FR3050656A1 - PROCESS FOR THE PRODUCTION OF LIQUID BIOMETHANE BY CRYOGENIC SEPARATION - Google Patents
PROCESS FOR THE PRODUCTION OF LIQUID BIOMETHANE BY CRYOGENIC SEPARATION Download PDFInfo
- Publication number
- FR3050656A1 FR3050656A1 FR1653728A FR1653728A FR3050656A1 FR 3050656 A1 FR3050656 A1 FR 3050656A1 FR 1653728 A FR1653728 A FR 1653728A FR 1653728 A FR1653728 A FR 1653728A FR 3050656 A1 FR3050656 A1 FR 3050656A1
- Authority
- FR
- France
- Prior art keywords
- biomethane
- nitrogen
- exchanger
- bottle
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000926 separation method Methods 0.000 title claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 26
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 13
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 13
- 230000008929 regeneration Effects 0.000 claims description 10
- 238000011069 regeneration method Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000000859 sublimation Methods 0.000 claims description 3
- 230000008022 sublimation Effects 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/05—Biogas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/18—Gas cleaning, e.g. scrubbers; Separation of different gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/66—Landfill or fermentation off-gas, e.g. "Bio-gas"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/68—Separating water or hydrates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Procédé de production de biométhane liquide par séparation cryogénique à partir d'un flux de biogaz (1) comprenant du méthane et du dioxyde de carbone comprenant : - une première étape de production de biométhane (4) par séparation cryogénique du flux de biogaz (1) dans un régénérateur cryogénique (3), - une deuxième étape de liquéfaction du biométhane (4) dans un échangeur, avec la première et la deuxième étape mettant en œuvre un circuit unique d'azote.Process for the production of liquid biomethane by cryogenic separation from a biogas stream (1) comprising methane and carbon dioxide, comprising: - a first stage of production of biomethane (4) by cryogenic separation of the biogas stream (1) ) in a cryogenic regenerator (3), - a second biomethane liquefaction step (4) in an exchanger, with the first and the second stage using a single nitrogen circuit.
Description
La présente invention est relative à un procédé de production de biométhane liquide par séparation cryogénique.The present invention relates to a process for producing liquid biomethane by cryogenic separation.
Dans le cadre de sa valorisation, le biométhane - en tant que substitut renouvelable au gaz naturel ayant les mêmes caractéristiques que celui-ci - peut être injecté dans un réseau de distribution ou de transport de gaz naturel qui permet de relier producteurs de gaz et consommateurs.As part of its valuation, biomethane - as a renewable substitute for natural gas with the same characteristics as this one - can be injected into a natural gas distribution or transmission network that connects gas producers and consumers. .
Le biométhane est obtenu à partir de biogaz.Biomethane is obtained from biogas.
Le biogaz est un gaz produit par la fermentation naturelle ou artificielle de matières organiques végétales ou animales (la méthanisation). Il contient majoritairement du méthane (CH4) du dioxyde de carbone (C02), mais également - en moindre proportion - de l'eau, de l'azote, de l'hydrogène sulfuré, de l'oxygène, ainsi que des composés organiques autres, à l'état de traces. Selon les matières organiques dégradées et les techniques utilisées, les proportions des composants diffèrent, mais en moyenne le biogaz comporte, sur gaz sec, de 30 à 75% de méthane, de 15 à 60% de C02, de 0 à 15% d'azote, de 0 à 5% d'oxygène et des composés traces. Le biogaz est valorisé de différentes manières. Il peut, après un traitement léger, être valorisé à proximité du site de production pour fournir de la chaleur, de l'électricité ou un mélange des deux (la cogénération); la teneur importante en dioxyde de carbone réduit son pouvoir calorifique, augmente les coûts de compression et de transport et limite l'intérêt économique de sa valorisation à cette utilisation de proximité.Biogas is a gas produced by the natural or artificial fermentation of vegetable or animal organic matter (methanisation). It contains mainly methane (CH4) carbon dioxide (CO2), but also - to a lesser extent - water, nitrogen, hydrogen sulphide, oxygen, and other organic compounds , in the form of traces. Depending on the organic matter degraded and the techniques used, the proportions of the components differ, but on average the biogas comprises, on dry gas, 30 to 75% of methane, 15 to 60% of CO2, 0 to 15% of carbon dioxide. nitrogen, 0-5% oxygen and trace compounds. Biogas is valued in different ways. It may, after a light treatment, be upgraded near the production site to provide heat, electricity or a mixture of both (cogeneration); the high content of carbon dioxide reduces its calorific value, increases the compression and transport costs and limits the economic interest of its valuation to this use of proximity.
Une purification plus poussée du biogaz permet sa plus large utilisation, en particulier, une purification poussée du biogaz permet d'obtenir un biogaz épuré aux spécifications du gaz naturel et qui pourra lui être substitué; le biogaz ainsi purifié est le «biométhane». Le biométhane complète ainsi les ressources de gaz naturel avec une partie renouvelable produite au cœur des territoires ; il est utilisable pour exactement les mêmes usages que le gaz naturel d'origine fossile. Il peut alimenter un réseau de gaz naturel, une station de remplissage pour véhicules, il peut aussi être liquéfié pour être stocké sous forme de gaz naturel liquide (GNL)... Les modes de valorisation du biométhane sont déterminés en fonction des contextes locaux : besoins énergétiques locaux, possibilités de valorisation en tant que biométhane carburant. existence à proximité de réseaux de distribution ou de transport de gaz naturel notamment. Créant des synergies entre les différents acteurs œuvrant sur un territoire (agriculteurs, industriels, pouvoirs publics), la production de biométhane aide les territoires à acquérir une plus grande autonomie énergétique.Further purification of the biogas allows its wider use, in particular, a thorough purification of the biogas makes it possible to obtain a biogas purified to the specifications of the natural gas and which can be substituted for it; the biogas thus purified is "biomethane". Biomethane thus completes the natural gas resources with a renewable part produced in the heart of the territories; it is usable for exactly the same uses as natural gas of fossil origin. It can feed a natural gas network, a filling station for vehicles, it can also be liquefied to be stored in the form of liquid natural gas (LNG) ... The modes of valorization of the biomethane are determined according to the local contexts: local energy needs, possibilities of valorization as biomethane fuel. existence close to natural gas distribution or transmission networks, in particular. Creating synergies between the different actors working on a territory (farmers, industrialists, public authorities), the production of biomethane helps the territories to acquire a greater energy autonomy.
La présente invention se propose de fournir un procédé simplifié de production de biométhane. Une solution de la présente invention est un procédé de production de biométhane liquide par séparation cryogénique à partir d'un flux de biogaz 1 comprenant du méthane et du dioxyde de carbone comprenant : - une première étape de production de biométhane 4 par séparation cryogénique du flux de biogaz 1 dans un régénérateur cryogénique 3, - une deuxième étape de liquéfaction du biométhane 4 dans un échangeur, avec la première et la deuxième étape mettant en œuvre un circuit unique d'azote.The present invention proposes to provide a simplified process for the production of biomethane. A solution of the present invention is a process for producing liquid biomethane by cryogenic separation from a biogas stream 1 comprising methane and carbon dioxide, comprising: a first step of producing biomethane 4 by cryogenic separation of the stream of biogas 1 in a cryogenic regenerator 3, - a second step of liquefying the biomethane 4 in an exchanger, with the first and the second step implementing a single nitrogen circuit.
Par « circuit unique d'azote » on entend un procédé dans lequel l'azote utilisé dans la première étape provient exclusivement de l'azote vaporisé dans la deuxième étape.By "single nitrogen circuit" is meant a process in which the nitrogen used in the first stage comes exclusively from the vaporized nitrogen in the second stage.
Par « régénérateur cryogénique » on entend un échangeur de type régénérateur opérant à température cryogénique.By "cryogenic regenerator" is meant a regenerator type exchanger operating at cryogenic temperature.
Selon le cas le procédé selon l'invention présente une ou plusieurs des caractéristiques ci-dessous : - la première étape de production de biométhane comprend les étapes successives suivantes: i) introduction du biogaz 1 à une pression comprise entre 3 et 15 bar dans un régénérateur cryogénique, ii) refroidissement du biogaz 1 au contact de la matrice contenue dans le régénérateur cryogénique et préalablement refroidie par le flux d'azote 2 jusqu'à solidification du dioxyde de carbone, (la matrice a été préalablement refroidie de façon à présenter un profil de température allant de la température ambiante à l'extrémité ou est injecté le biogaz jusqu'à une température inférieure à -90°C à l'extrémité où sort le biogaz) et iii) récupération d'un flux de biométhane gazeux 4, et la deuxième étape de liquéfaction du biométhane comprend les étapes successives suivantes : iv) introduction du flux de biométhane gazeux 4 récupéré à l'étape iii) et du flux d'azote liquide (7)dans un échangeur 6, v) liquéfaction du flux de biométhane gazeux 4 dans l'échangeur 6 par échange thermique avec l'azote liquide 7, et vi) récupération d'un flux de biométhane liquide 8. - le circuit d'azote liquide comprend un passage en série du flux d'azote liquide dans l'échangeur 6 puis dans le régénérateur cryogénique 3. - la température de l'azote liquide 7 à l'étape iv) est comprise entre -196°C et -190°C et la température de l'azote 2 à l'étape i) est comprise entre -196°C et -120°C. - le régénérateur cryogénique comprend une première et une deuxième bouteille 3a et 3b, ledit procédé comprend une troisième étape de régénération, et la première bouteille 3a subit la première étape de production tandis que la deuxième bouteille 3b subit la troisième étape de régénération avant d'être inversées. - la troisième étape de régénération comprend un balayage de la deuxième bouteille 3b par un flux d'azote 2 issu de l'échangeur à une pression comprise entre 1 bar et 3 bar jusqu'à sublimation du C02 solidifié. - l'échangeur 6 fonctionne en continu. - le biométhane liquide 8 est envoyé dans un stockage.Depending on the case, the process according to the invention has one or more of the following characteristics: the first biomethane production stage comprises the following successive stages: i) introduction of the biogas 1 at a pressure of between 3 and 15 bar in a cryogenic regenerator, ii) cooling of the biogas 1 in contact with the matrix contained in the cryogenic regenerator and previously cooled by the flow of nitrogen 2 until solidification of the carbon dioxide, (the matrix has been previously cooled so as to present a temperature profile ranging from room temperature to the end where the biogas is injected to a temperature below -90 ° C at the end where the biogas comes out) and iii) recovery of a gaseous biomethane stream 4, and the second biomethane liquefaction step comprises the following successive steps: iv) introduction of the gaseous biomethane stream 4 recovered in step i ii) and the flow of liquid nitrogen (7) in an exchanger 6, v) liquefaction of the gaseous biomethane stream 4 in the exchanger 6 by heat exchange with the liquid nitrogen 7, and vi) recovery of a flow of liquid biomethane 8. - the liquid nitrogen circuit comprises a series passage of the flow of liquid nitrogen in the exchanger 6 and then in the cryogenic regenerator 3. - the temperature of the liquid nitrogen 7 in step iv) is between -196 ° C and -190 ° C and the temperature of nitrogen 2 in step i) is between -196 ° C and -120 ° C. the cryogenic regenerator comprises a first and a second bottle 3a and 3b, said method comprises a third regeneration step, and the first bottle 3a undergoes the first production step while the second bottle 3b undergoes the third regeneration step before to be reversed. - The third regeneration step comprises a sweep of the second bottle 3b by a nitrogen stream 2 from the exchanger at a pressure between 1 bar and 3 bar until sublimation of the solidified CO 2. exchanger 6 operates continuously. the liquid biomethane 8 is sent to a storage.
La présente invention va à présent être décrite plus en détail à l'aide de la figure 1. L'installation représentée figure 1 comprend un régénérateur cryogénique 3 avec deux bouteilles, une première bouteille 3a et une deuxième bouteille 3b. La deuxième bouteille 3b subit la troisième étape de régénération. Autrement dit, la deuxième bouteille 3b est balayée par le flux d'azote 2 et la pression basse du flux d'azote comprise entre 1 et 3 bars permet la sublimation et l'évacuation du dioxyde de carbone solidifié et piégé dans la matrice. Ce balayage d'azote permet également de refroidir la matrice comprise dans la deuxième bouteille 3b et d'obtenir un profil de température compris entre la température ambiante et une température inférieure à -90°C. Après ce refroidissement de la matrice comprise dans la deuxième bouteille, la première bouteille et la deuxième bouteille sont inversées; autrement dit la deuxième bouteille 3b devient la première bouteille 3a et va subir l'étape de production de biométhane et la première bouteille 3a devient la deuxième bouteille 3b et va subir à son tour l'étape de régénération. Cette inversion est rendue possible par un jeu de vannes. Le biogaz à une pression comprise entre 3 et 15 bars est introduit dans la première bouteille 3a et se refroidi à une température inférieure à -90°C au contact de la matrice refroidie lors de l'étape de régénération. Ce refroidissement entraine la solidification du dioxyde de carbone qui reste alors piégé dans la matrice. On récupère en sortie de la première bouteille du biométhane gazeux 4 qui est ensuite liquéfié dans un échangeur 6 par échange thermique avec un flux d'azote liquide 7. Notons que le flux d'azote liquide correspond au flux amont du flux d'azote utilisé à l'étape de régénération. Un flux de biométhane liquide est récupéré en sortie de l'échangeur.The present invention will now be described in more detail with the aid of FIG. 1. The installation represented in FIG. 1 comprises a cryogenic regenerator 3 with two bottles, a first bottle 3a and a second bottle 3b. The second bottle 3b undergoes the third regeneration step. In other words, the second bottle 3b is swept by the flow of nitrogen 2 and the low pressure of the nitrogen stream of between 1 and 3 bar allows the sublimation and evacuation of carbon dioxide solidified and trapped in the matrix. This nitrogen sweep also makes it possible to cool the matrix comprised in the second bottle 3b and to obtain a temperature profile comprised between ambient temperature and a temperature below -90 ° C. After this cooling of the matrix included in the second bottle, the first bottle and the second bottle are inverted; that is, the second bottle 3b becomes the first bottle 3a and will undergo the biomethane production step and the first bottle 3a becomes the second bottle 3b and will in turn undergo the regeneration step. This inversion is made possible by a set of valves. The biogas at a pressure of between 3 and 15 bar is introduced into the first bottle 3a and is cooled to a temperature below -90 ° C. in contact with the cooled matrix during the regeneration step. This cooling leads to the solidification of the carbon dioxide which then remains trapped in the matrix. The output of the first bottle of biomethane gas 4 is recovered, which is then liquefied in a heat exchanger 6 by heat exchange with a stream of liquid nitrogen 7. Note that the flow of liquid nitrogen corresponds to the upstream flow of the nitrogen flow used. in the regeneration step. A stream of liquid biomethane is recovered at the outlet of the exchanger.
Notons que l'azote liquide 7 peut provenir d'un réservoir de stockage d'azote. Il faut 3 kg d'azote pour liquéfier 1 kg de biométhane.Note that the liquid nitrogen 7 can come from a nitrogen storage tank. It takes 3 kg of nitrogen to liquefy 1 kg of biomethane.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1653728A FR3050656B1 (en) | 2016-04-27 | 2016-04-27 | PROCESS FOR PRODUCING LIQUID BIOMETHANE BY CRYOGENIC SEPARATION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1653728 | 2016-04-27 | ||
FR1653728A FR3050656B1 (en) | 2016-04-27 | 2016-04-27 | PROCESS FOR PRODUCING LIQUID BIOMETHANE BY CRYOGENIC SEPARATION |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3050656A1 true FR3050656A1 (en) | 2017-11-03 |
FR3050656B1 FR3050656B1 (en) | 2019-11-29 |
Family
ID=56148522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1653728A Active FR3050656B1 (en) | 2016-04-27 | 2016-04-27 | PROCESS FOR PRODUCING LIQUID BIOMETHANE BY CRYOGENIC SEPARATION |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3050656B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110938480A (en) * | 2018-09-25 | 2020-03-31 | 乔治洛德方法研究和开发液化空气有限公司 | Process for producing biomethane from a biogas stream comprising impurity coagulation |
PL243099B1 (en) * | 2020-04-10 | 2023-06-26 | Agnieszka Sobieraj | Set of devices for cryogenic separation and method for cryogenic separation of carbon dioxide from waste gases |
EP4127109A4 (en) * | 2020-04-03 | 2024-01-24 | Biofrigas Sweden AB (Publ) | Method and system for the production of liquid biogas |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082133A (en) * | 1999-02-05 | 2000-07-04 | Cryo Fuel Systems, Inc | Apparatus and method for purifying natural gas via cryogenic separation |
EP2277614A1 (en) * | 2009-07-22 | 2011-01-26 | LO Solutions GmbH | Method for cleaning and liquefying biogas |
KR101027809B1 (en) * | 2010-02-12 | 2011-04-07 | 한솔이엠이(주) | Manufacturing apparatus for liquified bio methane |
CN201803571U (en) * | 2010-09-15 | 2011-04-20 | 张永北 | On-board biogas refrigeration liquidation separation device |
PL403141A1 (en) * | 2013-03-13 | 2014-09-15 | Paweł Filanowski | Method for purifying biogas into the gas transmission parameters, and installation for the purification of biogas |
DE102013008535A1 (en) * | 2013-05-16 | 2014-11-20 | Linde Aktiengesellschaft | Plant for reducing a carbon dioxide content of a carbon dioxide-rich and hydrocarbon-rich gas stream and corresponding method |
CN204752650U (en) * | 2015-06-08 | 2015-11-11 | 江克运 | Utilize cryogenic separation's marsh gas purification and biological natural gas liquefaction device |
-
2016
- 2016-04-27 FR FR1653728A patent/FR3050656B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082133A (en) * | 1999-02-05 | 2000-07-04 | Cryo Fuel Systems, Inc | Apparatus and method for purifying natural gas via cryogenic separation |
EP2277614A1 (en) * | 2009-07-22 | 2011-01-26 | LO Solutions GmbH | Method for cleaning and liquefying biogas |
KR101027809B1 (en) * | 2010-02-12 | 2011-04-07 | 한솔이엠이(주) | Manufacturing apparatus for liquified bio methane |
CN201803571U (en) * | 2010-09-15 | 2011-04-20 | 张永北 | On-board biogas refrigeration liquidation separation device |
PL403141A1 (en) * | 2013-03-13 | 2014-09-15 | Paweł Filanowski | Method for purifying biogas into the gas transmission parameters, and installation for the purification of biogas |
DE102013008535A1 (en) * | 2013-05-16 | 2014-11-20 | Linde Aktiengesellschaft | Plant for reducing a carbon dioxide content of a carbon dioxide-rich and hydrocarbon-rich gas stream and corresponding method |
CN204752650U (en) * | 2015-06-08 | 2015-11-11 | 江克运 | Utilize cryogenic separation's marsh gas purification and biological natural gas liquefaction device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110938480A (en) * | 2018-09-25 | 2020-03-31 | 乔治洛德方法研究和开发液化空气有限公司 | Process for producing biomethane from a biogas stream comprising impurity coagulation |
EP4127109A4 (en) * | 2020-04-03 | 2024-01-24 | Biofrigas Sweden AB (Publ) | Method and system for the production of liquid biogas |
PL243099B1 (en) * | 2020-04-10 | 2023-06-26 | Agnieszka Sobieraj | Set of devices for cryogenic separation and method for cryogenic separation of carbon dioxide from waste gases |
Also Published As
Publication number | Publication date |
---|---|
FR3050656B1 (en) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3075659B1 (en) | PROCESS FOR PRODUCING NATURAL GAS CURRENT FROM BIOGAS CURRENT. | |
EP3628389A1 (en) | Method for producing biomethane from a flow of biogas comprising solidification of impurities | |
FR3025117A1 (en) | PROCESS FOR PURIFYING BIOGAS BY MEMBRANE (S) AT NEGATIVE TEMPERATURE | |
FR3050656A1 (en) | PROCESS FOR THE PRODUCTION OF LIQUID BIOMETHANE BY CRYOGENIC SEPARATION | |
FR3050655A1 (en) | PROCESS FOR PRODUCING BIOMETHANE USING NITROGEN STREAM | |
EP3719426A1 (en) | Biogas purification and liquefaction by combining a crystallisation system with a liquefaction heat exchanger | |
US11291946B2 (en) | Method for distilling a gas stream containing oxygen | |
EP3538483B1 (en) | Synthesis gas production process for the implementation of a natural gas liquefaction | |
FR3070873B1 (en) | METHOD FOR PRODUCING BIOMETHANE USING AN ABSORPTION SYSTEM AND A HEAT PUMP | |
EP4101917B1 (en) | Method for separation and liquefaction of methane and carbon dioxide with elimination of impurities from the air present in the methane | |
EP4062998A1 (en) | Installation and method for obtaining biomethane in accordance with the specific features of a transport network | |
FR3052240A1 (en) | METHOD FOR LIQUEFACTING CARBON DIOXIDE FROM NATURAL GAS CURRENT | |
FR3052239A1 (en) | PROCESS FOR THE LIQUEFACTION OF NATURAL GAS AND CARBON DIOXIDE | |
FR3110092A1 (en) | Installation and process for the production of biomethane with limited loss of methane and limited CO2 emissions | |
FR3052241A1 (en) | PROCESS FOR PURIFYING NATURAL GAS AND LIQUEFACTING CARBON DIOXIDE | |
EP4101912B1 (en) | Method for separation and liquefaction of methane and carbon dioxide with pre-separation upstream of the distillation column | |
FR3058712A1 (en) | METHOD FOR LIQUEFACTING NATURAL GAS COMBINED WITH PRODUCTION OF SYNTHESIS GAS. | |
EP4101911B1 (en) | Cryogenic purification for biogas with external pre-separation and solidification of carbon dioxide | |
FR3058713A1 (en) | STEAM IMPLEMENTATION OF SYNTHESIS GAS PRODUCTION PROCESS FOR REHEATING NATURAL GAS VAPORS. | |
FR3058714A1 (en) | INTEGRATION OF A NATURAL GAS LIQUEFACTION PROCESS IN A PROCESS FOR THE PRODUCTION OF SYNTHESIS GAS. | |
WO2019158826A1 (en) | Process of producing synthesis gas originating from a natural gas liquefaction process | |
EP4101915B1 (en) | Combined installation for cryogenic separation and liquefaction of methane and carbon dioxide included in a flow of biogas | |
EP4101918B1 (en) | Method for separation and liquefaction of methane and carbon dioxide with solidification of carbon dioxide outside the distillation column | |
US20210087123A1 (en) | Method for limiting the concentration of oxygen contained in a biomethane stream | |
FR3013107A1 (en) | METHOD AND APPARATUS FOR DEAZATING A FLUID RICH IN CARBON MONOXIDE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20171103 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |