un compresseur axialo-centrifuge 11 et en amont d’une turbine axiale 12, le compresseur 11 et la turbine 12 étant reliés entre eux par un système d’arbres 13. La turbine 12 comprend une roue mobile 120 reliée en son centre au système d’arbres 13 et comportant à son extrémité radiale externe une pluralité d’aubes 121.Figures 1, 2A and 2B illustrate a combustion system 1 in accordance with one embodiment of the invention. In the example described here and as represented in FIG. 1, the combustion system 1 is integrated into a turbine engine or turbine engine 10 for a turboprop, the combustion system being placed in the turbine engine downstream of an axialo-centrifugal compressor 11 and upstream of an axial turbine 12, the compressor 11 and the turbine 12 being interconnected by a system of shafts 13. The turbine 12 comprises a movable wheel 120 connected at its center to the system of shafts 13 and comprising at its outer radial end a plurality of blades 121.

Le système de combustion 1 comprend une pluralité de chambres de combustion, dans le mode de réalisation décrit ici 10 chambres de combustion 100, dénombrées 1001à 10010sur la figure, réparties de manière annulaire autour d’un axe XX’ définissant une direction axiale DA. Chaque chambre de combustion 100 est délimitée par une enceinte 101, ici de forme sensiblement parallélépipédique, un fond arrière fermé 101b solidaire de l’enceinte 101 et un anneau cylindrique 110 sur la face externe 112 duquel l’enceinte 101 est fixée par exemple par soudage, brasage, liaison mécanique (vis-écrou) ou collage lorsque les enceintes 101 et l’anneau cylindrique 110 sont réalisés en matériau métallique. L’anneau cylindrique 110 et les enceintes 101 peuvent être également réalisés en matériau composite à matrice céramique (CMC), c’est-à-dire un matériau formé d’un renfort en fibres de carbone ou céramique densifié par une matrice au moins partiellement céramique.The combustion system 1 comprises a plurality of combustion chambers, in the embodiment described here 10 combustion chambers 100, numbered 100 1 to 100 10 in the figure, distributed in an annular manner around an axis XX' defining a direction axial D A . Each combustion chamber 100 is delimited by an enclosure 101, here of substantially parallelepipedal shape, a closed rear end 101b secured to the enclosure 101 and a cylindrical ring 110 on the outer face 112 of which the enclosure 101 is fixed for example by welding. , brazing, mechanical connection (screw-nut) or bonding when the enclosures 101 and the cylindrical ring 110 are made of metallic material. The cylindrical ring 110 and the enclosures 101 can also be made of ceramic matrix composite (CMC) material, that is to say a material formed from a carbon or ceramic fiber reinforcement densified by a matrix at least partially ceramic.

L’anneau cylindrique 110 forme le fond avant 101a de chaque chambre de combustion qui est situé au plus près de l’axe XX’ dans une direction opposé au fond arrière 101b suivant une direction radiale DR. L’anneau cylindrique 110 comporte une première série de lumières 113 formant chacune un orifice d’entrée ou port d’admission 102 d’une chambre de combustion 100 et une deuxième série de lumières 114 formant chacune un orifice de sortie ou port d’échappement 103 d’une chambre de combustion 100 (figure 2B). Le fond avant 101a de chaque chambre de combustion 100 comporte ainsi un orifice d’entrée 102 et un orifice de sortie 103. La face interne 111 de l’anneau cylindrique 110, qui comporte les orifices d’entrée et de sortie de chaque chambre de combustion, est destinée à être placée en regard d’une virole d’un élément d’obturation sélective décrit ci-après en détails. Les enceintes 101 des chambres de combustion s’étendent depuis la face externe 112 de l’anneau 110 dans la direction radiale DR.The cylindrical ring 110 forms the front bottom 101a of each combustion chamber which is located closest to the axis XX' in a direction opposite to the rear bottom 101b in a radial direction D R . The cylindrical ring 110 comprises a first series of slots 113 each forming an inlet orifice or intake port 102 of a combustion chamber 100 and a second series of slots 114 each forming an outlet orifice or exhaust port 103 of a combustion chamber 100 (FIG. 2B). The front bottom 101a of each combustion chamber 100 thus comprises an inlet orifice 102 and an outlet orifice 103. The internal face 111 of the cylindrical ring 110, which comprises the inlet and outlet orifices of each combustion chamber combustion, is intended to be placed facing a shell of a selective shutter element described below in detail. The enclosures 101 of the combustion chambers extend from the outer face 112 of the ring 110 in the radial direction D R .

Le système de combustion 1 comprend également un élément d’obturation sélective 200 mobile en rotation autour de l’axe XX’ par rapport aux chambres de combustion 100. L’élément d’obturation sélective 200 comprend une virole 210 en regard des orifices d’entrée et de sortie 102 et 103 des chambres de combustion 100. La virole 210 est divisée en une première portion annulaire 211 et une deuxième portion annulaire 212 s’étendant chacune sur toute la circonférence de la virole 210 (figures 2A et 3). La première portion annulaire 211 comporte au moins une lumière d’admission destinée à coopérer avec l’orifice d’entrée 102 de chaque chambre de combustion 100 lors de la rotation de l’élément d’obturation sélective 200. Dans l’exemple décrit ici, la première portion annulaire 211 comporte deux lumières d’admission 2110 et 2111 décalées angulairement de 180° le long de la première portion. La deuxième portion annulaire 212 comporte au moins une lumière d’échappement destinée à coopérer avec le port d’échappement 103 de chaque chambre de combustion 100 lors de la rotation de l’élément d’obturation sélective 200. Dans l’exemple décrit ici, la deuxième portion annulaire 212 comporte deux lumières d’échappement 2120 et 2121 décalées angulairement de 180° le long de la deuxième portion. Le début de chaque lumière d’admission 2110, 2111 est sensiblement aligné angulairement respectivement avec le début de chaque lumière d’échappement 2120 et 2121, les lumières d’échappement s’étendant sur une longueur circonférentielle plus grande que les lumières d’admission. L’élément d’obturation sélective peut être réalisé en matériau métallique ou en matériau composite CMC.The combustion system 1 also comprises a selective shutter element 200 movable in rotation about the axis XX' relative to the combustion chambers 100. The selective shutter element 200 comprises a ferrule 210 facing the orifices of entry and exit 102 and 103 of the combustion chambers 100. The shroud 210 is divided into a first annular portion 211 and a second annular portion 212 each extending over the entire circumference of the shroud 210 (FIGS. 2A and 3). The first annular portion 211 comprises at least one intake port intended to cooperate with the inlet orifice 102 of each combustion chamber 100 during the rotation of the selective shutter element 200. In the example described here , the first annular portion 211 comprises two intake ports 2110 and 2111 angularly offset by 180° along the first portion. The second annular portion 212 comprises at least one exhaust port intended to cooperate with the exhaust port 103 of each combustion chamber 100 during the rotation of the selective shutter element 200. In the example described here, the second annular portion 212 comprises two exhaust ports 2120 and 2121 angularly offset by 180° along the second portion. The start of each intake port 2110, 2111 is substantially angularly aligned with the start of each exhaust port 2120 and 2121 respectively, the exhaust ports extending over a greater circumferential length than the intake ports. The selective shutter element can be made of metallic material or CMC composite material.

Le système de combustion 1 comprend en outre un guide d’admission fixe 300 présent à l’intérieur de la virole 210 de l’élément d’obturation 200 du côté de la première portion 211 de l’élément d’obturation et un collecteur d’échappement fixe 400 qui s’étend de manière annulaire à l’intérieur de la virole 210 de l’élément d’obturation sélective du côté et le long de la deuxième portion 212 de ladite virole (figure 1).The combustion system 1 further comprises a fixed intake guide 300 present inside the shroud 210 of the shutter element 200 on the side of the first portion 211 of the shutter element and a manifold fixed exhaust 400 which extends in an annular manner inside the ferrule 210 of the selective shutter element on the side and along the second portion 212 of said ferrule (FIG. 1).

L’élément d’obturation sélective 200 est le seul élément mobile en rotation dans le système de combustion 1. Dans l’exemple décrit ici, il est entraîné en rotation au moyen d’un arbre d’entraînement 233 (figure 1). Lors de sa rotation, l’élément d’obturation 200 va ouvrir et fermer sélectivement les orifices d’entrée et de sortie 102 et 103 de chaque chambre de combustion afin de mettre en œuvre une combustion à volume constant selon le cycle de Humphrey, c’est-à-dire comportant un temps de combustion, un temps d’échappement, et un temps d’admission d’air frais et de balayage des gaz brûlés.The selective shutter element 200 is the only rotating element in the combustion system 1. In the example described here, it is driven in rotation by means of a drive shaft 233 (FIG. 1). During its rotation, the obturation element 200 will selectively open and close the inlet and outlet ports 102 and 103 of each combustion chamber in order to implement a combustion at constant volume according to the Humphrey cycle, c ie comprising a combustion time, an exhaust time, and a fresh air intake and burnt gas scavenging time.

Conformément à l’invention, chaque chambre de combustion 100 chaque chambre de combustion comprend un dispositif d’injection de carburant 140 dont l’ouverture et la fermeture sont synchronisées par l’élément d’obturation 200. Dans l’exemple décrit ici, chaque dispositif d’injection de carburant 140 comprend une vanne d’injection 141 présente entre un circuit d’alimentation en carburant 142 et une chambre de combustion 100 (figures 4 et 5). Chaque dispositif d’injection de carburant 140 comprend également un culbuteur 143 configuré pour commander l’ouverture de la vanne d’injection 141. Plus précisément, le culbuteur 143 comprend un poussoir 1430 destiné à coopérer avec des cames d’injection comme expliqué ci-après, une tige de culbuteur 1431 prolongeant le poussoir 143 et un doigt 1432 monté pivotant autour d’un axe 1433 et relié à une de ses extrémités à la tige de culbuteur 1431. L’extrémité libre 1432a du doigt 1432 est en contact avec la vanne d’injection 141.According to the invention, each combustion chamber 100 each combustion chamber comprises a fuel injection device 140 whose opening and closing are synchronized by the shutter element 200. In the example described here, each fuel injection device 140 comprises an injection valve 141 present between a fuel supply circuit 142 and a combustion chamber 100 (FIGS. 4 and 5). Each fuel injection device 140 also includes a rocker arm 143 configured to control the opening of the injection valve 141. More specifically, the rocker arm 143 includes a tappet 1430 intended to cooperate with injection cams as explained below. after, a rocker arm rod 1431 extending the push rod 143 and a finger 1432 pivotally mounted around an axis 1433 and connected at one of its ends to the rocker arm rod 1431. The free end 1432a of the finger 1432 is in contact with the injection valve 141.

L’élément d’obturation 200 comporte une pluralité de cames d’injections 220 présentes ici sur l’extrémité de la première portion annulaire 211. Les cames d’injection 220 sont réparties sur la surface externe de la virole 210 de l’élément d’obturation 200 à des emplacements déterminés afin de commander l’injection de carburant dans chaque chambre de combustion 100 à des instants synchronisés avec le cycle de Humphrey mis en œuvre avec l’élément d’obturation 200. En d’autres termes, les cames d’injection 220 sont placées à des positions angulaires sur la virole 210 de l’élément d’obturation de manière à déclencher l’injection de carburant dans une chambre de combustion juste avant l’initiation d’une phase de combustion dans celle-ci.The closure element 200 comprises a plurality of injection cams 220 present here on the end of the first annular portion 211. The injection cams 220 are distributed over the outer surface of the shell 210 of the element. shutter 200 at determined locations in order to control the injection of fuel into each combustion chamber 100 at times synchronized with the Humphrey cycle implemented with the shutter element 200. In other words, the cams injection nozzles 220 are placed at angular positions on the shroud 210 of the shutter element so as to trigger the injection of fuel into a combustion chamber just before the initiation of a combustion phase therein .

La réalisation présentée ici des systèmes d’obturation (orifices d’entrée/sortie) par des lumières radiales positionnées sur un anneau cylindrique peut aussi être obtenu par des disques percés de lumières axiales. Les deux disques (entrée et sortie) sont alors liés mécaniquement, l’un des deux comprenant le système de pilotage (came) du culbuteur d’injection de carburant.The realization presented here of shutter systems (inlet/outlet orifices) by radial slots positioned on a cylindrical ring can also be obtained by discs pierced with axial slots. The two discs (inlet and outlet) are then mechanically linked, one of the two comprising the control system (cam) of the fuel injection rocker arm.

Le fonctionnement d’un dispositif d’injection de carburant 140 est illustré sur les figures 4 et 5. La figure 4 montre le dispositif 140 en position de repos, c’est-à-dire lorsque le poussoir 1430 du culbuteur 143 n’est pas en contact avec une came d’injection 220. Dans cette position, l’extrémité libre 1432a du doigt 1432 n’exerce pas de pression sur la vanne d’injection 141 qui est maintenue dans sa position de fermeture par un ressort de rappel 1410. La tige de culbuteur 1431 est logée dans un fourreau de guidage 1434 munie également d’un ressort de rappel (non représenté sur les figures 4 et 5) afin de maintenir le culbuteur dans la position de repos.The operation of a fuel injection device 140 is illustrated in FIGS. 4 and 5. FIG. 4 shows the device 140 in the rest position, that is to say when the tappet 1430 of the rocker arm 143 is not not in contact with an injection cam 220. In this position, the free end 1432a of the finger 1432 does not exert pressure on the injection valve 141 which is held in its closed position by a return spring 1410 The rocker arm rod 1431 is housed in a guide sleeve 1434 also provided with a return spring (not shown in FIGS. 4 and 5) in order to maintain the rocker arm in the rest position.

Sur la figure 5, l’élément d’obturation s’est déplacé dans une position angulaire dans laquelle une came d’injection 220 entre en contact avec le poussoir 1430 du culbuteur. Dans cette position, la came d’injection 220 pousse sur la tige de culbuteur 1431qui, en se déplaçant suivant la direction D1, provoque le basculement du doigt 1432 et l’application d’un effort de pression de son extrémité libre 1432a sur la vanne d’injection 141. La vanne d’injection 141 est alors ouverte et du carburant 150 issu du circuit d’alimentation en carburant 142 peut alors être injecté dans la chambre de combustion 100.In FIG. 5, the shutter element has moved into an angular position in which an injection cam 220 contacts the tappet 1430 of the rocker arm. In this position, the injection cam 220 pushes on the push rod 1431 which, by moving in the direction D1, causes the tilting of the finger 1432 and the application of a pressure force from its free end 1432a on the valve. injection valve 141. Injection valve 141 is then opened and fuel 150 from fuel supply circuit 142 can then be injected into combustion chamber 100.

La combustion peut être initiée de façon connue soit par un allumeur à étincelle (bougie), soit par un allumeur thermique à gaz (non représentés sur les figures 4 et 5). Si les conditions le permettent, la combustion peut également être initiée par recirculation des gaz d'échappement, ou RGE, comme dans un moteur diesel.Combustion can be initiated in known manner either by a spark igniter (candle) or by a gas thermal igniter (not shown in FIGS. 4 and 5). If conditions permit, combustion can also be initiated by exhaust gas recirculation, or EGR, as in a diesel engine.

Le système de l’invention est ici remarquable en ce qu’on utilise la même pièce, à savoir l’élément d’obturation rotatif, pour commander à la fois les ouvertures et fermetures en air des chambres de combustion et l’injection de carburant dans celle-ci. On assure ainsi une gestion optimisée des temps ou phases nécessaires à la mise en œuvre du cycle d’Humphrey. En outre, l’élément d’obturation permet une mise en pression du carburant dans la chambre de combustion sans avoir à utiliser une pompe haute pression externe.The system of the invention is remarkable here in that the same part is used, namely the rotary shutter element, to control both the openings and closings in air of the combustion chambers and the injection of fuel. in this one. This ensures optimized management of the times or phases necessary for the implementation of the Humphrey cycle. In addition, the shutter element allows the fuel to be pressurized in the combustion chamber without having to use an external high-pressure pump.

Selon une caractéristique additionnelle de l’invention, le système de combustion à volume constant de l’invention comprend en outre un dispositif d’injection aérodynamique configuré pour alimenter en carburant chaque chambre de combustion de manière synchronisée via un ou plusieurs orifices d’injection présents sur l’élément d’obturation. Plus précisément, comme illustré sur les figures 4 et 5, un dispositif d’injection aérodynamique 160 comprend un circuit d’injection aérodynamique de pré-carburation 161 destiné à coopérer avec un ou plusieurs orifices d’injection 162 présents sur l’élément d’obturation. Dans l’exemple décrit ici, l’élément d’obturation 200 comporte deux orifices d’injection 162 présents sur la première portion annulaire 211 de la virole 210 à des positions angulaires permettant d’injecter de carburant dans une chambre de combustion juste avant l’initiation d’une phase de combustion dans celle-ci (figure 3). Comme illustrés notamment sur la figure 3, les orifices d’injection 162 correspondent à des ouvertures qui coopèrent avec les lumières d’admission 2110 et 2111 et qui sont ici décalées de celles-ci suivant la direction axiale DA. On définit ainsi une zone d’injection basse pression aérodynamique qui combine l’injection de carburant avec l’admission d’air. De cette manière, on injecte à la fois du carburant et de l’air dans la chambre de combustion. La vitesse de l’air injecté à basse pression permet d’atomiser le carburant injecté.According to an additional feature of the invention, the constant volume combustion system of the invention further comprises an aerodynamic injection device configured to supply fuel to each combustion chamber in a synchronized manner via one or more injection ports present on the shutter element. More specifically, as illustrated in FIGS. 4 and 5, an aerodynamic injection device 160 comprises an aerodynamic pre-carburation injection circuit 161 intended to cooperate with one or more injection orifices 162 present on the element of filling. In the example described here, the closure element 200 comprises two injection orifices 162 present on the first annular portion 211 of the ferrule 210 at angular positions allowing fuel to be injected into a combustion chamber just before the initiation of a combustion phase therein (FIG. 3). As illustrated in particular in FIG. 3, the injection orifices 162 correspond to openings which cooperate with the intake ports 2110 and 2111 and which are here offset from the latter in the axial direction D A . An aerodynamic low pressure injection zone is thus defined which combines fuel injection with air intake. In this way, both fuel and air are injected into the combustion chamber. The speed of the air injected at low pressure makes it possible to atomize the injected fuel.

La figure 4 illustre une position angulaire de l’élément d’obturation dans laquelle la sortie du circuit d’injection aérodynamique de pré-carburation 161 est alignée avec un orifice d’injection 162 commun avec la lumière d’admission 2110 qui est lui-même aligné avec l’orifice d’entrée 102 de la chambre de combustion.FIG. 4 illustrates an angular position of the shutter element in which the outlet of the aerodynamic pre-carburation injection circuit 161 is aligned with an injection orifice 162 common with the intake port 2110 which is itself even aligned with the inlet 102 of the combustion chamber.

Dans cette position, le circuit 161 est commandé pour délivrer un jet aérodynamique de carburant 170 dans la chambre de combustion 100 via l’orifice d’injection 162. L’injection aérodynamique consiste à injecter un mélange air/carburant dans la chambre de combustion. La vitesse de l’air admis dans la chambre de combustion permet d’atomiser le carburant injecté.In this position, circuit 161 is controlled to deliver an aerodynamic jet of fuel 170 into combustion chamber 100 via injection port 162. Aerodynamic injection consists of injecting an air/fuel mixture into the combustion chamber. The speed of the air admitted into the combustion chamber makes it possible to atomize the injected fuel.

Sur la figure 5, l’élément d’obturation s’est déplacé dans une position angulaire dans laquelle la sortie du circuit d’injection aérodynamique de pré-carburation 161 n’est plus alignée avec un orifice d’injection 162. Cette position correspond à l’instant où du carburant 150 est injecté dans la chambre de combustion 100 par le dispositif d’injection de carburant 140 comme décrit précédemment.In FIG. 5, the obturation element has moved into an angular position in which the outlet of the aerodynamic pre-carburation injection circuit 161 is no longer aligned with an injection orifice 162. This position corresponds at the time when fuel 150 is injected into the combustion chamber 100 by the fuel injection device 140 as previously described.

Dans l’exemple décrit ci-avant, le dispositif d’injection utilise un culbuteur et une vanne d’injection pour l’injection directe de carburant. Toutefois d’autres dispositifs d’injection tels qu’un injecteur électrique à électrovanne par exemple peuvent être utilisés. Dans ce cas, l’élément d’obturation comprend des moyens pour commander l’activation de l’électrovanne en fonction de sa position angulaire. D’une manière générale, tout dispositif d’injection apte à être synchronisé avec l’élément d’obturation peut être utilisé.In the example described above, the injection device uses a rocker arm and an injection valve for direct fuel injection. However, other injection devices such as an electric valve injector, for example, can be used. In this case, the shutter element comprises means for controlling the activation of the solenoid valve as a function of its angular position. In general, any injection device capable of being synchronized with the closure element can be used.

Dans le système présenté ici, il est tout à fait envisageable de munir l’élément d’obturation de plusieurs pistes de cames permettant de choisir en fonction des besoins de fonctionnement une séquence de distribution du carburant déterminée, sur le même principe que le système à calage variable des soupapes d’un moteur à piston. Dans ce cas, le culbuteur viendra « lire » l’une ou l’autre des pistes du système de came définissant la séquence d’injection.In the system presented here, it is quite conceivable to provide the obturation element with several cam tracks making it possible to choose, according to operating needs, a determined fuel distribution sequence, on the same principle as the system with variable valve timing of a piston engine. In this case, the rocker arm will "read" one or other of the tracks of the cam system defining the injection sequence.

Claims (5)

Système de combustion à volume constant (1) pour turbomachine comprenant une pluralité de chambres de combustion (100) réparties de manière annulaire autour d’un axe (XX’), chaque chambre de combustion comprenant un orifice d’entrée (102) et un orifice de sortie (103), un élément d’obturation sélective (200) mobile en rotation autour de l’axe (XX’) par rapport aux chambres de combustion (100), l’élément d’obturation sélective comprenant une virole (210) en regard des orifices d’entrée et de sortie (102, 103) des chambres de combustion (100), la virole (210) comportant sur une première portion annulaire (211) au moins une lumière d’admission (2110) destinée à coopérer avec l’orifice d’entrée (102) de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective (200) et sur une deuxième portion annulaire (212) au moins une lumière d’échappement (2120) destinée à coopérer avec l’orifice de sortie (103) de chaque chambre de combustion lors de la rotation de l’élément d’obturation sélective, caractérisé en ce que chaque chambre de combustion comprend un dispositif d’injection de carburant (140) dont l’ouverture et la fermeture sont synchronisées par l’élément d’obturation.Constant volume combustion system (1) for a turbomachine comprising a plurality of combustion chambers (100) distributed in an annular manner around an axis (XX'), each combustion chamber comprising an inlet port (102) and a outlet orifice (103), a selective shutter element (200) movable in rotation about the axis (XX') relative to the combustion chambers (100), the selective shutter element comprising a shroud (210 ) facing the inlet and outlet orifices (102, 103) of the combustion chambers (100), the shroud (210) comprising on a first annular portion (211) at least one intake port (2110) intended to cooperating with the inlet (102) of each combustion chamber during the rotation of the selective shutter element (200) and on a second annular portion (212) at least one exhaust port (2120) intended to cooperate with the outlet orifice (103) of each combustion chamber during the rotation of the selective closing element, characterized in that each combustion chamber comprises a fuel injection device (140) whose opening and closing are synchronized by the shutter element. Système selon la revendication 1, dans lequel le dispositif d’injection de carburant (140) comprend une vanne d’injection (141) présente entre un circuit d’alimentation en carburant (142) et une chambre de combustion (100) et un culbuteur (143) configuré pour commander l’ouverture de la vanne d’injection, le culbuteur coopérant avec une ou plusieurs cames d’injection (220) présentes sur l’élément d’obturation (200) pour commander l’ouverture de la vanne d’injection.System according to Claim 1, in which the fuel injection device (140) comprises an injection valve (141) present between a fuel supply circuit (142) and a combustion chamber (100) and a rocker arm (143) configured to control the opening of the injection valve, the rocker arm cooperating with one or more injection cams (220) present on the closure element (200) to control the opening of the valve 'injection. Système selon la revendication 2, comprenant en outre un dispositif d’injection aérodynamique (160) configuré pour alimenter en carburant (170) chaque chambre de combustion (100) de manière synchronisée via un ou plusieurs orifices d’injection (162) présents sur l’élément d’obturation (200).A system according to claim 2, further comprising an aerodynamic injection device (160) configured to supply fuel (170) to each combustion chamber (100) in a synchronized manner via one or more injection ports (162) present on the obturation element (200). Turbomachine (10) comprenant un compresseur axial ou centrifuge (11) et une turbine axiale ou centripète (12), la turbomachine comprenant en outre un système de combustion (1) selon l’une quelconque des revendications 1 à 3, le système de combustion étant présent entre le compresseur et la turbine.Turbomachine (10) comprising an axial or centrifugal compressor (11) and an axial or centripetal turbine (12), the turbomachine further comprising a combustion system (1) according to any one of claims 1 to 3, the combustion system being present between the compressor and the turbine. Aéronef comprenant au moins un turbopropulseur, le turbopropulseur comprenant une turbomachine selon la revendication 4.Aircraft comprising at least one turboprop, the turboprop comprising a turbomachine according to claim 4.
FR1906729A 2019-06-21 2019-06-21 Constant volume combustion system with synchronized injection Active FR3097592B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1906729A FR3097592B1 (en) 2019-06-21 2019-06-21 Constant volume combustion system with synchronized injection
EP20743208.9A EP3987165A1 (en) 2019-06-21 2020-06-11 Constant-volume combustion system with synchronized injection
CN202080045186.6A CN114008313A (en) 2019-06-21 2020-06-11 Constant volume combustion system with synchronized injection
US17/596,864 US20220316393A1 (en) 2019-06-21 2020-06-11 Constant-volume combustion system with synchronized injection
PCT/FR2020/050994 WO2020254743A1 (en) 2019-06-21 2020-06-11 Constant-volume combustion system with synchronized injection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906729 2019-06-21
FR1906729A FR3097592B1 (en) 2019-06-21 2019-06-21 Constant volume combustion system with synchronized injection

Publications (2)

Publication Number Publication Date
FR3097592A1 true FR3097592A1 (en) 2020-12-25
FR3097592B1 FR3097592B1 (en) 2021-07-02

Family

ID=67875719

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1906729A Active FR3097592B1 (en) 2019-06-21 2019-06-21 Constant volume combustion system with synchronized injection

Country Status (5)

Country Link
US (1) US20220316393A1 (en)
EP (1) EP3987165A1 (en)
CN (1) CN114008313A (en)
FR (1) FR3097592B1 (en)
WO (1) WO2020254743A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288981A (en) * 1978-06-16 1981-09-15 Wright Elwood H Turbine-type engine
WO2016120551A1 (en) 2015-01-26 2016-08-04 Safran Constant-volume combustion module for a turbine engine
WO2018234698A1 (en) * 2017-06-23 2018-12-27 Safran Constant volume combustion system comprising a rotating closure element with segmented apertures

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1025117A (en) * 1911-02-07 1912-05-07 Oram A Boyer Rotary internal-combustion engine.
US1299330A (en) * 1916-03-10 1919-04-01 Frank L Groves Internal-combustion turbine.
US1298430A (en) * 1918-08-01 1919-03-25 Franz Wondra Internal-combustion turbine.
US1339730A (en) * 1919-02-17 1920-05-11 George T Williams Combustion-engine of the rotary type
US1616646A (en) * 1920-11-30 1927-02-08 Ardin Lucien Leopold Internal-combustion turbine
US3199496A (en) * 1961-06-22 1965-08-10 Gen Motors Corp Rotary internal combustion engine
US3650105A (en) * 1970-04-06 1972-03-21 William J Toye Internal combustion turbine
DE2807720A1 (en) * 1978-02-23 1979-08-30 Bosch Gmbh Robert FUEL INJECTION DEVICE FOR COMBUSTION ENGINES, IN PARTICULAR FOR DIESEL ENGINES
US4807440A (en) * 1987-02-24 1989-02-28 Ahmed Salem Internal combustion engine
US6021746A (en) * 1995-06-29 2000-02-08 Pyon; Sang-Bok arc-piston engine
US6026786A (en) * 1997-07-18 2000-02-22 Caterpillar Inc. Method and apparatus for controlling a fuel injector assembly of an internal combustion engine
US7621118B2 (en) * 2002-07-03 2009-11-24 Rolls-Royce North American Technologies, Inc. Constant volume combustor having a rotating wave rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288981A (en) * 1978-06-16 1981-09-15 Wright Elwood H Turbine-type engine
WO2016120551A1 (en) 2015-01-26 2016-08-04 Safran Constant-volume combustion module for a turbine engine
WO2018234698A1 (en) * 2017-06-23 2018-12-27 Safran Constant volume combustion system comprising a rotating closure element with segmented apertures

Also Published As

Publication number Publication date
WO2020254743A1 (en) 2020-12-24
EP3987165A1 (en) 2022-04-27
US20220316393A1 (en) 2022-10-06
FR3097592B1 (en) 2021-07-02
CN114008313A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
EP3259461B1 (en) Constant-volume combustion system for a turbine engine of an aircraft engine
EP3250859B1 (en) Constant-volume combustion module for a turbine engine, comprising communication-based ignition
FR2851792A1 (en) FUEL INJECTOR FOR INTERNAL COMBUSTION ENGINE
EP3688294B1 (en) Constant volume combustion chamber and associated turbine engine combustion system
EP0301950B1 (en) Supercharged internal-comubustion engine provided withan auxiliary combustion chamber
EP0577451B1 (en) Device for controlling the pneumatic injection of carburetted mixture for a two stroke internal combustion engine and its use
WO2009118471A1 (en) Pressure wave supercharged internal combustion engine
FR3097592A1 (en) Constant volume combustion system with synchronized injection
FR3068075B1 (en) CONSTANT VOLUME COMBUSTION SYSTEM COMPRISING A SEGMENTED LIGHTING ROTATING ELEMENT
EP0806611A1 (en) Injection system with a variable geometry with air flow as function of the engine load
EP2748457B1 (en) Piezoelectric ignition device and corresponding method for a turbomachine combustion chamber
FR3039220A1 (en) POSTCOMBUSTION DIPOSITIVE FOR TURBOREACTOR
FR3068076A1 (en) CONSTANT VOLUME COMBUSTION SYSTEM WITH BYPASS FLOW
FR2496757A1 (en) Charge intake for two stroke IC-engine - has charge fed across crank case to inlet ports with valved intake for non-carburetted air
EP3308080B1 (en) Turbine engine cvc combustion chamber module comprising a precombustion chamber
FR2797306A1 (en) IMPROVED TURBOCHARGER
WO2020012112A1 (en) Fuel injection system of a constant-volume combustion system for a turbomachine
FR3068074B1 (en) CONSTANT VOLUME COMBUSTION SYSTEM WITH CLOISONNE EXHAUST MANIFOLD
FR2773846A1 (en) Reaction motor with drum or rotor
FR2912778A3 (en) Internal combustion engine, has secondary pump with pump piston for varying variation of fuel circulation chamber, where piston is mechanically connected to rotating camshaft to drive piston in displacement by camshaft between positions
FR2531139A1 (en) Control device for a gas circuit of a combustion chamber
WO1988005861A1 (en) Method for igniting by compression a gaseous mixture in an internal combustion engine, and engine implementing such method
FR2914738A1 (en) Propulsion engine for realizing e.g. observation and recognition drone, has central space protecting energy generator driven in rotation to create electric energy necessary to activation of control surfaces embarked on engine
FR2827006A1 (en) Rotary engine comprises stator, housing containing rotor and shaft with surface forming sliding control cam for stator blades which delimit combustion chambers associated with fuel and oxidant compression circuits
FR2962163A1 (en) Combustion spark ignition engine, has spark plug that is in contact with combustion chamber by cylinder neck, and elective hump that is realized on head of piston, where combustion chamber is housed in piston

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20201225

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5