FR3042868A1 - METHOD FOR DETERMINING THE QUALITY OF A SEED OF A GREEN ANIMAL - Google Patents
METHOD FOR DETERMINING THE QUALITY OF A SEED OF A GREEN ANIMAL Download PDFInfo
- Publication number
- FR3042868A1 FR3042868A1 FR1560026A FR1560026A FR3042868A1 FR 3042868 A1 FR3042868 A1 FR 3042868A1 FR 1560026 A FR1560026 A FR 1560026A FR 1560026 A FR1560026 A FR 1560026A FR 3042868 A1 FR3042868 A1 FR 3042868A1
- Authority
- FR
- France
- Prior art keywords
- absorption
- seed
- quality
- determining
- seed according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 241001465754 Metazoa Species 0.000 title claims abstract description 27
- 238000010521 absorption reaction Methods 0.000 claims abstract description 34
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 19
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims abstract description 14
- 241000894007 species Species 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 claims description 37
- 244000309464 bull Species 0.000 claims description 17
- 150000002632 lipids Chemical class 0.000 claims description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 150000001720 carbohydrates Chemical class 0.000 claims description 7
- 235000014633 carbohydrates Nutrition 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 150000007523 nucleic acids Chemical class 0.000 claims description 5
- 239000000523 sample Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 17
- 230000035558 fertility Effects 0.000 description 13
- 230000009027 insemination Effects 0.000 description 13
- 210000000582 semen Anatomy 0.000 description 13
- 239000008188 pellet Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 241000283690 Bos taurus Species 0.000 description 6
- 238000009395 breeding Methods 0.000 description 6
- 230000001488 breeding effect Effects 0.000 description 6
- 239000010902 straw Substances 0.000 description 6
- 238000010200 validation analysis Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000004720 fertilization Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000012173 estrus Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 201000010063 epididymitis Diseases 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 208000000509 infertility Diseases 0.000 description 3
- 238000009533 lab test Methods 0.000 description 3
- 244000144972 livestock Species 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 238000001530 Raman microscopy Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000005102 attenuated total reflection Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- 208000021267 infertility disease Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000009612 semen analysis Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000021595 spermatogenesis Effects 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 238000004252 FT/ICR mass spectrometry Methods 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000011547 Plebejus idas Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003710 calcium ionophore Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000012897 dilution medium Substances 0.000 description 1
- 230000008143 early embryonic development Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000918 epididymis Anatomy 0.000 description 1
- CJAONIOAQZUHPN-KKLWWLSJSA-N ethyl 12-[[2-[(2r,3r)-3-[2-[(12-ethoxy-12-oxododecyl)-methylamino]-2-oxoethoxy]butan-2-yl]oxyacetyl]-methylamino]dodecanoate Chemical compound CCOC(=O)CCCCCCCCCCCN(C)C(=O)CO[C@H](C)[C@@H](C)OCC(=O)N(C)CCCCCCCCCCCC(=O)OCC CJAONIOAQZUHPN-KKLWWLSJSA-N 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 230000037417 hyperactivation Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000004476 mid-IR spectroscopy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 238000010235 multi-parametric assay Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000008010 sperm capacitation Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 229940098232 yersinia enterocolitica Drugs 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/02—Breeding vertebrates
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Environmental Sciences (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
L'invention concerne un procédé de détermination de la qualité d'une semence d'un animal vertébré. Selon l'invention, un tel procédé comprend les étapes suivantes : - mesure d'au moins un spectre d'absorption d'un échantillon de ladite semence ; - sélection d'un nombre n, avec n ≥ 7, de nombres d'ondes δj (j∈[1;n]) caractéristiques des semences de la race ou de l'espèce dudit animal ; - détermination à partir dudit ou desdits spectres d'absorption d'une valeur de l'absorption Xj et/ou d'une valeur de la dérivée seconde de l'absorption Xj" (j∈[1;n]) pour chacun desdits n nombres d'ondes δj (j∈[1;n]) ; - calcul d'un taux de non-retour Y à un nombre prédéfini de jours à partir desdites valeurs de l'absorption Xj et/ou de la dérivée seconde de l'absorption Xj" précédemment déterminées.The invention relates to a method for determining the quality of a seed of a vertebrate animal. According to the invention, such a method comprises the following steps: measuring at least one absorption spectrum of a sample of said seed; selecting a number n, with n ≥ 7, of wave numbers δj (j∈ [1; n]) characteristic of the seeds of the race or species of said animal; determination from said absorption spectrum (s) of a value of the absorption Xj and / or a value of the second derivative of the absorption Xj "(j∈ [1; n]) for each of said n wave numbers δj (j∈ [1; n]); - calculating a non-return rate Y at a predefined number of days from said values of the absorption Xj and / or the second derivative of the "absorption Xj" previously determined.
Description
Procédé de détermination de la qualité d'une semence d'un animal vertébré 1. Domaine de l'invention L'invention se rapporte au domaine de l'élevage et en particulier à la reproduction du bétail, des aviaires et des poissons.FIELD OF THE INVENTION The invention relates to the field of breeding and in particular to the breeding of livestock, avians and fish.
Plus précisément, l'invention concerne un procédé de détermination de la qualité d'une semence d'un animal vertébré. L'invention trouve notamment une application dans la sélection d'une semence de qualité permettant d'améliorer le taux de réussite d'une insémination d'un animal dans un élevage ou dans le contrôle de la qualité des semences de reproducteurs. 2. État de la techniqueMore specifically, the invention relates to a method for determining the quality of a seed of a vertebrate animal. The invention finds particular application in the selection of a quality seed to improve the success rate of insemination of an animal in a breeding or in the control of the quality of the seed of breeders. 2. State of the art
Dans le domaine de l'élevage du bétail, l'insémination est une démarche importante pour optimiser la gestion des troupeaux. Cette étape est d'autant plus cruciale qu'elle contribue à maximaliser les périodes de production de lait, par exemple dans le cas des vaches laitières. Pour ces raisons, la qualité de l'insémination et donc de la semence employée est essentielle.In the field of livestock breeding, insemination is an important step towards optimizing herd management. This step is all the more crucial as it helps to maximize the milk production periods, for example in the case of dairy cows. For these reasons, the quality of the insemination and thus the seed used is essential.
En effet, une insémination qui n'aboutit pas à une gestation de l'animal a une incidence négative sur la rentabilité d’un élevage. Par exemple, pour une vache, le succès d'une insémination est estimé par l'absence d'un retour en œstrus enregistré au cours d'une période de 90 jours après l'acte d'insémination. En cas d'échec, la production annuelle de lait de l'animal concerné est directement impactée à la baisse. Cela se traduit par une baisse de revenu d'exploitation pour l'éleveur. En outre, il faut répéter l'opération d'insémination. Il est donc important de réduire les incertitudes liées à cette intervention.Indeed, an insemination that does not lead to a gestation of the animal has a negative impact on the profitability of a breeding. For example, for a cow, the success of an insemination is estimated by the absence of a return to estrus recorded during a period of 90 days after the act of insemination. In case of failure, the annual milk production of the animal concerned is directly impacted downward. This translates into a decrease in operating income for the farmer. In addition, the insemination operation must be repeated. It is therefore important to reduce the uncertainties associated with this intervention.
Ainsi, l'évaluation de la qualité d'une semence est un enjeu considérable pour les laboratoires d'analyse et les producteurs de semence.For example, the evaluation of seed quality is a major challenge for analytical laboratories and seed producers.
Cette qualité a tout d'abord été estimée selon des protocoles de sélection des animaux. Cependant, on a constaté qu'un animal possédant un patrimoine génétique comprenant de très bonnes caractéristiques ne s'avère pas nécessairement être un bon reproducteur. De plus, la qualité de la semence d'un animal sélectionné pour son bon taux de reproduction global peut varier en fonction de la santé de l'animal lors du prélèvement.This quality was first estimated according to animal selection protocols. However, it has been found that an animal with a very good genetic makeup does not necessarily turn out to be a good breeder. In addition, the quality of the semen of an animal selected for its good overall reproduction rate may vary according to the health of the animal during the sampling.
On a alors tenté d'évaluer la qualité de la semence prélevée. Cette qualité a été évaluée à partir de la semence dans son ensemble et/ou à partir de ses différents composants en fonction de différents critères.We then tried to evaluate the quality of the collected semen. This quality was evaluated from the seed as a whole and / or from its different components according to different criteria.
La semence est un fluide biologique complexe, constitué des sécrétions de différents organes du tractus reproducteurs, dans lesquels baignent les gamètes mâles. La semence est constituée entre autres des spermatozoïdes, du plasma séminal et d'exosomes.The seed is a complex biological fluid, consisting of the secretions of different organs of the reproductive tract, in which the male gametes bathe. The semen consists of spermatozoa, seminal plasma and exosomes.
La fertilité qui est l'aptitude à procréer est un terme qui fait consensus pour évaluer la qualité d'une semence. Cependant, ce terme présente l'inconvénient d'être général et vague. Il n'est pas satisfaisant pour effectuer une discrimination des individus mâles. Par conséquent et selon les besoins, différents critères ont été définis afin d'évaluer la fertilité d'un individu.Fertility, which is the ability to procreate, is a consensus term for assessing the quality of a seed. However, this term has the disadvantage of being general and vague. It is unsatisfactory to discriminate against male individuals. Therefore and according to the needs, different criteria have been defined in order to evaluate the fertility of an individual.
On trouve parmi ces critères : le taux de fécondation qui est le taux de fusion entre les gamètes mâle et femelle permettant la formation du zygote ; le TNR, acronyme de taux de non-retour, est une estimation du résultat de l'insémination conclue par un succès ou un échec, basée sur l'absence d'un retour en œstrus enregistré au cours d'un intervalle de X jours après l'acte d'insémination ; le taux de conception qui est le pourcentage de femelles diagnostiquées en gestation au cours d'un intervalle de X jours après l'acte d'insémination (DeJarnette JM, Amann RP. « Understanding estimâtes of AI sire fertility: From A to Z. » 23rd Technical Conférence on Artificial Insémination & Reproduction, Milwaukee, WI. 2010).These criteria include: the fertilization rate, which is the rate of fusion between the male and female gametes allowing the formation of the zygote; TNR, an acronym for non-return rate, is an estimate of the outcome of successful or unsuccessful insemination based on the absence of a return to estrus during an X-day interval after the act of insemination; the conception rate, which is the percentage of females diagnosed in pregnancy during an interval of X days after the act of insemination (DeJarnette JM, Amann, RP, "Understanding estimates of AI fertility: From A to Z." 23rd Technical Conference on Artificial Insemination & Reproduction, Milwaukee, WI, 2010).
Une difficulté est qu'une mesure de ces différents critères nécessite, pour obtenir un résultat, une attente plus ou moins longue en fonction des espèces ou des races d'animaux.A difficulty is that a measurement of these different criteria requires, to obtain a result, a more or less long wait depending on the species or breeds of animals.
De nombreux tests in vitro ont donc été développés pour évaluer la semence dont certains sont recommandés notamment en clinique humaine par l'Organisation mondiale de la Santé (World Health Organization. « WHO laboratory manual for the examination and Processing of human semen. » Geneva: World Health Organization; 2010). Dans l'espèce humaine comme pour les autres espèces de vertébrés, les tests existants ne sont pas satisfaisants pour prédire la fertilité d'un échantillon de sperme analysé (De Jonge C. « Semen analysis: looking for an upgrade in class. » Fertil Steril 2012 - 97:260-266 et Kastelic JP, Thundathil JC. « Breeding soundness évaluation and semen analysis for predicting bull fertility. » Reprod Domest Anim Zuchthyg 2008; 43 Suppl 2:368-373). Les tests macroscopiques (volume, couleur, viscosité...) et microscopiques (motilité, concentration, morphologie...) réalisés actuellement en routine permettent d'éliminer les semences avec des qualités extrêmement médiocres, mais ne sont pas probants pour identifier les infertilités idiopathiques ni les animaux hypofertiles. De plus, ils ne permettent pas, par exemple, de prédire la variabilité des fertilités des taureaux observées sur le terrain. Cette difficulté réside entre autres dans le fait que les spermatozoïdes sont des cellules complexes et que leur évaluation comporte quelques difficultés (Mocé E, Graham JK. «In vitro évaluation of sperm quality. » Anim Reprod Sci 2008; 105:104-118).Many in vitro tests have therefore been developed to evaluate the semen, some of which are recommended in human clinical practice by the World Health Organization (WHO). World Health Organization, 2010). In humans as in other vertebrate species, existing tests are unsatisfactory in predicting the fertility of a sperm sample analyzed (De Jonge C. "Fertil Steril Semen analysis: looking for an upgrade in class." 2012 - 97: 260-266 and Kastelic JP, Thundathil JC. "Breeding soundness evaluation and semen analysis for predicting bull fertility." Reprod Domest Anim Zuchthyg 2008; 43 Suppl 2: 368-373). Macroscopic tests (volume, color, viscosity ...) and microscopic (motility, concentration, morphology ...) currently performed routinely eliminate seeds with extremely poor qualities, but are not conclusive to identify infertility idiopathic and hypofertile animals. In addition, they do not allow, for example, to predict the variability of bullfighting observed in the field. This difficulty lies, among other things, in the fact that spermatozoa are complex cells and that their evaluation has some difficulties (Mocé E, Graham JK, "In vitro Evaluation of Sperm Quality." Anim Reprod Sci 2008; 105: 104-118).
Un des problèmes inhérent à l'évaluation de la qualité d'une semence provient du fait que l'échantillon contient une population hétérogène de spermatozoïdes. À la suite de leur formation au cours de la spermatogenèse, les spermatozoïdes traversent l'épididyme et s'accumulent dans la queue de cet organe jusqu'au moment de l'éjaculation (Dacheux J-L, Dacheux F. « New insights into epididymal function in relation to sperm maturation. » Reprod Camb Engl 2014; 147:R27-42). Les spermatozoïdes ainsi stockés proviennent de différentes vagues de spermatogenèse, donc, les spermatozoïdes provenant d'un même éjaculat présentent différents degrés de maturation assurant, in vivo, une plus large fenêtre de fécondation. In vivo au cours de leur transit dans le tractus reproducteur femelle, certains spermatozoïdes sont éliminés de la population. Par contre lors de l'analyse in vitro d'une semence, l'échantillon peut comprendre plusieurs spermatozoïdes infertiles, qui peuvent être immobiles, morts, mal formés, ... (Holt WV, Van Look KJW. « Concepts in sperm heterogeneity, sperm sélection and sperm compétition as biological foundations for laboratory tests of semen quality. » Reprod Camb Engl 2004; 127:527-535 et Rodriguez-Martinez H. « Can we increase the estimated value of semen assessment? » Reprod Domest Anim Zuchthyg 2006; 41 Suppl 2:2-10 et Petrunkina AM, Volker G, Brandt H, Topfer-Petersen E, Waberski D. « Functional significance of responsiveness to capacitating conditions in boar spermatozoa. » Theriogenology 2005; 64:1766-1782). Ainsi, les spermatozoïdes infertiles sont évalués au même titre que ceux qui seront aptes à féconder l'ovule.One of the problems inherent in assessing the quality of a seed is that the sample contains a heterogeneous sperm population. As a result of their training during spermatogenesis, the spermatozoa pass through the epididymis and accumulate in the tail of this organ until the time of ejaculation (Dacheux JL, Dacheux F. "New insights into epididymal function relationship to sperm ripening. "Reprod Camb Engl 2014; 147: R27-42). Spermatozoa thus stored come from different waves of spermatogenesis, so sperm from the same ejaculate have different degrees of maturation ensuring, in vivo, a wider window of fertilization. In vivo during their transit through the female reproductive tract, some spermatozoa are eliminated from the population. On the other hand, during the in vitro analysis of a seed, the sample may comprise several infertile spermatozoa, which may be immobile, dead, poorly formed, etc. (Holt WV, Van Look KJW, "Concepts in sperm heterogeneity, Reprod Camb Engl 2004; 127: 527-535 and Rodriguez-Martinez H. "Reprod Domest Anim Zuchthyg 2006; 41 Suppl 2: 2-10 and Petrunkina AM, Volker G, Brandt H, Topfer-Petersen E, Waberski D. "Functional significance of responsiveness to capacitating conditions in boar spermatozoa." Theriogenology 2005; 64: 1766-1782). Thus, the sperm infertile are evaluated in the same way as those who will be able to fertilize the egg.
Un autre problème inhérent à l'évaluation de la qualité d'une semence est que les spermatozoïdes ne répondent pas uniformément à un même stress (Petrunkina AM, Volker G, Brandt H, Topfer-Petersen E, Waberski D. « Functional significance of responsiveness to capacitating conditions in boar spermatozoa. » Theriogenology 2005; 64:1766-1782), même si ces spermatozoïdes présentent des caractéristiques similaires à certains moments spécifiques. Finalement, la complexité de travailler avec des spermatozoïdes vient également du fait que cette cellule est multicompartimentée et que chacun de ces sous-compartiments doit être intact et fonctionnel pour permettre la fécondation ( Amann RP, Flammerstedt RFI. « In vitro évaluation of sperm quality: an opinion. » J Androl 1993; 14:397-406).Another problem inherent in assessing the quality of a seed is that sperm do not respond uniformly to the same stress (Petrunkina AM, Volker G, Brandt H, Topfer-Petersen E, Waberski D. "Functional significance of responsiveness to capacitating conditions in boar spermatozoa. "Theriogenology 2005; 64: 1766-1782), although these spermatozoa have similar characteristics at specific times. Finally, the complexity of working with sperm also comes from the fact that this cell is multicomponent and that each of these sub-compartments must be intact and functional to allow fertilization (Amann RP, Flammerstedt RFI. "In vitro evaluation of sperm quality: an opinion. "J Androl 1993; 14: 397-406).
Pour assurer la fécondation, les spermatozoïdes doivent posséder plusieurs caractéristiques telles qu'une mobilité, une production d'ATP, une induction de l'hyperactivation, une faculté à réaliser leur capacitation et leur réaction acrosomique, une membrane plasmique fonctionnelle, une capacité à reconnaître et à se lier à la zone pellucide, ou encore, posséder un ADN intact, etc. Les spermatozoïdes sont donc des cellules complexes, multifonctionnelles nécessitant le bon fonctionnement de plusieurs paramètres pour atteindre leur but ultime : la fécondation et le soutien du développement embryonnaire précoce. L'infertilité ou l'hypofertilité d'un individu peut être la conséquence d'une multitude de modifications.To ensure fertilization, spermatozoa must have several characteristics such as mobility, ATP production, induction of hyperactivation, ability to achieve their capacitation and acrosomal reaction, functional plasma membrane, ability to recognize and to bind to the zona pellucida, or to have intact DNA, etc. Spermatozoa are thus complex, multifunctional cells requiring the proper functioning of several parameters to reach their ultimate goal: fertilization and support of early embryonic development. The infertility or subfertility of an individual can be the consequence of a multitude of modifications.
Ainsi, un test évaluant un des paramètres des spermatozoïdes parvient difficilement à détecter un spermatozoïde défectueux pour une propriété autre que celle évaluée par le test. Un inconvénient d'un tel test est de surestimer la fertilité de l'échantillon (Graham JK, Mocé E. « Fertility évaluation of frozen/thawed semen. » Theriogenology 2005; 64:492-504). De plus, il est peu probable que ce test en laboratoire évaluant un paramètre des spermatozoïdes soit en mesure de détecter la proportion de spermatozoïdes contenant l'ensemble des paramètres nécessaires pour féconder l'ovocyte et assurer le développement embryonnaire. C'est pourquoi les tests multiparamétriques s'avèrent intéressants. En effet, l'analyse de plusieurs paramètres d'un échantillon de spermatozoïdes permet d'obtenir une vision globale de l'échantillon analysé et améliore la détection d'un paramètre déficient. De cette façon, l'analyse multiparamétrique permettrait de mieux expliquer les écarts de fertilité entre les différents taureaux analysés (Januskauskas A, Johannisson A, Soderquist L, Rodriguez-Martinez H. « Assessment of sperm characteristics post-thaw and response to calcium ionophore in relation to fertility in Swedish dairy AI bulls. » Theriogenology 2000; 53:859-875).Thus, a test evaluating one of the sperm parameters has difficulty in detecting a defective spermatozoon for a property other than that evaluated by the test. A disadvantage of such a test is to overestimate the fertility of the sample (Graham JK, Mocé E. "Fertility Evaluation of frozen / thawed semen." Theriogenology 2005; 64: 492-504). In addition, it is unlikely that this laboratory test evaluating a sperm parameter will be able to detect the proportion of sperm containing all the parameters necessary to fertilize the oocyte and ensure embryonic development. This is why multiparametric tests are interesting. Indeed, the analysis of several parameters of a sperm sample makes it possible to obtain an overall view of the analyzed sample and improves the detection of a deficient parameter. In this way, multiparametric analysis could better explain the differences in fertility between the different bulls analyzed (Januskauskas A, Johannisson A, Soderquist L, Rodriguez-Martinez H. "Assessment of sperm characteristics post-thaw and response to calcium ionophore relation to fertility in Swedish dairy AI bulls. Theriogenology 2000; 53: 859-875).
Une autre partie du problème rencontré pour évaluer la fertilité d'un animal à partir de résultats de laboratoire résulte de problèmes sous-jacents à l'analyse en laboratoire elle-même. Pour être valide, un test en laboratoire devrait être objectif (créer peu d'erreur due au jugement de l'homme ou de biais), répétable (produire les même résultats lors de la répétition du test), précis (évaluer précisément un paramètre des spermatozoïdes), rapide et peu coûteux (Graham JK. « Assessment of sperm quality: a flow cytométrie approach. » Anim Reprod Sci 2001; 68:239-247). Actuellement, peu de tests en laboratoire pour analyser la semence possèdent toutes ces caractéristiques.Another part of the problem encountered in assessing the fertility of an animal from laboratory results results from problems underlying the laboratory analysis itself. To be valid, a laboratory test should be objective (create little error due to human judgment or bias), repeatable (produce the same results when repeating the test), accurate (accurately assess a parameter of spermatozoa), rapid and inexpensive (Graham JK, "Assessment of sperm quality: a flow cytometry approach." Anim Reprod Sci 2001; 68: 239-247). Currently, few laboratory tests to analyze the seed have all of these characteristics.
Dans les dernières années, l'utilisation de la technique d'analyse CASA (acronyme anglais de Computer Assisted Sperm Analysis) et de la technique d'analyse de cytométrie en flux a permis une évolution des méthodes d'évaluation de qualité d'une semence en laboratoire.In recent years, the use of the Computer Assisted Sperm Analysis (CASA) analysis technique and the flow cytometry analysis technique has allowed the evolution of quality evaluation methods for a seed. in laboratory.
Un inconvénient de ces techniques analyses multiparamétriques est de ne pas permettre une mesure in vitro prédictive de la fertilité in vivo. Cette absence de résultat probant peut être imputée aux paramètres et marqueurs utilisés pour ces tests qui présentent une trop faible corrélation avec le phénotype à prédire et/ou sont redondants et/ou sont limités en nombre.A disadvantage of these multiparametric assay techniques is that they do not allow in vitro predictive measurement of in vivo fertility. This lack of conclusive results can be attributed to the parameters and markers used for these tests, which are too weakly correlated with the phenotype to be predicted and / or are redundant and / or are limited in number.
Les approches haut débit regroupées sous le terme « omics » ou « phenomics » permettent des évaluations de plus en plus approfondies de la qualité d'une semence avec des perspectives intéressantes aussi bien en clinique humaine (Egea RR, Puchalt NG, Escrivâ MM, Varghese AC. OMICS: « Current and future perspectives in reproductive medicine and technology. » J Hum Reprod Sci 2014; 7:73-92) qu'en agronomie (Robert C. « Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos. » Theriogenology 2008; 70:1277-1287).The broadband approaches grouped under the term "omics" or "phenomics" allow more and more in-depth evaluations of the quality of a seed with interesting perspectives as well in human clinical (Egea RR, Puchalt NG, Escriva MM, Varghese AC OMICS: "Current and future perspectives in reproductive medicine and technology." J Hum Reprod Sci 2014; 7: 73-92) in agronomy (Robert C. "Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos. Theriogenology 2008; 70: 1277-1287).
Un inconvénient pour l'utilisation en routine de ces techniques connues découle de leurs coûts.A disadvantage for the routine use of these known techniques stems from their costs.
Un autre inconvénient est la complexité de la mise en oeuvre de ces techniques.Another disadvantage is the complexity of the implementation of these techniques.
Encore un inconvénient est que ces techniques connues sont réalisées à partir d'une fraction d'un échantillon et non sur un échantillon intact. D'autres techniques ont été proposées pour permettre l'analyse de cellules intactes, et notamment pour déterminer leur lipidome (Jones JJ, Stump MJ, Fleming RC, Lay JO, Wilkins CL. « Strategies and data analysis techniques for lipid and phospholipid chemistry élucidation by intact cell MALDI-FTMS. » J Am Soc Mass Spectrom 2004; 15:1665-1674) ou leur protéome (Labas V, Spina L, Belleannee C, Teixeira-Gomes A-P, Gargaros A, Dacheux F, Dacheux J-L. « Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. » J Proteomics 2015; 113:226-243).A further disadvantage is that these known techniques are made from a fraction of a sample and not an intact sample. Other techniques have been proposed to allow the analysis of intact cells, and in particular to determine their lipidome (Jones JJ, Stump MJ, Fleming RC, Lay OJ, Wilkins CL.) Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. "J Am Soc Mass Spectrom 2004; 15: 1665-1674) or their proteome (Labas V, Spina L, Belleannee C, Teixeira-Gomes AP, Gargaros A, Dacheux F, Dacheux JL. of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. J Proteomics 2015; 113: 226-243).
Un inconvénient de ces techniques d'analyse de cellules intactes est qu'elles ne permettent pas de caractériser des spermatozoïdes intacts pour un ensemble de caractères moléculaires et/ou structuraux de façon simultanée.A disadvantage of these intact cell analysis techniques is that they do not permit the characterization of intact spermatozoa for a set of molecular and / or structural characters simultaneously.
On connaît également une technique d'analyse de la qualité d'une semence par spectroscopie infrarouge, qui consiste plus particulièrement à analyser un échantillon irradié sous un rayonnement dans l'infrarouge moyen (la longueur d'onde du rayonnement est comprise entre 2,5 pm et 25 pm), également connue sous l'acronyme de MIR (acronyme de l'anglais « mid-infrared»).A technique for analyzing the quality of a seed by infrared spectroscopy is also known, which more particularly consists in analyzing an irradiated sample under a radiation in the mid-infrared (the wavelength of the radiation is between 2.5 pm and 25 pm), also known by the acronym MIR (acronym for "mid-infrared").
Lorsqu'un échantillon biologique est irradié par un rayonnement MIR, le rayonnement va être partiellement et sélectivement absorbé en fonction des liaisons chimiques des différentes molécules présentes dans l'échantillon. Un spectre infrarouge est donc composé de bandes d'absorption qui peuvent être attribuées à des groupements chimiques précis. La position des bandes dépend à la fois de la nature de la liaison, mais également de son environnement. Ainsi, la position de la bande d'absorption permet de relier ces bandes d'absorption à des molécules particulières comme les protéines, lipides ou glucides.When a biological sample is irradiated with MIR radiation, the radiation will be partially and selectively absorbed depending on the chemical bonds of the different molecules present in the sample. An infrared spectrum is therefore composed of absorption bands that can be attributed to specific chemical groups. The position of the bands depends both on the nature of the link, but also on its environment. Thus, the position of the absorption band makes it possible to connect these absorption bands to particular molecules such as proteins, lipids or carbohydrates.
Des études ont été menées afin d'évaluer les performances de la technique de spectroscopie dans l’infrarouge moyen pour différentes applications. On peut par exemple citer une étude visant le typage bactérien (Helm D, Labischinski H, Schallehn G, Naumann D. «Classification and identification of bacteria by Fourier-transform infrared spectroscopy. » J Gen Microbiol 1991; 137:69-79; et Stamm I, Hailer M, Depner B, Kopp PA, Rau J. «Yersinia enterocolitica in diagnostic fecal samples from European dogs and cats: identification by fourier transform infrared spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry. » J Clin Microbiol 2013; 51:887-893), une étude sur l'identification de pathologies telles que le cancer (Backhaus J, Mueller R, Formanski N, Szlama N, Meerpohl H-G, Eidt M, Bugert P. « Diagnosis of breast cancer with infrared spectroscopy from sérum samples. » Vib Spectrosc 2010; 52:173-177; et Kallenbach-Thieltges A, GroBerüschkamp F, Mosig A, Diem M, Tannapfel A, Gerwert K. « Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections. » J Biophotonics 2013; 6:88-100; et Lewis PD, Lewis KE, Ghosal R, Bayliss S, Lloyd AJ, Wills J, Godfrey R, Kloer P, Mur LAJ. « Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. » BMC Cancer 2010; 10:640), ou des pathologies articulaires (Canvin JMG, Bernatsky S, Hitchon CA, Jackson M, Sowa MG, Mansfield JR, Eysel HH, Mantsch HH, El-Gabalawy HS. «Infrared spectroscopy: shedding light on synovitis in patients with rheumatoid arthritis. » Rheumatol Oxf Engl 2003; 42:76-82), ou encore la détection de contaminants dans l'industrie alimentaire (de Carvalho BMA, de Carvalho LM, Reis Coimbra JS dos, Minim LA, de Souza Barcellos E, da Silva Jûnior WF, Detmann E, de Carvalho GGP. « Rapid détection of whey in milk powder samples by spectrophotometric and multivariate calibration. » Food Chem 2015; 174:1-7). L'analyse spectroscopique infrarouge par ondes évanescentes connue sous l'acronyme FEWS (de l'anglais « Fiber Evanescent Wave Spectroscopy ») permet de travailler dans le MIR. Cette analyse est basée sur l'utilisation d'un capteur composé d'une fibre optique en verre de chalcogénure qui est décrite, par exemple, dans les documents FR2958403, WO2013017324, et FR1450661. Lorsqu'une onde lumineuse se propage dans une fibre optique, elle le fait par réflexions multiples, l'ensemble de ces rayons constituant l'onde évanescente. Cette onde peut alors être absorbée par un milieu en contact avec la fibre.Studies have been conducted to evaluate the performance of the mid-infrared spectroscopy technique for different applications. For example, a study for bacterial typing (Helm D, Labischinski H, Schallehn G, Naumann D. "Classification and identification of bacteria by Fourier-transform infrared spectroscopy." J Gen Microbiol 1991; 137: 69-79; Stamm I, Hailer M, Depner B, Kopp PA, Rau J. "Yersinia enterocolitica in diagnosis fecal samples from European dogs and cats: identification by fourier transform infrared spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry." Clin Microbiol 2013; 51: 887-893), a study on the identification of pathologies such as cancer (Backhaus J, Mueller R, N Formanski, Szlama N, Meerpohl HG, Eidt M, Bugert P. "Diagnosis of breast cancer with infrared spectroscopy from serum samples. "Vib Spectrosc 2010; 52: 173-177; and Kallenbach-Thieltges A, GroBerüschkamp F, Mosig A, Diem M, Tannapfel A, Gerwert K." Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue s ections. "J Biophotonics 2013; 6: 88-100; and Lewis PD, Lewis KE, Ghosal R, Bayliss S, AJ Lloyd, Wills J, Godfrey R, Kloer P, LAJ Wall. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 2010; 10: 640), or joint pathologies (Canvin JMG, Bernatsky S, Hitchon CA, Jackson M, Sowa MG, JR Mansfield, Eysel HH, HH Mantsch, El-Gabalawy HS. "Infrared spectroscopy: shedding light on synovitis in patients with rheumatoid arthritis. "Rheumatol Oxf Engl 2003; 42: 76-82), or the detection of contaminants in the food industry (Carvalho BMA, Carvalho LM, Reis Coimbra JS back, Minim LA, Souza Barcellos E, da Silva Jûnior WF, Detmann E, Carvalho GGP, "Rapid detection of whey in milk powder by spectrophotometric and multivariate calibration." Food Chem 2015; 174: 1-7). Infrared spectroscopic evanescent wave spectroscopy known by the acronym FEWS (of the English "Fiber Evanescent Wave Spectroscopy") allows to work in the MIR. This analysis is based on the use of a sensor composed of a chalcogenide glass optical fiber which is described, for example, in the documents FR2958403, WO2013017324, and FR1450661. When a light wave propagates in an optical fiber, it does so by multiple reflections, all of these rays constituting the evanescent wave. This wave can then be absorbed by a medium in contact with the fiber.
Cette technique offre de nombreux avantages. Contrairement aux analyses discrètes qui visent à rechercher et/ou quantifier certains métabolites définis a priori, l'analyse MIR permet d'obtenir une image globale du profil métabolique de l'échantillon en une seule analyse prenant ainsi en compte les interactions entre molécules. La particularité du capteur à fibre optique en fait un outil pouvant être utilisé en milieu liquide tout en étant peu sensible à la teneur en eau des échantillons contrairement aux autres techniques d'acquisition. Le résultat est rapide et ne nécessite pas de traitement particulier des échantillons.This technique offers many advantages. Contrary to the discrete analyzes which aim at researching and / or quantifying certain metabolites defined a priori, the MIR analysis makes it possible to obtain an overall image of the metabolic profile of the sample in a single analysis thus taking into account the interactions between molecules. The particularity of the fiber optic sensor makes it a tool that can be used in a liquid medium while being little sensitive to the water content of the samples, unlike other acquisition techniques. The result is fast and does not require special treatment of samples.
Plusieurs utilisations de la spectroscopie Raman ont déjà montré des aperçus du potentiel de cette technique appliquée au domaine de la reproduction (Mallidis C, Sanchez V, Wistuba J, Wuebbeling F, Burger M, Fallnich C, Schlatt S. « Raman microspectroscopy: shining a new light on reproductive medicine. » Hum Reprod Update 2014; 20:403-414). Cette technique a été appliquée à l'évaluation de l'intégrité de l'ADN des spermatozoïdes (Mallidis C, Wistuba J, Bleisteiner B, Damm OS, Gross P, Wübbeling F, Fallnich C, Burger M, Schlatt S. « In situ visualization of damaged DNA in human sperm by Raman microspectroscopy. » Hum Reprod Oxf Engl 2011; 26:1641-1649; et Mallidis C, Schlatt S, Wistuba J, Fallnich C, Gross P, Burger M, Wuebbeling F. « Means and methods for assessing sperm nuclear DNA structure. » WO2013064159 Al, 2013), à l'analyse de l'acrosome pour déterminer le pouvoir fécondant d'un spermatozoïde (STïft, χϋΐ^. « Sperm acrosome zone Raman spectrum peak and use thereof. » CN103698310 A, 2014) ou à l'analyse du plasma séminal à des fins de diagnostic (Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, Zeng H, Chen R. « Raman spectroscopic characterization and différentiation of séminal plasma. » J Biomed Opt 2011; 16:110501-1105013).Several uses of Raman spectroscopy have already shown insights into the potential of this technique applied to the field of reproduction (Mallidis C, Sanchez V, Wistuba J, Wuebbeling F, Burger M, Fallnich C, Schlatt S. "Raman microspectroscopy: shining a new light on reproductive medicine. "Hum Reprod Update 2014; 20: 403-414). This technique has been applied to the evaluation of the integrity of sperm DNA (Mallidis C, Wistuba J, Bleisteiner B, Damm OS, Gross P, Webbeling F, Fallnich C, Burger M, Schlatt S. "In situ Raman microspectroscopy, Hum Reprod Oxf Engl 2011; 26: 1641-1649; and Mallidis C, Schlatt S, Wistuba J, Fallnich C, Gross P, Burger M, Wuebbeling F. "Means and methods for assessing sperm nuclear DNA structure. "WO2013064159 A1, 2013), the analysis of the acrosome to determine the fertilizing power of a spermatozoon (STiTft, χϋΐ ^." Sperm acrosome Raman area spectrum peak and use thereof. "CN103698310 A, 2014) or seminal plasma analysis for diagnostic purposes (Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, Zeng H, Chen R. "Raman spectroscopic characterization and differentiation of seminal plasma. "J Biomed Opt 2011; 16: 110501-1105013).
Elle n'a cependant jamais été utilisée jusqu'à présent pour caractériser un échantillon complet de semence. 3. Objectifs de l'invention L'invention a donc notamment pour objectif de pallier les inconvénients de l'état de la technique cités ci-dessus.However, it has never been used to date to characterize a complete sample of semen. OBJECTIVES OF THE INVENTION The object of the invention is therefore in particular to overcome the disadvantages of the state of the art cited above.
Plus précisément, l'invention a pour objectif de fournir un procédé de détermination de la qualité d'une semence d'un animal vertébré qui soit efficace et fiable pout tout type de semence.More specifically, the invention aims to provide a method for determining the quality of a seed of a vertebrate animal that is effective and reliable for any type of seed.
Un autre objectif de l'invention est de fournir une telle technique qui soit simple et rapide à mettre en œuvre. L’invention a également pour objectif de proposer un procédé de détermination de la qualité d'une semence d'un animal vertébré qui soit d'un coût de revient réduit. 4. Exposé de l'inventionAnother object of the invention is to provide such a technique that is simple and quick to implement. The invention also aims to propose a method for determining the quality of a seed of a vertebrate animal that is of a reduced cost. 4. Presentation of the invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints à l'aide d'un procédé de détermination de la qualité d'une semence d'un animal vertébré.These objectives, as well as others that will appear later, are achieved by a method of determining the quality of a seed of a vertebrate animal.
Dans le cadre de l'invention, on entend le terme "animal" dans son acception courante, à savoir un être vivant hétérotrophe non humain. En d'autres termes, l'invention concerne un procédé de détermination de la qualité d'une semence d'un vertébré non humain. Il peut par exemple s'agir de gros bétail, de petit bétail, d'un aviaire ou d'un poisson.In the context of the invention, the term "animal" in its current meaning, namely a non-human heterotrophic living being. In other words, the invention relates to a method for determining the quality of a seed of a non-human vertebrate. For example, they may be cattle, small livestock, an avian or a fish.
Selon l'invention, un tel procédé comprend les étapes suivantes : - mesure d'au moins un spectre d'absorption d'un échantillon de ladite semence ; - sélection d'un nombre n, avec n > 7, de nombres d'ondes aj (je[i;n]) caractéristiques des semences de la race ou de l'espèce dudit animal ; - détermination à partir dudit ou desdits spectres d'absorption d'une valeur de l'absorption Xj et/ou d'une valeur de la dérivée seconde de l'absorption Xj" (Mi;n]) pour chacun desdits n nombres d'ondes aj (je[i;n]) ; - calcul d'un taux de non-retour Y à un nombre prédéfini de jours à partir desdites valeurs de l'absorption Xj et/ou de la dérivée seconde de l'absorption Xj" précédemment déterminées.According to the invention, such a method comprises the following steps: measuring at least one absorption spectrum of a sample of said seed; selecting a number n, with n> 7, of wave numbers aj (I [i; n]) characteristic of the seeds of the race or species of said animal; determination from said absorption spectrum or spectrums of a value of the absorption Xj and / or a value of the second derivative of the absorption Xj "(Mi; n]) for each of said n numbers of waves aj (i [i; n]); - calculating a non-return rate Y at a predefined number of days from said values of the absorption Xj and / or the second derivative of the absorption Xj " previously determined.
Ainsi, de façon inédite, l'invention propose d'utiliser le spectre d'absorption d'une semence pour évaluer la qualité d'une semence d'un animal, à partir d'un nombre réduit de nombres d'ondes représentatifs de variables explicatives caractéristiques des semences de la race ou de l'espèce de l'animal. L'invention permet notamment de déterminer un taux de non-retour, par exemple un taux de non retour en chaleur à 22, 28, 30, 56, 90 ou 120 jours, pour 98% des semences d'une race ou d'une espèce animale avec une précision de ± 10 points, à partir de seulement 20 variables explicatives, et avec une précision de ± 5 points pour 86 % des semences. On rappelle que le taux de non-retour à J jours (TNRJ) est une estimation du résultat de l'insémination, succès ou échec, basée sur l'absence d'un retour en œstrus enregistré au cours d'un intervalle de J jours après l'acte d'insémination. Après J jours, les vaches n'étant pas de retour en œstrus sont considérées comme gestantes.Thus, in an unprecedented manner, the invention proposes using the absorption spectrum of a seed to evaluate the quality of a seed of an animal, from a reduced number of representative wave numbers of variables. explanatory characteristics of the seeds of the race or species of the animal. The invention makes it possible in particular to determine a non-return rate, for example a rate of no return in heat at 22, 28, 30, 56, 90 or 120 days, for 98% of the seeds of a race or a animal species with an accuracy of ± 10 points, from only 20 explanatory variables, and with an accuracy of ± 5 points for 86% of the seeds. It is recalled that the rate of non-return at D days (TNRJ) is an estimate of the result of insemination, success or failure, based on the absence of a return to estrus recorded during a J-day interval. after the act of insemination. After D days, cows not returning to estrus are considered pregnant.
Il convient par ailleurs de noter que l'invention permet d'évaluer la qualité des semences de toutes les races ou les espèces d'animaux vertébrés, sans exception, de façon rapide et à moindre coût.It should also be noted that the invention makes it possible to evaluate the quality of seeds of all races or species of vertebrate animals, without exception, quickly and at low cost.
Dans le cadre de l'invention, on entend par race animale, au sein d'une même espèce animale, une population d'individus homozygotes pour un certain nombre de caractères conditionnant un ensemble de traits ou particularités morphologiques et une même tendance générale d'aptitudes au sein d'une même espèce animale, telle que par exemple une race bovine, une race chevaline, une race porcine, une race ovine, une race caprine, une race de canard, une race de poule, une race d'oie, une race de dindon, une race de lapin,In the context of the invention, the term animal breed, within the same animal species, a population of individuals homozygous for a certain number of characters conditioning a set of traits or morphological particularities and the same general trend of within the same animal species, such as, for example, a bovine breed, an equine breed, a porcine breed, a sheep breed, a goat breed, a duck breed, a chicken breed, a goose breed, a breed of turkey, a breed of rabbit,
Selon un aspect particulier de l'invention, ledit taux de non-retour Y est calculé selon la loi mathématiqueAccording to one particular aspect of the invention, said non-return rate Y is calculated according to the mathematical law
où Xj" (je[i;n]) est la dérivée seconde normalisée de l'absorption pour le nombre d'ondes aj et les coefficients de pondération β0 et (je[i;n]) sont des constantes.where Xj "(I [i; n]) is the normalized second derivative of the absorption for the number of waves aj and the weighting coefficients β0 and (I [i; n]) are constants.
Le taux de non retour est ainsi calculé de façon déterministe.The non-return rate is thus deterministically calculated.
De préférence, les valeurs desdits coefficients de pondération sont obtenues à partir d'un traitement des mesures des spectres d'absorption d'une pluralité d'échantillons de semence d'une population de vertébré de référence, dont les taux de non-retour sont connus.Preferably, the values of said weighting coefficients are obtained from a processing of the absorption spectra measurements of a plurality of seed samples of a reference vertebrate population, the non-return rates of which are known.
Selon un mode de réalisation avantageux de l’invention, lors de ladite étape de mesure, au moins 2, de préférence au moins 3 spectres d’absorption d'un échantillon de ladite semence sont mesurés et ladite étape de détermination de valeurs de l’absorption et/ou de dérivées secondes de l’absorption comprend une étape de réalisation d'une moyenne desdits spectres mesurés à partir de laquelle sont déterminés lesdites valeurs d'absorption et/ou des dérivées secondes de l'absorption.According to an advantageous embodiment of the invention, during said measuring step, at least 2, preferably at least 3 absorption spectra of a sample of said seed are measured and said step of determining values of the absorption and / or second derivatives of the absorption comprises a step of producing an average of said measured spectra from which said absorption values and / or second derivatives of the absorption are determined.
On réduit ainsi la sensibilité aux artéfacts de mesure et aux perturbations.This reduces the sensitivity to measurement artifacts and disturbances.
De façon avantageuse, le nombre n de nombres d'ondes aj (je[i;n]) est supérieur ou égal à 9, de préférence est supérieur ou égal à 20.Advantageously, the number n of wave numbers aj (I [i; n]) is greater than or equal to 9, preferably greater than or equal to 20.
On augmente la précision de l'évaluation de la qualité de la semence en prenant en compte un nombre plus important, mais restant limité, de nombres d'ondes.The accuracy of the seed quality assessment is increased by taking into account a larger but limited number of wave numbers.
Selon un aspect préféré de l'invention, lesdits nombres d'ondes sont représentatifs chacun d'une molécule ou d'un ensemble de molécules choisies dans le groupe comprenant au moins : lipides ; glucides ; protéines ; acides nucléiques ; combinaison d'une molécule de lipide, de glucide, de protéine, ou d'acide nucléique avec au moins une autre molécule de lipide, de glucide, de protéine, ou d'acide nucléique.According to a preferred aspect of the invention, said wave numbers are each representative of a molecule or a set of molecules selected from the group comprising at least: lipids; carbohydrates; proteins; nucleic acids; combining a lipid, carbohydrate, protein, or nucleic acid molecule with at least one other lipid, carbohydrate, protein, or nucleic acid molecule.
Par exemple, pour un taureau, on peut ainsi choisir parmi environ 600 variables explicatives.For example, for a bull, we can choose from about 600 explanatory variables.
Dans un mode de réalisation particulier de l'invention, ledit vertébré est un taureau et le taux de non-retour est un taux de non-retour à 90 jours, ledit taureau étant issu d'une race sélectionnée dans le groupe comprenant au moins l'Abondance, la Béarnaise, la Bordelaise, la Bretonne pie noir, la Brune, la Froment du Léon, la Jersiaise, la Montbéliarde, la Pie rouge des plaines, la Prim'Holstein, la Rouge flamande, la Bleue du nord, la Normande, la Salers, la Tarentaise.In a particular embodiment of the invention, said vertebrate is a bull and the rate of no return is a 90-day non-return rate, said bull coming from a breed selected from the group comprising at least one animal. 'Abundance, Béarnaise, Bordelaise, Bretonne Pie Noir, Brune, Froment du Léon, Jersiaise, Montbéliarde, Red Pie des Plaines, Prim'Holstein, Flemish Red, Northern Blue, Normandy , the Salers, the Tarentaise.
Selon un mode de réalisation particulier de l'invention, lesdits nombres d'ondes aj ϋε[ι;η]) sont choisis dans le groupe comprenant au moins 955,0 ±0,1 cm_1, 963,1 ±0,1 cm'1, 1012,1 ±0,1 cm"1, 1036,6 ±0,1 cm'1, 1095,8 ±0,1 cm"1, 1124.3 ±0,1 cm'1, 1136,6 ±0,1 cm'1 ,1365,1 ±0,1 cm'1, 1383,5 ±0,1 cm'1, 1428.4 ±0,1 cm'1, 1444,7 ±0,1 cm'1, 1452,9 ±0,1 cm-1, 1503,9 ±0,1 cm'1, 1520,2 ±0,1 cm'1, 2805,7 ±0,1 cm'1, 2956,7 ±0,1 cm'1 , 2969,0 ±0,1 cm'1, 2987.4 ±0,1 cm'1, 3089,4 ±0,1 cm'1, 3091,4 ±0,1 cm’1.According to a particular embodiment of the invention, said wave numbers aj ϋε [ι; η]) are chosen from the group comprising at least 955.0 ± 0.1 cm_1, 963.1 ± 0.1 cm ' 1, 1012.1 ± 0.1 cm -1, 1036.6 ± 0.1 cm -1, 1095.8 ± 0.1 cm -1, 1124.3 ± 0.1 cm -1, 1136.6 ± 0, 1 cm -1, 1365.1 ± 0.1 cm -1, 1383.5 ± 0.1 cm -1, 1428.4 ± 0.1 cm -1, 1444.7 ± 0.1 cm -1, 1452.9 ± 0.1 cm -1, 1503.9 ± 0.1 cm -1, 1520.2 ± 0.1 cm -1, 2805.7 ± 0.1 cm -1, 2956.7 ± 0.1 cm -1. 1, 2969.0 ± 0.1 cm -1, 2987.4 ± 0.1 cm -1, 3089.4 ± 0.1 cm -1, 3091.4 ± 0.1 cm -1.
De préférence, ladite étape de mesure d'au moins un spectre d'absorption comprend une étape de préparation dudit échantillon à partir de ladite semence.Preferably, said step of measuring at least one absorption spectrum comprises a step of preparing said sample from said seed.
Dans un mode de réalisation particulier de l’invention, le procédé de détermination de la qualité d’une semence tel que décrit ci-dessus comprend une étape de comparaison dudit taux de non-retour Y avec un seuil prédéterminé, permettant de sélectionner ladite semence pour des besoins de reproduction dans le cas où ledit taux de non-retour Y est supérieur ou égal audit seuil prédéterminé.In a particular embodiment of the invention, the method for determining the quality of a seed as described above comprises a step of comparing said non-return rate Y with a predetermined threshold, making it possible to select said seed. for reproduction purposes in the case where said non-return rate Y is greater than or equal to said predetermined threshold.
On dispose ainsi d’une technique efficace et particulièrement simple à mettre en œuvre pour sélectionner des semences de qualité.There is thus an effective technique and particularly simple to implement to select quality seeds.
Dans un mode de réalisation avantageux de l’invention, ledit seuil est supérieur ou égal à 0,4, de préférence supérieur ou égal à 0,5, encore plus préférentiellement supérieur ou égal à 0,6. 5. Liste des figures D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés parmi lesquels : la figure 1 illustre, sous forme de schéma-bloc, les étapes d’un exemple de mode de réalisation d’un procédé de détermination de la qualité d’une semence d’un taureau selon l'invention ; la figure 2 représente des spectres MIR, dérivés et normalisés acquis à partir d'une paillette, d'un surnageant et d'un culot ; la figure 3 est une représentation de la variance d'une paillette et d'un culot provenant d'un même éjaculat en fonction du nombre d'onde ; les figures 4A, 4B et 5 illustrent la corrélation entre des valeurs de TNR90 calculée par un modèle à 20 nombres d'ondes pour des échantillons d'éjaculat de taureaux Prim'holstein et des valeurs connues pour ces mêmes échantillons, respectivement pour 70 échantillons, pour 16 autres échantillons et pour l'ensemble de ces 86 échantillons ; la figure 6 est une autre représentation de la figure 5 sur laquelle on a ajouté deux droites représentatives d'un écart sur la valeur du TNR90 par rapport au modèle respectivement de +5 points et de -5 points. 6. Description détaillée de l'invention 6.1. Protocole expérimentalIn an advantageous embodiment of the invention, said threshold is greater than or equal to 0.4, preferably greater than or equal to 0.5, and even more preferably greater than or equal to 0.6. 5. List of Figures Other features and advantages of the invention will appear more clearly on reading the following description of an embodiment of the invention, given as a simple illustrative and non-limiting example, and drawings. in which: FIG. 1 illustrates, in block diagram form, the steps of an exemplary embodiment of a method for determining the quality of a semen of a bull according to the invention; FIG. 2 represents MIR, derivative and normalized spectra acquired from a flake, a supernatant and a pellet; Figure 3 is a representation of the variance of a straw and a pellet from the same ejaculate as a function of the wave number; FIGS. 4A, 4B and 5 illustrate the correlation between values of TNR90 calculated by a wave number model for samples of ejaculate of prim'holstein bulls and known values for these same samples, respectively for 70 samples, for 16 other samples and for all of these 86 samples; FIG. 6 is another representation of FIG. 5 on which two straight lines representative of a difference in the value of the TNR90 with respect to the model of +5 points and -5 points, respectively, are added. 6. Detailed description of the invention 6.1. Experimental protocol
Les échantillons analysés sont des éjaculats bovins sous la forme de paillettes, conservées dans l'azote liquide. Les analyses préliminaires ont été réalisées sur 130 éjaculats provenant de 50 taureaux différents de race Prim'Holstein. L’indicateur TNR90brut a été utilisé pour qualifier la qualité des éjaculats. 6.1.1. Préparation des échantillonsThe analyzed samples are bovine ejaculates in the form of flakes, preserved in liquid nitrogen. Preliminary analyzes were performed on 130 ejaculates from 50 different Prim'Holstein breed bulls. The TNR90brut indicator was used to qualify the quality of ejaculates. 6.1.1. Sample preparation
Lors de la phase de préparation des échantillons, dans une première étape, les paillettes sont décongelées au bain-marie à 37 °C pendant 30 secondes. Dans une deuxième étape, les paillettes sont analysées. Pour cela, le contenu des paillettes est placé dans un tube Eppendorf 1,5 ml. Sept microlitres sont alors déposés sur le capteur pour l'acquisition spectrale MIR d'une « paillette ». Dans une troisième étape un surnageant est extrait par une centrifugation à 3500 g pendant 5 min à 15 °C. Le surnageant est alors déposé sur le capteur pour l'acquisition du spectre « surnageant ». Dans une quatrième étape, le culot est rincé avec 600 pl de NaCI 0,9 % puis une centrifugation est faite. Le culot est de nouveau suspendu dans 3,5 pl de NaCI 0,9 % et déposé sur le capteur pour l'acquisition du spectre « culot ». 6.1.2. Acquisition spectrale MIR d'une pailletteIn the sample preparation phase, in a first step, the flakes are thawed in a water bath at 37 ° C for 30 seconds. In a second step, the flakes are analyzed. For this, the contents of the flakes are placed in a 1.5 ml Eppendorf tube. Seven microliters are then deposited on the sensor for spectral acquisition MIR of a "straw". In a third step a supernatant is extracted by centrifugation at 3500 g for 5 min at 15 ° C. The supernatant is then deposited on the sensor for the acquisition of the "supernatant" spectrum. In a fourth step, the pellet is rinsed with 600 μl of NaCl 0.9% and centrifugation is done. The pellet is again suspended in 3.5 μl of NaCl 0.9% and deposited on the sensor for the acquisition of the "pellet" spectrum. 6.1.2. Spectral acquisition MIR of a straw
Les spectres sont acquis en absorbance de 4000 à 400 cm_1. La résolution spectrale est fixée à 4 cm_1, avec un facteur de « zero-filling » de 2, et 64 numérisations sont enregistrés.The spectra are acquired in absorbance of 4000 to 400 cm -1. The spectral resolution is fixed at 4 cm_1, with a zero-filling factor of 2, and 64 scans are recorded.
Un capteur est placé dans le spectromètre, la ligne de base est enregistrée pour étalonner l'appareil, puis 7 μΙ d'échantillon sont déposés sur le capteur. Le spectre est enregistré au bout de 6 minutes. 6.1.3. Traitement des spectresA sensor is placed in the spectrometer, the baseline is recorded to calibrate the device, then 7 μΙ of sample is deposited on the sensor. The spectrum is recorded after 6 minutes. 6.1.3. Spectrum processing
Les spectres sont analysés dans le domaine 3800-940cmdomaine d'absorption de la majorité des biomolécules. Une ligne droite est générée de 2800 à 1800 cm"1 pour éliminer la contribution du CO2, puis la dérivée seconde (algorithme de Savisky-Golay avec 13 points de lissage) est calculée de 3200 à 2800cm"1 et de 1800 à 940 cm"1. Ensuite, une normalisation vectorielle des dérivées secondes est réalisée. Des critères de qualité sont définis pour rejeter les spectres non conformes. 6.1.4. Choix de la matrice pour la prédiction de la qualité de la semenceThe spectra are analyzed in the 3800-940cm domain of absorption of most biomolecules. A straight line is generated from 2800 to 1800 cm -1 to eliminate the contribution of CO2, then the second derivative (Savisky-Golay algorithm with 13 smoothing points) is calculated from 3200 to 2800 cm -1 and 1800 to 940 cm -1. 1. Then, a vector standardization of the second derivatives is carried out Quality criteria are defined to reject the non conforming spectra 6.1.4 Choice of the matrix for the prediction of the quality of the seed
Trois types d'acquisitions ont été réalisées et comparées : éjaculat ou semence totale, culot et surnageant (centrifugation de la semence). Une observation des spectres (voir la figure 2) met en évidence que les spectres « paillettes » 210 et « surnageant » 220 présentent de nombreuses similarités. On réalise une Analyse en Composantes Principales (ACP) sur les données afin de comparer les spectres. Il apparaît sur la carte factorielle que les spectres acquis à partir du surnageant sont très proches de ceux acquis à partir de l'éjaculat totale. Ainsi les spectres acquis à partir des paillettes contiennent une information biochimique très proche de celle du liquide séminal. Or, ce dernier est fortement dilué (de 3 à 30 fois) dans un tampon avant la congélation et n'est donc pas déterminant de la qualité spécifique de la semence diluée/congelée/décongelée du taureau puisque tous les éjaculats sont traités de la même manière. Du fait de la dilution plus ou moins importante de l'éjaculat, les spectres MIR des paillettes reflètent nécessairement la composition biochimique du milieu de dilution. Cette contribution aux spectres MIR risque donc de masquer celle des spermatozoïdes qui sont censés contenir l'information spectrale qui établit la différence du point de vue de la fertilité. Par ailleurs, si un défaut de fertilité lié seulement à une moindre qualité du liquide séminal (fructose, pH,...) est considéré, il est attendu que ce défaut soit compensé par la dilution dans le milieu tampon. Il s'avère donc que l'information spectrale qui établit la différence soit à rechercher sur les cellules seules, plutôt que sur l'échantillon global plus ou moins dilué. La variabilité des mesures entre paillette et culot 230 a également été prise en compte. Pour cela les variances ont été calculées sur les 3 spectres acquis pour un même éjaculat. Les spectres bruts, c'est-à-dire les spectres non dérivés, ont tout d'abord été normalisés par la méthode d'anti-éparpillement MSC (acronyme anglais de Multiplicative Scatter Correction) afin de s'affranchir notamment des variations de ligne de base. Comme le montre la figure 3, avec une représentation de la variance en fonction du nombre d'ondes (en cm'1) pour une analyse des paillettes 310 et du culot 320, il apparaît de manière générale que les signaux acquis à partir de la semence totale présentent plus de variabilité notamment dans le domaine 1000-940cm1.Three types of acquisitions were made and compared: ejaculate or total seed, pellet and supernatant (centrifugation of the seed). An observation of the spectra (see FIG. 2) shows that the "flake" 210 and "supernatant" spectra 220 have many similarities. A Principal Component Analysis (PCA) is performed on the data to compare the spectra. It appears on the factorial map that the spectra acquired from the supernatant are very close to those acquired from the total ejaculate. Thus spectra acquired from flakes contain biochemical information very close to that of seminal fluid. However, the latter is strongly diluted (3 to 30 times) in a buffer before freezing and is therefore not determinant of the specific quality of the diluted / frozen / thawed semen of the bull since all the ejaculates are treated in the same way. way. Due to the greater or lesser dilution of the ejaculate, the MIR spectra of the flakes necessarily reflect the biochemical composition of the dilution medium. This contribution to the MIR spectra may therefore mask that of the spermatozoa that are supposed to contain the spectral information that makes the difference from the point of view of fertility. Moreover, if a fertility defect linked only to a lower quality of the seminal fluid (fructose, pH, ...) is considered, it is expected that this defect is compensated by the dilution in the buffer medium. It turns out that the spectral information that establishes the difference is to be found on the cells alone, rather than on the overall sample more or less diluted. The variability of the measurements between straw and pellet 230 was also taken into account. For this, the variances were calculated on the 3 spectra acquired for the same ejaculate. The raw spectra, that is to say the non-derivative spectra, were first standardized by the anti-scattering (MSC) method (Multiplicative Scatter Correction) in order to avoid line variations. basic. As shown in FIG. 3, with a representation of the variance as a function of the number of waves (in cm -1) for an analysis of the flakes 310 and of the cap 320, it generally appears that the signals acquired from the Total seed show more variability especially in the 1000-940cm1 area.
Les mesures sont donc réalisées sur le culot de centrifugation contenant essentiellement les spermatozoïdes. 6.2. Construction de modèles de détermination de la qualité d'une semence 6.2.1. Échantillons de référenceThe measurements are therefore carried out on the centrifugation pellet essentially containing the spermatozoa. 6.2. Construction of models for determining the quality of a seed 6.2.1. Reference samples
Quatre-vingt-six éjaculats, provenant de 40 taureaux de race Prim'Holstein, dont le taux de non-retour à 90 jours brut, ou TNR90brut, est connu, sont utilisés pour l'établissement de la loi ou équation de détermination de la qualité de l'éjaculat.Eighty-six ejaculates, derived from 40 Prim'Holstein bulls, with a 90-day no-return rate, or gross NRN90, are used to establish the law or equation for determining quality of the ejaculate.
Ces éjaculats proviennent de taureaux âgés de 11 mois à 10,5 ans au moment de la collecte de leurs éjaculats. La répartition du nombre d'éjaculat(s) par taureau est la suivante : 8, 18 et 14 taureaux ont produit respectivement 1, 2 ou 3 éjaculats. 6.2.2. Préparation des paillettesThese ejaculates come from bulls aged 11 months to 10.5 years at the time of collection of their ejaculates. The distribution of the number of ejaculates per bull is as follows: 8, 18 and 14 bulls produced respectively 1, 2 or 3 ejaculates. 6.2.2. Glitter preparation
Pour chaque éjaculat, six paillettes sont décongelées en plaçant ces dernières au bain-marie à 37 °C pendant 30 secondes.For each ejaculate, six straws are thawed by placing them in a water bath at 37 ° C for 30 seconds.
Le contenu des six paillettes est vidé dans un tube Eppendorf 1,5 ml, puis il subit une centrifugation à 3500 g pendant 5 min à 15 °C. Le surnageant est éliminé et le culot est rincé avec 600 pl de NaCI 0,9 %. Cette étape est renouvelée une fois. À la suite du second rinçage, une nouvelle centrifugation est appliquée et le culot est de nouveau suspendu dans 10 pl de NaCI 0,9 %. 6.2.3. Acquisition des spectres A partir de cette préparation, on procède à l'acquisition de trois spectres pour chaque éjaculat. L'acquisition de chacun des spectres est réalisée avec un pas de 2 cm"1, sur un spectromètre dont la précision, quelle que soit la position, c'est-à-dire le nombre d’onde, est de 0,1 cm"1.The contents of the six flakes are emptied into a 1.5 ml Eppendorf tube and then centrifuged at 3500 g for 5 minutes at 15 ° C. The supernatant is removed and the pellet is rinsed with 600 μl of 0.9% NaCl. This step is renewed once. Following the second rinse, a new centrifugation is applied and the pellet is suspended again in 10 μl of 0.9% NaCl. 6.2.3. Acquisition of the spectra From this preparation, we proceed to the acquisition of three spectra for each ejaculate. The acquisition of each of the spectra is carried out with a step of 2 cm -1, on a spectrometer whose precision, whatever the position, that is to say the wave number, is 0.1 cm "1.
Pour acquérir chacun des spectres, 7 μΙ de la suspension formée du culot et de la solution saline sont déposés dans le capteur. Les spermatozoïdes sont soumis à un rayonnement dans le moyen infrarouge et leur spectre d'absorption est enregistré au bout de 6 minutes. 6.2.4. Analyse des donnéesTo acquire each of the spectra, 7 μΙ of the suspension formed of the pellet and the saline solution are deposited in the sensor. Spermatozoa are irradiated in the mid-infrared and their absorption spectrum is recorded after 6 minutes. 6.2.4. Data analysis
Les spectres sont soumis à un contrôle qualité portant sur différents critères avant d'être sélectionnés pour la suite des analyses. Les critères pris en compte pour le contrôle qualité comprennent l'intensité du signal, les interférences, le rapport signal/bruit et la teneur en eau.Spectra are subject to a quality control on various criteria before being selected for further analysis. Criteria considered for quality control include signal strength, interference, signal-to-noise ratio, and water content.
La moyenne des trois spectres acquis est effectuée pour obtenir un spectre moyenné de l'éjaculat.The average of the three acquired spectra is performed to obtain an averaged spectrum of the ejaculate.
Le spectre moyenné est traité selon la procédure décrite précédemment au paragraphe 6.1.3.The averaged spectrum is processed according to the procedure previously described in paragraph 6.1.3.
Pour l'ensemble des échantillons, les spectres sont répartis en deux catégories, les spectres de calibration provenant de l'analyse de 70 éjaculats et les spectres de validation provenant de l'analyse des 16 éjaculats restants. Les spectres de calibration servent à construire le modèle visant à mettre en relation une variable à expliquer, ici le TNR90brut, et des variables explicatives c'est-à-dire une sélection optimisée de nombres d'ondes du spectre. Une fois le modèle optimisé, les spectres de validation servent à évaluer la performance prédictive dudit modèle.For all samples, the spectra are divided into two categories, the calibration spectra from the analysis of 70 ejaculates and the validation spectra from the analysis of the remaining eighteen ejaculates. Calibration spectra are used to construct the model to relate a variable to explain, here the TNR90brut, and explanatory variables that is to say an optimized selection of wave numbers of the spectrum. Once the model is optimized, the validation spectra are used to evaluate the predictive performance of the model.
La réduction de variables explicatives est réalisée par un algorithme génétique associé à une R-PLS avec validation croisée de 10 %. Une fois cette réduction réalisée, le choix des variables explicatives est optimisé par la répétition de 100 régressions linéaires (RL), avec une validation croisée portant sur 10 % de la population initiale. Une validation des variables explicatives retenues est effectuée en les intégrant dans la loi ou équation linéaire servant à prédire les échantillons « inconnus ». 6.2.5. Construction de modèles de détermination de la qualité d'une semenceThe reduction of explanatory variables is performed by a genetic algorithm associated with a 10% cross-validation R-PLS. Once this reduction is achieved, the choice of the explanatory variables is optimized by the repetition of 100 linear regressions (RL), with cross validation on 10% of the initial population. A validation of the explanatory variables selected is carried out by integrating them into the law or linear equation used to predict the "unknown" samples. 6.2.5. Construction of models for determining the quality of a seed
Les échantillons de référence sont scindés en une sous-population de calibration et une sous-population de validation. L'apprentissage est réalisé sur 4/5ème des éjaculats, la validation sur le 5ème restant et pour chacune des sous-populations, on maximise le nombre d'éjaculats provenant de taureaux différents tout en ayant une représentativité proportionnelle des individus dans 3 classes de TNR90 définies comme suit : TNR90 <40 %, 40 %<TNR90< 50 % et TNR90>50 %. 6.2.5.1. Modèle mathématiqueThe reference samples are split into a calibration subpopulation and a validation subpopulation. The learning is carried out on 4 / 5th of the ejaculates, the validation on the 5th remaining and for each of the sub-populations, one maximizes the number of ejaculates coming from different bulls while having a proportional representativity of the individuals in 3 classes of TNR90 defined as follows: TNR90 <40%, 40% <TNR90 <50% and TNR90> 50%. 6.2.5.1. Mathematical model
Le modèle mathématique utilisé est défini par la formule Y = β0 + Σ"=ι/5,χ;", dans laquelle : Y est le TNR90 calculé pour l'éjaculat ; η (η>7) est le nombre de nombres d'ondes aj considérés dans le modèle ;The mathematical model used is defined by the formula Y = β0 + Σ "= ι / 5, χ;", in which: Y is the TNR90 calculated for ejaculate; η (η> 7) is the number of wave numbers aj considered in the model;
Xj " est la dérivée seconde normalisée de la valeur de l'absorption pour le nombre d'ondes aj ; βο est le décalage à l'origine ; (l<j<n) est le coefficient de pondération de la valeur de la dérivée seconde normalisée de l'absorption Xj ", borné par son erreur standard. 6.2.5.2. Exemples de modèlesXj "is the normalized second derivative of the value of the absorption for the number of waves aj; βο is the offset at the origin; (l <j <n) is the weighting coefficient of the value of the second derivative normalized absorption Xj ", bounded by its standard error. 6.2.5.2. Examples of models
Trois modèles sont construit à partir respectivement de 7, 9 ou 20 nombres d'ondes, en minimisant l'erreur de prédiction, RMSEP (acronyme en anglais de « Root-Mean-Square Error of Prédiction », prédiction selon l'erreur moyenne quadratique).Three models are built from respectively 7, 9 or 20 wave numbers, minimizing the prediction error, RMSEP (Root-Mean-Square Error of Prediction), prediction according to the mean squared error ).
Les domaines spectraux des nombres d'ondes choisis concernent le domaine d'absorption des lipides 3200-2800 cm'1, des protéines (bande amide B et domaine 1440-1500 cm'1) ainsi que de l'ADN (1515 cm"1, 1490 cm"1, 1090 cm'1 et 970 cm'1). a) Modèle à 7 nombres d'ondesThe spectral domains of the wavenumber chosen relate to the lipid absorption domain 3200-2800 cm -1, proteins (amide band B and 1440-1500 cm -1 domain) and DNA (1515 cm -1). 1490 cm -1, 1090 cm -1 and 970 cm -1). a) 7 wave number model
Ce modèle est détaillé dans le tableau 1, ci-dessous, il présente un coefficient de détermination calculé R2 (ou « Multiple R-Squared » en anglais) de 0,4804 et un RMSEP de 4,8%.This model is detailed in Table 1, below, it presents a calculated coefficient of determination R2 (or "Multiple R-Squared" in English) of 0.4804 and a RMSEP of 4.8%.
Tableau 1Table 1
Distribution des résidus, en minimum, maximum et quartiles :Distribution of residues, in minimum, maximum and quartiles:
Écart-type résiduel (« Residual standard error » en anglais): 0,05298 avec 78 degrés de libertéResidual standard error: 0.05298 with 78 degrees of freedom
Coefficient de détermination ajusté (R2 ajusté ou « Adjusted R-Squared » en anglais) : 0,4337 F-statistique (F-value ou valeur F du test de Fisher) : 10,3 sur 78 degrés de liberté, P-value (valeur P du test de Fisher) : 4,455e-09 b) Modèle à 9 nombres d'ondesAdjusted coefficient of determination (Adjusted R2 or Adjusted R-Squared): 0.4337 F-statistic (F-value or Fisher's F-value): 10.3 over 78 degrees of freedom, P-value ( P value of the Fisher test): 4,455e-09 b) 9 wave number model
Ce modèle à 9 nombres d'ondes est détaillé dans le tableau 2, ci-dessous. il présente un coefficient de détermination calculé R2 de 0,5884 et un RMSEP de 4,49%.This 9 wave number model is detailed in Table 2, below. it has a calculated coefficient of determination R2 of 0.5884 and a RMSEP of 4.49%.
Tableau 2Table 2
Distribution des résidus en minimum, maximum et quartiles :Distribution of residues in minimum, maximum and quartiles:
Écart-type résiduel : 0,04777 avec 76 degrés de libertéResidual standard deviation: 0.04777 with 76 degrees of freedom
Coefficient de détermination ajusté : 0,5397 F-statistique : 12,07 sur 76 degrés de liberté, P-value : l,325e-ll c) Modèle à 20 nombres d'ondesAdjusted coefficient of determination: 0.5397 F-statistic: 12.07 over 76 degrees of freedom, P-value: 1.325e-ll c) 20-wave model
Ce modèle à 20 nombres d'ondes est détaillé dans le tableau 3, ci-dessous. il présente un coefficient de détermination calculé R2 de 0,7785 et un RMSEP de 3,29%.This wave number model is detailed in Table 3, below. it has a calculated coefficient of determination R2 of 0.7785 and a RMSEP of 3.29%.
Tableau 3Table 3
Distribution des résidus en minimum, maximum et quartiles :Distribution of residues in minimum, maximum and quartiles:
Écart-type résiduel : 0,03789 avec 65 degrés de liberté Coefficient de détermination ajusté : 0,7104 F-statistique : 11,42 sur 20 et 65 degrés de liberté, P-value : 2,375e-14 La pertinence de ce modèle à 20 nombres d'ondes est illustrée sur les figures 4A, 4B et 5.Residual standard deviation: 0.03789 with 65 degrees of freedom Adjusted coefficient of determination: 0.7104 F-statistic: 11.42 out of 20 and 65 degrees of freedom, P-value: 2.375e-14 The relevance of this model to 20 wave numbers are illustrated in Figures 4A, 4B and 5.
Sur les figures 4A, 4B et 5, on a représenté la corrélation entre les valeurs de TNR prédites par le modèle et les valeurs connues pour les échantillons utilisés pour la calibration (figure 4A), pour la validation du modèle (figure 4B) et pour l'ensemble des échantillons (figure 5).FIGS. 4A, 4B and 5 show the correlation between the values of TNR predicted by the model and the known values for the samples used for the calibration (FIG. 4A), for the validation of the model (FIG. 4B) and for the set of samples (Figure 5).
Comme on peut le voir sur la figure 6, pour 86 % des échantillons, le modèle est précis à moins de 5 points de TNR. 6.3. Exemple de mode de réalisation de l'inventionAs can be seen in Figure 6, for 86% of the samples, the model is accurate to less than 5 TNR points. 6.3. Example of embodiment of the invention
On a illustré en référence à la figure 1, sous forme de diagramme synoptique, les étapes d'un exemple de mode de réalisation d'un procédé de détermination de la qualité d'une semence d'un animal vertébré selon l'invention.FIG. 1 is a schematic diagram illustrating the steps of an exemplary embodiment of a method for determining the quality of a seed of a vertebrate animal according to the invention.
Lors d'une étape 110, on mesure par 3 fois le spectre d'absorption d'un culot préparé, lors d’une étape 111, à partir de deux paillettes provenant d'une semence, à l'aide d'un spectromètre de modèle FT-IR SPID et avec un capteur LS23 de DIAFIR (marque déposée).In a step 110, the absorption spectrum of a pellet prepared, during a step 111, is measured by three times from two straws from a seed, using a spectrometer of model FT-IR SPID and with a sensor LS23 of DIAFIR (registered trademark).
Dans une variante de ce mode de réalisation particulier de l'invention, le spectre d'absorption peut être mesuré par transmission, par réflexion ou encore par ATR (acronyme en anglais d'"Attenuated Total Reflection").In a variant of this particular embodiment of the invention, the absorption spectrum can be measured by transmission, by reflection or by ATR (acronym in English of "Attenuated Total Reflection").
On moyenne ensuite les 3 spectres mesurés afin d'obtenir un spectre moyenné (étape 112).The 3 measured spectra are then averaged to obtain an averaged spectrum (step 112).
Lors d'une étape 130, on détermine à partir du spectre d'absorption moyenné une valeur de la dérivée seconde de l'absorption Xj" pour n nombres d'ondes aj (l<j<n) caractéristiques des semences de la race de l'animal, sélectionnés lors d'une étape 120.In a step 130, a value of the second derivative of the absorption Xj "for n wave numbers aj (l <j <n) is determined from the averaged absorption spectrum of the seeds of the race of the animal, selected during a step 120.
On calcule ensuite, lors d'une étape 140, le taux de non retour à 90 jours à partir de la loi mathématiqueThen, during a step 140, the 90-day non-return rate is calculated from the mathematical law.
" où les coefficients 30et 3j (l<j<n) sont des constantes propres au phénotype de la race de l'animal ayant produit la semence, en utilisant les valeurs des dérivées secondes de l'absorption Xj" (je[i;n]) déterminées à l'étape 130.where the coefficients 30 and 3j (l <j <n) are constants peculiar to the phenotype of the breed of the animal that produced the seed, using the values of the second derivatives of the absorption Xj "(je [i; n ]) determined in step 130.
Dans des variante de ce mode de réalisation particulier de l'invention, il peut être envisagé de calculer le taux de non retour à 90 jours à partir des valeurs de l'absorption Xj pour n nombres d'ondes aj (l<j<n) caractéristiques des semences de la race de l'animal ou en utilisant à la fois des valeurs de l'absorption et des valeurs de la dérivée seconde de l'absorption pour les n nombres d'ondes aj (l<j<n) caractéristiques des semences de la race de l'animal.In variants of this particular embodiment of the invention, it may be envisaged to calculate the 90-day non-return rate from the absorption values Xj for n wave numbers aj (l <j <n ) characteristics of the seeds of the race of the animal or using both absorption values and values of the second derivative of the absorption for the n wave numbers aj (l <j <n) characteristics seeds of the breed of the animal.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
Ainsi, le procédé décrit en relation avec un exemple est applicable pour toutes les races ou les espèces d'animaux vertébrés en l'adaptant au phénotype de la race ou de l'espèce via le choix des nombres d'ondes (variables explicatives) caractéristiques de la qualité de la semence de la race ou de l'espèce.Thus, the method described in connection with an example is applicable for all races or species of vertebrate animals by adapting it to the phenotype of the race or species via the choice of characteristic wave numbers (explanatory variables). the quality of the seed of the race or species.
Claims (11)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1560026A FR3042868B1 (en) | 2015-10-21 | 2015-10-21 | METHOD OF DETERMINING THE QUALITY OF A SEMEN OF A VERTEBRATE ANIMAL |
US15/770,374 US10379041B2 (en) | 2015-10-21 | 2016-10-15 | Method for determining the quality of a semen of a vertebrate animal |
PCT/FR2016/052671 WO2017068266A1 (en) | 2015-10-21 | 2016-10-15 | Method for determining the sperm quality of vertebrate animals |
BR112018008047-0A BR112018008047B1 (en) | 2015-10-21 | 2016-10-15 | method of determining the semen quality of non-human vertebrate animals |
DK16819125.2T DK3365661T3 (en) | 2015-10-21 | 2016-10-15 | METHOD FOR DETERMINING THE QUALITY OF SEMEN FROM A VERTEBRATE |
EP16819125.2A EP3365661B1 (en) | 2015-10-21 | 2016-10-15 | Method for determining the sperm quality of vertebrate animals |
CA3001426A CA3001426C (en) | 2015-10-21 | 2016-10-15 | Method for determining the quality of a semen of a vertebrate animal |
CN201680061598.2A CN108449966B (en) | 2015-10-21 | 2016-10-15 | Method for determining the semen quality of vertebrates |
NZ741347A NZ741347A (en) | 2015-10-21 | 2016-10-15 | Method for determining the sperm quality of vertebrate animals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1560026A FR3042868B1 (en) | 2015-10-21 | 2015-10-21 | METHOD OF DETERMINING THE QUALITY OF A SEMEN OF A VERTEBRATE ANIMAL |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3042868A1 true FR3042868A1 (en) | 2017-04-28 |
FR3042868B1 FR3042868B1 (en) | 2021-07-23 |
Family
ID=54708034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1560026A Active FR3042868B1 (en) | 2015-10-21 | 2015-10-21 | METHOD OF DETERMINING THE QUALITY OF A SEMEN OF A VERTEBRATE ANIMAL |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3042868B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140175A1 (en) | 2020-01-09 | 2021-07-15 | Inoveo | Method for determining the quality of an animal's semen |
-
2015
- 2015-10-21 FR FR1560026A patent/FR3042868B1/en active Active
Non-Patent Citations (4)
Title |
---|
AMIR ABRAMOVICH ET AL: "Diagnostic and Analysis of Human Sperm Characteristics Using Fourier Transform Infrared Spectroscopy", OPEN JOURNAL OF UROLOGY, vol. 05, no. 06, 1 January 2015 (2015-01-01), pages 97 - 101, XP055299569, ISSN: 2160-5440, DOI: 10.4236/oju.2015.56015 * |
DANIEL FILIPE CRUZ ET AL: "Oxidative stress markers: Can they be used to evaluate human sperm quality?", TÜRK ÜROLOJI DERGISI/TURKISH JOURNAL OF UROLOGY, vol. 41, no. 4, 14 October 2015 (2015-10-14), pages 198 - 207, XP055299686, ISSN: 2149-3235, DOI: 10.5152/tud.2015.06887 * |
P.B. FARRELL ET AL: "Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility", THERIOGENOLOGY, vol. 49, no. 4, 1 March 1998 (1998-03-01), US, pages 871 - 879, XP055299859, ISSN: 0093-691X, DOI: 10.1016/S0093-691X(98)00036-3 * |
PEREZ-MARIN C C ET AL: "Assessment of porcine semen concentration by near InfraRed Spectroscopy (NIRS)", REPRODUCTION IN DOMESTIC ANIMALS, BLACKWELL WISS. VERLAG, BERLIN, DE, vol. 42, no. Supplement 2, 1 September 2007 (2007-09-01), pages 92, XP008181483, ISSN: 0936-6768, [retrieved on 20070806], DOI: 10.1111/J.1439-0531.2007.00910.X * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140175A1 (en) | 2020-01-09 | 2021-07-15 | Inoveo | Method for determining the quality of an animal's semen |
BE1027977B1 (en) * | 2020-01-09 | 2021-08-10 | Inoveo | METHOD OF DETERMINING THE QUALITY OF AN ANIMAL SEMEN |
US11867614B2 (en) | 2020-01-09 | 2024-01-09 | Inoveo | Method for determining the quality of an animal's semen |
Also Published As
Publication number | Publication date |
---|---|
FR3042868B1 (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
van der Horst et al. | Current perspectives of CASA applications in diverse mammalian spermatozoa | |
Yániz et al. | Computer assisted sperm morphometry in mammals: a review | |
AU2015283366B2 (en) | Method and device for the Raman spectroscopic, in ovo sex determination of fertilised and incubated birds' eggs | |
Czubaszek et al. | The effect of the staining technique on morphological and morphometric parameters of boar sperm | |
Kolster | Evaluation of canine sperm and management of semen disorders | |
US20190219567A1 (en) | Prediction of fertility in males | |
JP2018532116A (en) | Method and system for analyzing tissue quality using mid-infrared spectroscopy | |
EP3365661B1 (en) | Method for determining the sperm quality of vertebrate animals | |
EP3058341B1 (en) | Determination of the concentration of a component in one fluid of an animal by spectroscopic analysis of another fluid | |
Nielsen et al. | Application of a novel method for age estimation of a baleen whale and a porpoise | |
US20140329237A1 (en) | Means and methods for assessing sperm nuclear dna structure | |
Corion et al. | Trends in in ovo sexing technologies: insights and interpretation from papers and patents | |
FR3042868A1 (en) | METHOD FOR DETERMINING THE QUALITY OF A SEED OF A GREEN ANIMAL | |
Corion et al. | Insights and interpretation of the trends for in ovo sexing technologies in papers and patents | |
BE1027977B1 (en) | METHOD OF DETERMINING THE QUALITY OF AN ANIMAL SEMEN | |
Harighi et al. | Breeding soundness examination (BSE): a decision-making tool that requires a particular guideline for male goats | |
Cunha et al. | Characterization of seminal parameters, sperm morphometry, micromorphology, and ultrastructure in gray brocket deer (Mazama gouazoubira, Fischer, 1814) | |
Hernández-Avilés et al. | A matter of agreement: The effect of the technique and evaluator on the analysis of morphologic defects in stallion sperm | |
Banaszewska et al. | The role of staining techniques in seminological analysis of mammalian semen | |
Szeleszczuk et al. | Evaluation of sperm morphometry of rabbits (Oryctolagus cuniculus f. domesticus) | |
Karger | The hypo-osmotic swelling test–critical research concerning the clinical applicability in canine reproduction | |
Miura et al. | A novel method for fine-scale retrospective isotope analysis in mammals using eye lenses | |
Saprtza et al. | Comparison of methods for the analysis of New Zealand sea lion, Phocarctos hookeri, milk | |
EP0406137A1 (en) | Method for rapid selection of species, lines or individuals in animals or plants by genotyping | |
Elsohaby et al. | Measurement of serum immunoglobulin G in dairy cattle using Fourier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20170428 |
|
CD | Change of name or company name |
Owner name: UNION EVOLUTION, FR Effective date: 20170926 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |