FR3041103A1 - METHOD AND SYSTEM FOR SATELLITE ATTITUDE ESTIMATION USING MEASUREMENTS CARRIED OUT BY SOIL STATIONS - Google Patents

METHOD AND SYSTEM FOR SATELLITE ATTITUDE ESTIMATION USING MEASUREMENTS CARRIED OUT BY SOIL STATIONS Download PDF

Info

Publication number
FR3041103A1
FR3041103A1 FR1558621A FR1558621A FR3041103A1 FR 3041103 A1 FR3041103 A1 FR 3041103A1 FR 1558621 A FR1558621 A FR 1558621A FR 1558621 A FR1558621 A FR 1558621A FR 3041103 A1 FR3041103 A1 FR 3041103A1
Authority
FR
France
Prior art keywords
satellite
reference signal
station
stations
attitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1558621A
Other languages
French (fr)
Other versions
FR3041103B1 (en
Inventor
Marcel Billand
Jean-Marc Aymes
Adrien Elfassi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
Airbus Defence and Space SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space SAS filed Critical Airbus Defence and Space SAS
Priority to FR1558621A priority Critical patent/FR3041103B1/en
Priority to EP16766946.4A priority patent/EP3350080A1/en
Priority to PCT/EP2016/071892 priority patent/WO2017046279A1/en
Publication of FR3041103A1 publication Critical patent/FR3041103A1/en
Application granted granted Critical
Publication of FR3041103B1 publication Critical patent/FR3041103B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/874Combination of several systems for attitude determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Radio Relay Systems (AREA)

Abstract

La présente invention concerne un procédé (50) d'estimation d'attitude d'un satellite (20), ledit satellite étant configuré pour générer et pour émettre un premier signal de référence sur un lien descendant au moyen d'une première antenne d'émission (21), et pour retransmettre des signaux utiles sur le lien descendant au moyen d'une seconde antenne d'émission (23), comportant des étapes de : - émission (51) par une station sol d'un second signal de référence, - retransmission (52) par le satellite du second signal de référence, - réception (54) du premier signal de référence et du second signal de référence par au moins trois stations de mesure (31), - calcul (55), pour chaque station de mesure (31), d'une mesure différentielle de puissance entre les puissances respectives du premier signal de référence et du second signal de référence, - estimation (56) de l'attitude du satellite en fonction des mesures différentielles de puissance calculées.The present invention relates to a method (50) for attitude estimation of a satellite (20), said satellite being configured to generate and transmit a first reference signal on a downlink by means of a first antenna of transmission (21), and for retransmitting useful signals on the downlink by means of a second transmitting antenna (23), comprising steps of: - transmitting (51) by a ground station of a second reference signal - retransmission (52) by the satellite of the second reference signal, - receiving (54) of the first reference signal and the second reference signal by at least three measurement stations (31), - calculation (55), for each measuring station (31), a differential power measurement between the respective powers of the first reference signal and the second reference signal, - estimation (56) of the attitude of the satellite as a function of the calculated differential power measurements.

Description

DOMAINE TECHNIQUE

La présente invention appartient au domaine du contrôle d’attitude de satellites en orbite terrestre, et concerne plus particulièrement un procédé et un système d’estimation d’attitude d’un satellite de télécommunications.

ÉTAT DE LA TECHNIQUE

Dans un système de télécommunications par satellite, une station sol émet un signal utile à destination d’un satellite en orbite terrestre, par exemple géostationnaire (« Geostationary Orbit >> ou GEO dans la littérature anglo-saxonne). Puis le satellite retransmet le signal utile vers la Terre, généralement après l’avoir décalé en fréquences, à destination d’une autre station sol.

Par exemple, dans un système de diffusion par satellite (« broadcast >> ou « broadband >>), le satellite reçoit d’une station sol un signal utile à diffuser, tel qu’un signal DVB-S, et le retransmet à destination d’une pluralité de stations sol, telles que des terminaux utilisateurs.

Un tel satellite est prévu pour desservir, sur le lien descendant à destination des terminaux utilisateurs, une zone de couverture prédéterminée. A cet effet, le satellite comporte une antenne d’émission, pour la diffusion du signal utile, dont le diagramme de rayonnement par rapport audit satellite, lorsque ledit satellite est placé dans une attitude de mission prédéterminée, présente, dans la direction de chaque point à l’intérieur ladite zone de couverture, un gain supérieur à celui en direction d’un point à l’extérieur de ladite zone de couverture.

On comprend donc qu’il est nécessaire, pour assurer que les terminaux utilisateurs qui se trouvent dans la zone de couverture prévue puissent recevoir le signal utile, de contrôler avec précision l’attitude du satellite, afin que celle-ci soit la plus proche possible de l’attitude de mission. A cet effet, les satellites actuels sont équipés d’un ensemble de capteurs permettant d’estimer avec précision l’attitude dudit satellite, et également un ensemble d’actionneurs permettant de modifier l’attitude du satellite pour réduire l’écart entre l’attitude estimée et l’attitude de mission.

Notamment, il est connu d’utiliser des capteurs optiques (capteur d’horizon terrestre ou solaire, capteur stellaire, etc.) pour estimer l’attitude de manière absolue, par opposition à d’autres types de capteurs qui ne permettent que d’estimer les variations d’attitude entre deux instants.

Les capteurs optiques présentent l’avantage d’une précision élevée, mais présentent l’inconvénient d’être aveugles lorsqu’ils sont face à un trou d’étoiles ou éblouis par un astre constituant une source de lumière intense. En outre, l’estimation d’attitude n’est plus possible en cas de panne temporaire ou définitive d’un ou de plusieurs capteurs.

Le brevet américain US 4630058 décrit un procédé d’estimation d’attitude d’un satellite, dans lequel ledit satellite est configuré pour générer à bord deux signaux qui sont émis par des antennes d’émission respectives différentes, dont l’antenne d’émission des signaux utiles. Les signaux ainsi émis sont reçus par quatre stations sol, et les signaux reçus sont comparés afin d’estimer l’attitude dudit satellite.

Une telle solution est avantageuse dans la mesure où elle ne met pas en oeuvre de capteurs à bord du satellite.

Toutefois, la solution décrite par le brevet US 4630058 repose sur un satellite ayant une architecture très spécifique, et présente par conséquent l’inconvénient de ne pas être compatible avec les satellites actuellement à poste en orbite GEO.

EXPOSÉ DE L’INVENTION

La présente invention a pour objectif de remédier à tout ou partie des limitations des solutions de l’art antérieur, notamment celles exposées ci-avant, en proposant une solution pour l’estimation d’attitude d’un satellite qui ne nécessite pas d’utiliser des mesures de capteurs à bord du satellite, et qui soit en outre compatible avec les satellites actuellement à poste en orbite terrestre. A cet effet, et selon un premier aspect, l’invention concerne un procédé d’estimation d’attitude d’un satellite, ledit satellite étant configuré pour générer et pour émettre un premier signal de référence sur un lien descendant au moyen d’une première antenne d’émission, ledit satellite étant en outre configuré pour recevoir des signaux utiles sur un lien montant, et pour retransmettre lesdits signaux utiles sur le lien descendant au moyen d’une seconde antenne d’émission, la première antenne d’émission desservant une zone de couverture englobant une zone de couverture de la seconde antenne d’émission. Le procédé d’estimation comporte : - rémission sur le lien montant d’un second signal de référence, qui est reçu par ledit satellite au moyen d’une antenne de réception des signaux utiles, - la retransmission par ledit satellite du second signal de référence au moyen de la seconde antenne d’émission, - la réception du premier signal de référence et du second signal de référence par au moins trois stations sol se trouvant dans la zone de couverture de la seconde antenne d’émission, dites « stations de mesure >>, - le calcul, pour chaque station de mesure, d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de référence et du second signal de référence reçus, dite « mesure différentielle de puissance >>, - l’estimation de l’attitude du satellite en fonction des mesures différentielles de puissance calculées.

Ainsi, le procédé d’estimation d’attitude repose également sur la réception de signaux émis par le satellite, et ne nécessite pas d’utiliser des mesures de capteurs à bord du satellite.

En outre, le procédé d’estimation est compatible avec les satellites actuellement à poste en orbite terrestre. En effet, seul l’un des signaux émis par le satellite est généré à bord, en l’occurrence le premier signal de référence. De tels signaux existent déjà dans tous les satellites actuels. On peut citer notamment le signal de télémesure ou le signal balise, qui sont générés à bord de chaque satellite et émis sur le lien descendant au moyen d’antennes d’émission peu directives. Le signal de télémesure ou le signal balise peuvent être utilisés en tant que premier signal de référence dans le procédé d’estimation selon l’invention. L’autre signal, c'est-à-dire le second signal de référence, est lui généré au sol et est reçu par le satellite sur le lien montant, avec des signaux utiles. Il est retransmis sur le lien descendant avec lesdits signaux utiles. Par conséquent, un tel second signal de référence peut être reçu et retransmis par les satellites actuels, par les mêmes moyens que ceux mis en oeuvre pour la réception et la retransmission des signaux utiles.

Les puissances du premier signal de référence et du second signal de référence reçus dépendent notamment du gain de la première antenne d’émission et du gain de la seconde antenne d’émission. Elles dépendent également des pertes de propagation entre le satellite et la Terre, qui ne sont pas connues a priori mais affectent sensiblement de la même façon le premier signal de référence et le second signal de référence s’ils sont émis, par le satellite, suffisamment proches dans les domaines fréquentiel et temporel. Par conséquent, si les pertes de propagation sont sensiblement les mêmes pour le premier signal de référence et pour le second signal de référence, alors le calcul des mesures différentielles de puissance permet d’annuler lesdites pertes de propagation sans avoir à les estimer. En outre, du fait que le premier signal de référence et le second signal de référence sont émis par des antennes d’émission respectives différentes, les gains respectifs desdites première antenne d’émission et seconde antenne d’émission dans la direction d’une station de mesure sont différents et ne s’annulent donc pas en calculant lesdites mesures différentielles de puissance.

Ensuite, l’attitude du satellite est estimée en fonction desdites mesures différentielles de puissance. En effet, une variation de l’attitude du satellite entraîne un déplacement des diagrammes de rayonnement respectifs de la première antenne d’émission et de la seconde antenne d’émission, ce qui entraîne une variation des gains desdites première antenne d’émission et seconde antenne d’émission dans les directions des stations de mesure.

Les positions respectives du satellite et des stations de mesure sont généralement connues, de même que les diagrammes de rayonnement respectifs de la première antenne d’émission et de la seconde antenne d’émission. Ainsi, on peut déterminer, pour chaque attitude possible du satellite, des gains théoriques desdites première antenne d’émission et seconde antenne d’émission dans les directions des stations de mesure, et en déduire des mesures différentielles de puissance théoriques associées respectivement auxdites stations de mesure. L’attitude du satellite peut alors être estimée, par exemple, en comparant les mesures différentielles de puissance réelles, c'est-à-dire celles calculées à partir du premier signal de référence et du second signal de référence effectivement reçus par les stations de mesure, aux mesures différentielles de puissance théoriques.

Dans des modes particuliers de mise en oeuvre, le procédé d’estimation d’attitude peut comporter en outre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.

Dans des modes particuliers de mise en oeuvre, ledit procédé comporte le calcul, pour au moins deux paires de stations de mesure, d’une grandeur représentative d’un rapport entre les mesures différentielles de puissance respectives des stations de mesure de ladite paire, dite « mesure différentielle inter-station >>, et l’attitude du satellite est estimée en fonction desdites mesures différentielles inter-station calculées.

Les puissances du premier signal de référence et du second signal de référence reçus dépendent également de leurs puissances d’émission respectives par le satellite, qui ne sont pas forcément connues a priori et/ou sont connues mais avec une précision qui peut s’avérer insuffisante. Par contre, lesdites puissances d’émission affectent de la même façon les puissances reçues par les différentes stations de mesure. Par conséquent, le calcul des mesures différentielles inter-station permet d’annuler les incertitudes liées à une méconnaissance totale ou partielle desdites puissances d’émission.

Dans des modes particuliers de mise en oeuvre, ledit procédé comporte la synchronisation temporelle des stations de mesure entre elles, et les mesures différentielles inter-station sont calculées à partir de mesures différentielles de puissance calculées pour des signaux reçus en même temps par les stations de mesure.

Les puissances d’émission par le satellite peuvent éventuellement varier au cours du temps. Si ces variations sont trop rapides, alors il peut s’avérer avantageux de synchroniser les stations de mesure afin de s’assurer de comparer des mesures différentielles de puissance pour lesquelles les puissances d’émission par le satellite sont effectivement les mêmes d’une station de mesure à une autre. De telles dispositions permettent par conséquent d’améliorer la précision de l’estimation de l’attitude du satellite.

Dans des modes particuliers de mise en oeuvre, les stations de mesure comportant des chaînes de réception respectives, ledit procédé comporte, pour chaque station de mesure, l’estimation d’une erreur introduite par ladite chaîne de réception sur le calcul de la mesure différentielle de puissance, dite « erreur différentielle de puissance >>, et la compensation de l’erreur différentielle de puissance sur la mesure différentielle de puissance.

Dans des modes particuliers de mise en oeuvre, l’estimation de l’erreur différentielle de puissance comporte, pour l’une au moins des stations de mesure, l’injection dans la chaîne de réception de ladite station de mesure d’un premier signal de calibration et d’un second signal de calibration, et le calcul d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de calibration et du second signal de calibration mesurés en sortie de ladite chaîne de réception.

Dans des modes particuliers de mise en oeuvre, le premier signal de calibration et le second signal de calibration sont injectés sur des fréquences centrales respectives F’1 et F’2 différentes.

Dans des modes particuliers de mise en oeuvre, ledit procédé comporte la génération du premier signal de calibration et du second signal de calibration par mélange non linéaire de deux signaux de fréquences centrales respectives Fg1 et Fg2 telles que : - |Fg1 - Fg2| = F’1 et |Fg1 + Fg2| = F’2, ou - |Fg1 - Fg2| = F’2 et |Fg1 +Fg2| = F’1.

Dans des modes particuliers de mise en oeuvre, le premier signal de référence et le second signal de référence sont émis sur des fréquences centrales respectives F1 et F2 différentes sur le lien descendant, et de préférence simultanément.

Dans des modes particuliers de mise en oeuvre, le premier signal de référence et/ou le second signal de référence sont des signaux sinusoïdaux.

Selon un second aspect, la présente invention concerne un système d’estimation d’attitude d’un satellite, ledit satellite comportant des moyens configurés pour générer et pour émettre un premier signal de référence sur un lien descendant au moyen d’une première antenne d’émission, recevoir des signaux utiles sur un lien montant et retransmettre lesdits signaux utiles sur le lien descendant au moyen d’une seconde antenne d’émission, ladite première antenne d’émission desservant une zone de couverture englobant une zone de couverture de ladite seconde antenne d’émission. Le système d’estimation comporte : - une station sol, dite « station d’émission de référence >>, configurée pour émettre un second signal de référence sur le lien montant, adapté à être reçu par le satellite avec les signaux utiles, - au moins trois stations sol adaptées à recevoir le premier signal de référence émis au moyen de la première antenne d’émission et le second signal de référence retransmis au moyen de la seconde antenne d’émission, dites « stations de mesure >>, - des moyens configurés pour calculer, pour chaque station de mesure, une grandeur représentative d’un rapport entre les puissances respectives du premier signal de référence et du second signal de référence reçus, dite « mesure différentielle de puissance >>, - des moyens configurés pour estimer l’attitude du satellite en fonction des mesures différentielles de puissance calculées.

Dans des modes particuliers de réalisation, le système d’estimation d’attitude peut comporter en outre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.

Dans des modes particuliers de réalisation, ledit système comporte des moyens configurés pour calculer, pour au moins deux paires de stations de mesure, une grandeur représentative d’un rapport entre les mesures différentielles de puissance respectives des stations de mesure de ladite paire, dite « mesure différentielle inter-station >>, et l’attitude du satellite est estimée en fonction desdites mesures différentielles inter-station calculées.

Dans des modes particuliers de réalisation, les stations de mesure sont synchronisées temporellement entre elles.

Dans des modes particuliers de réalisation, les trois stations de mesure considérées sont situées, dans la zone de couverture de la seconde antenne d’émission du satellite placé dans une attitude de mission, de telle sorte que la valeur du gradient du diagramme de rayonnement de ladite seconde antenne d’émission dans la direction d’une desdites trois stations de mesure, dite « station de mesure de référence >>, est inférieure aux valeurs dudit gradient du diagramme de rayonnement dans les directions respectives des deux autres stations de mesure.

Dans des modes particuliers de réalisation, chaque station de mesure comportant une chaîne de réception, ledit système comporte des moyens configurés pour estimer, pour chaque station de mesure, une erreur introduite par ladite chaîne de réception sur le calcul de la mesure différentielle de puissance, dite « erreur différentielle de puissance >>, et pour compenser ladite erreur différentielle de puissance sur la mesure différentielle de puissance.

Dans des modes particuliers de réalisation, l’une au moins des stations de mesure comporte des moyens configurés pour générer et pour injecter un premier signal de calibration et un second signal de calibration dans la chaîne de réception de ladite station de mesure, et des moyens configurés pour calculer une grandeur représentative d’un rapport entre les puissances respectives du premier signal de calibration et du second signal de calibration mesurés en sortie de ladite chaîne de réception.

Dans des modes particuliers de réalisation, le premier signal de calibration et le second signal de calibration étant injectés sur des fréquences centrales respectives F’1 et F’2 différentes, les moyens de génération dudit premier signal de calibration et dudit second signal de calibration sont configurés pour mélanger de manière non linéaire deux signaux de fréquences centrales respectives Fg1 et Fg2 telles que : - |Fg1 - Fg2| = F’1 et |Fg1 + Fg2| = F’2, ou - |Fg1 - Fg2| = F’2 et |Fg1 +Fg2| = F’1.

PRÉSENTATION DES FIGURES L’invention sera mieux comprise à la lecture de la description suivante, donnée à titre d’exemple nullement limitatif, et faite en se référant aux figures qui représentent : - Figure 1 : une représentation schématique d’un système d’estimation d’attitude d’un satellite, - Figure 2 : une représentation schématique d’un exemple de zone de couverture d’un satellite et de positionnement de stations sol du système d’estimation d’attitude, - Figure 3 : un diagramme illustrant les principales étapes d’un procédé d’estimation d’attitude, - Figure 4 : une représentation schématique d’un mode préféré de réalisation d’une station sol du système d’estimation d’attitude.

Dans ces figures, des références identiques d’une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas à l’échelle, sauf mention contraire.

DESCRIPTION DÉTAILLÉE DE MODES DE RÉALISATION

La figure 1 représente schématiquement un système 10 d’estimation d’attitude d’un satellite 20 en orbite autour de la Terre T.

Dans la suite de la description, on se place de manière non limitative dans le cas où le satellite 20 est en orbite GEO. Rien n’exclut cependant, suivant d’autres exemples, de considérer un satellite en orbite non-géostationnaire, par exemple une orbite géosynchrone quelconque, une orbite basse (« Low Earth Orbit >> ou LEO dans la littérature anglo-saxonne), une orbite moyenne (« Medium Earth Orbit >> ou MEO dans la littérature anglo-saxonne), etc., sous réserve de connaître la position dudit satellite lorsque son attitude doit être estimée.

Tel qu’illustré par la figure 1, le satellite 20 comporte une première antenne d’émission 21 d’un premier signal de référence, généré à bord dudit satellite 20, sur un lien descendant à destination de la Terre T.

En outre, le satellite 20 comporte une charge utile comportant notamment une antenne de réception 22 pour la réception de signaux utiles sur un lien montant entre la Terre T et ledit satellite 20. La charge utile comporte également une seconde antenne d’émission 23 au moyen de laquelle les signaux utiles reçus sont retransmis sur le lien descendant.

Les traitements effectués, avant retransmission, sur les signaux utiles reçus sortent du cadre de l’invention. Il est à noter que l’invention, dans son principe, ne nécessite pas de traitements spécifiques à bord et trouve une application particulièrement avantageuse dans le cas de satellites dits « transparents >> (c'est-à-dire dont les traitements effectués à bord sur les signaux utiles comportent principalement l’introduction d’un décalage fréquentiel et une amplification) actuellement à poste en orbite terrestre. Il est cependant également possible de considérer des satellites dits « régénératifs >>, en particulier pour des satellites qui n’ont pas encore été lancés. Par contre, la compatibilité avec des satellites régénératifs actuellement à poste n’est pas forcément assurée, et dépend du type de traitements spécifiques effectués à bord.

Afin d’effectuer sa mission de collecte et de retransmission de signaux utiles, le satellite 20 est placé dans une attitude de mission prédéterminée. Lorsque le satellite 20 est placé dans l’attitude de mission, la seconde antenne d’émission 23 dessert une zone de couverture Zc2.

Dans l’exemple illustré par la figure 1, il est considéré de manière non limitative que l’antenne de réception 22 dessert la même zone de couverture Zc2 que la seconde antenne d’émission 23. Dans un tel cas, l’antenne de réception 22 et la seconde antenne d’émission 23 peuvent être, dans des variantes de réalisation, une seule et même antenne utilisée à la fois pour la réception et la retransmission de signaux utiles.

La première antenne d’émission 21, mise en oeuvre pour l’émission du premier signal de référence, dessert une zone de couverture Zc1. Tel qu’illustré par la figure 1, la zone de couverture Zc1 englobe la zone de couverture Zc2 de la seconde antenne d’émission 23.

Le système 10 d’estimation comporte en outre une station sol, dite « station d’émission de référence >> 30, configurée pour émettre un second signal de référence sur le lien montant, adapté à être reçu par le satellite 20 avec les signaux utiles. En particulier, le satellite 20 est configuré pour recevoir les signaux utiles émis, sur le lien montant, dans une bande fréquentielle prédéfinie, dite « bande fréquentielle montante >>. Par conséquent, ledit second signal de référence est également émis dans ladite bande fréquentielle montante, sur une fréquence centrale F0, afin de pouvoir être reçu par ledit satellite 20.

Le second signal de référence est de préférence émis de sorte à limiter les interférences sur les signaux utiles.

Par exemple, le second signal de référence est un signal de faible largeur spectrale, de préférence un signal sensiblement sinusoïdal, afin de pouvoir être émis dans une partie de la bande fréquentielle montante dans laquelle aucun signal utile n’est émis, mais que le satellite 20 peut néanmoins recevoir, par exemple en bordure de ladite bande fréquentielle montante.

Alternativement, le second signal de référence peut être un signal à spectre étalé au moyen d’une séquence d’étalement prédéfinie. En effet, la densité spectrale de puissance d’un signal à spectre étalé peut être rendue très faible, limitant ainsi les interférences sur les signaux utiles. En outre, la corrélation par la séquence d’étalement permet d’introduire un gain de traitement qui permet d’extraire ledit second signal de référence malgré sa faible densité spectrale de puissance. Généralement, la charge utile d’un satellite 20 de télécommunications introduit un décalage fréquentiel de sorte qu’un signal utile est retransmis sur le lien descendant sur une fréquence centrale différente de celle sur laquelle il a été reçu sur le lien montant. Ainsi, la bande fréquentielle dans laquelle les signaux utiles sont retransmis sur le lien descendant, dite « bande fréquentielle descendante >>, est généralement différente de la bande fréquentielle montante, et le second signal de référence est retransmis sur une fréquence centrale F2 différente de la fréquence centrale FO.

De préférence, la fréquence centrale FO du second signal de référence est choisie de telle sorte que la fréquence centrale F2 est proche d’une fréquence centrale F1 sur laquelle est émis le premier signal de référence, lequel n’est pas nécessairement émis à l’intérieur de la bande fréquentielle descendante des signaux utiles. En effet, les pertes de propagation dépendent de la fréquence utilisée et il est par conséquent avantageux de considérer des fréquences centrales F1 et F2 proches afin d’assurer que les pertes de propagation subies, sur le lien descendant, par le premier signal de référence et par le second signal de référence sont sensiblement les mêmes. Par exemple, l’écart fréquentiel entre les fréquences centrales F1 et F2 est de l’ordre de quelques dizaines de mégahertz (MFIz), voire inférieur à 10 MFIz.

Dans le cas d’une mise en oeuvre pour estimer l’attitude d’un satellite 20 existant, déjà à poste, le premier signal de référence est choisi parmi les signaux, autres que les signaux utiles, émis par le satellite 20 au moyen d’une antenne d’émission différente de celle utilisée pour la retransmission des signaux utiles. Par exemple, les satellites actuels émettent généralement un signal de télémesure et un signal balise au moyen d’une antenne d’émission peu directive, typiquement une antenne cornet, dont la zone de couverture englobe la zone de couverture de l’antenne d’émission des signaux utiles. En outre, dans les satellites actuels, le signal de télémesure et le signal balise sont émis sur des fréquences centrales proches de la bande fréquentielle descendante des signaux utiles.

Le signal de télémesure et/ou le signal balise peuvent donc être utilisés en tant que premier signal de référence. Rien n’exclut cependant, dans le cas notamment d’un satellite non encore à poste en orbite terrestre, d’embarquer dans ledit satellite des moyens spécifiques pour l’émission du premier signal de référence, distincts des moyens d’émission du signal de télémesure et du signal balise.

Dans la suite de la description, on se place de manière non limitative dans le cas où les fréquences centrales F1 et F2 sont distinctes. Rien n’exclut cependant, suivant d’autres exemples, de considérer la fréquence centrale F1 égale à la fréquence centrale F2, par exemple si le premier signal de référence et le second signal de référence sont multiplexés temporellement (c'est-à-dire qu’ils ne sont pas émis simultanément) et/ou multiplexés par étalement de spectre au moyen de séquences d’étalement orthogonales, etc.

Dans des modes particuliers de mise en oeuvre, le premier signal de référence et/ou le second signal de référence sont des signaux à faible largeur spectrale, par exemple des signaux sinusoïdaux. De telles dispositions permettent, lorsque les fréquences centrales F1 et F2 sont proches, d’assurer une cohérence fréquentielle des pertes de propagation. En outre, l’estimation de l’attitude du satellite 20 s’appuie sur des mesures des puissances avec lesquelles ledit premier signal de référence et ledit second signal de référence sont reçus par des stations sol, et des signaux sinusoïdaux permettent de simplifier lesdites mesures de puissance.

Dans la suite de la description, on se place de manière non limitative dans le cas où le premier signal de référence et le second signal de référence, émis sur le lien descendant, sont des signaux sinusoïdaux de fréquences centrales respectives F1 et F2. En outre, le premier signal de référence et le second signal de référence sont avantageusement émis simultanément, afin d’assurer une meilleure cohérence temporelle des pertes de propagation. Par exemple, si la station d’émission de référence 30 émet le second signal de référence en continu, alors il sera également retransmis en continu par le satellite 20, il se trouvera toujours des intervalles de temps au cours desquels le premier signal de référence et le second signal de référence sont émis simultanément par ledit satellite 20.

Tel qu’illustré par la figure 1, le système 10 de contrôle d’attitude comporte également au moins trois stations sol, dites « stations de mesure >> 31, adaptées à recevoir le premier signal de référence et le second signal de référence émis par le satellite 20. Dans l’exemple illustré par la figure 1, la station d’émission de référence 30 est distincte des stations de mesure 31. Rien n’exclut cependant, suivant d’autres exemples d’avoir une station sol qui soit à la fois une station d’émission de référence et une station de mesure.

Lesdites trois stations de mesure 31 ne sont pas alignées avec le satellite 20. En d’autres termes, lesdites trois stations de mesure 31 et le satellite 20 ne se trouvent tous dans le même plan.

De telles dispositions permettent d’estimer l’attitude du satellite 20 suivant trois axes, désignés généralement par axes de roulis, de tangage et de lacet. En effet, l’erreur d’attitude en roulis d’un satellite 20 en orbite GEO entraîne un déplacement de la zone de couverture Zc2 de la seconde antenne d’émission 23 suivant l’axe Nord-Sud, alors que l’erreur d’attitude en tangage entraîne un déplacement suivant l’axe Est-Ouest. En outre, l’erreur d’attitude d’un satellite 20 suivant le troisième axe, désigné généralement par axe de lacet et qui relie le satellite 20 au centre de la Terre T, entraîne une rotation de ladite zone de couverture Zc2 autour dudit axe de lacet. De tels déplacements peuvent être détectés au moyen de trois stations de mesure 31 qui ne sont pas alignées avec le satellite 20. Toutefois, en pratique, l’erreur d’attitude en lacet d’un satellite 20 en orbite GEO est généralement négligeable.

La figure 2 représente schématiquement un exemple de zone de couverture Zc2 de la seconde antenne d’émission 23 du satellite 20.

Plus particulièrement, la figure 2 représente la projection du diagramme de rayonnement de ladite seconde antenne d’émission 23 sur la surface de la Terre T, le satellite 20 étant dans son attitude de mission.

Tel qu’illustré par la figure 2, la projection du diagramme de rayonnement de la seconde antenne d’émission 23 peut être représentée sous la forme de courbes de niveau qui joignent les points à la surface de la Terre T pour lesquels le gain du diagramme de rayonnement est le même.

Dans l’exemple illustré par la figure 2, plusieurs courbes de niveau sont représentées, à savoir des courbes de niveau correspondant respectivement à des atténuations de 1 décibel (dB), 2 dB, 3dB, 4 dB et 5 dB par rapport au gain maximal Gmax du diagramme de rayonnement de la seconde antenne d’émission 23. Dans l’exemple non limitatif illustré par la figure 2, la zone de couverture Zc2 est définie comme étant la zone pour laquelle l’atténuation par rapport au gain maximal Gmax n’est pas supérieure à trois décibels, c'est-à-dire la zone pour laquelle le gain est égal ou supérieur à (Gmax - 3 dB).

Les trois stations de mesure 31 sont par exemple situées, dans la zone de couverture Zc2 de la seconde antenne d’émission 23, de telle sorte que la valeur du gradient du diagramme de rayonnement de ladite seconde antenne d’émission 23 dans la direction d’une desdites trois stations de mesure, dite « station de mesure de référence >>, est inférieure aux valeurs dudit gradient du diagramme de rayonnement dans les directions respectives des deux autres stations de mesure, voire très inférieure à celles-ci. En d’autres termes, la station de mesure de référence est placée dans une zone où les courbes de niveau sont moins resserrées que dans les zones où sont placées les deux autres stations de mesure.

Dans l’exemple illustré par la figure 2, la station de mesure de référence, désignée par 31a, est située sensiblement au centre de la zone de couverture Zc2, et les deux autres stations de mesure, désignées respectivement par 31b et 31c, sont situées sensiblement en bordure de la zone de couverture Zc2, dans des zones où les courbes de niveau sont resserrées. Plus particulièrement, dans l’exemple illustré par la figure 2, la station de mesure 31b se trouve dans une zone dans laquelle les courbes de niveau sont resserrées suivant l’axe Est-Ouest, et la station de mesure 31c se trouve dans une zone dans laquelle les courbes de niveau sont resserrées suivant l’axe Nord-Sud. Ainsi, une erreur sur l’attitude en roulis et/ou en tangage du satellite 20, par rapport à l’attitude de mission : - modifie peu le gain de la seconde antenne d’émission 23 dans la direction de la station de mesure de référence 31a par rapport au gain théorique attendu lorsque le satellite 20 est dans son attitude de mission, - modifie fortement le gain de la seconde antenne d’émission 23 dans la direction de la station de mesure 31b et/ou dans la direction de la station de mesure 31c par rapport aux gains théoriques attendus lorsque le satellite 20 est dans son attitude de mission.

Le système 10 d’estimation d’attitude comporte également un ensemble de moyens configurés pour estimer l’attitude du satellite 20 en fonction du premier signal de référence et du second signal de référence reçus par les différentes stations de mesure 31. Ces moyens peuvent être intégrés dans un même équipement ou distribués sur plusieurs équipements.

Au niveau de chaque équipement, lesdits moyens se présentent par exemple sous la forme d’un module de traitement (non représenté sur les figures) comportant par exemple un ou plusieurs processeurs et des moyens de mémorisation (disque dur magnétique, mémoire électronique, disque optique, etc.) dans lesquels est mémorisé un produit programme d’ordinateur, sous la forme d’un ensemble d’instructions de code de programme à exécuter pour mettre en oeuvre une ou plusieurs étapes d’estimation de l’attitude du satellite 20. Alternativement ou en complément, le module de traitement peut comporter un ou des circuits logiques programmables (FPGA, PLD, etc.), et/ou un ou des circuits intégrés spécialisés (ASIC), et/ou un ensemble de composants électroniques discrets, etc., adaptés à mettre en oeuvre une ou plusieurs desdites étapes d’estimation de l’attitude du satellite 20.

En d’autres termes, lesdits moyens sont configurés de façon logicielle (produit programme d’ordinateur spécifique) et/ou matérielle (FPGA, PLD, ASIC, composants électroniques discrets, etc.) pour estimer l’attitude du satellite 20 en fonction du premier signal de référence et du second signal de référence reçus par les différentes stations de mesure 31.

Dans la suite de la description, on se place de manière non limitative dans le cas où ces moyens sont distribués sur les stations de mesure 31 et sur une station centrale (non représentée sur les figures).

La figure 3 représente schématiquement les principales étapes d’un procédé 50 d’estimation de l’attitude d’un satellite 20. Tel qu’illustré par la figure 3, le procédé 50 d’estimation d’attitude comporte tout d’abord des étapes de : - 51 émission sur le lien montant, par la station d’émission de référence 30, du second signal de référence, qui est reçu par le satellite 20 au moyen de l’antenne de réception 22 des signaux utiles, - 52 retransmission par ledit satellite 20 du second signal de référence sur le lien descendant au moyen de la seconde antenne d’émission 23, - 53 émission par ledit satellite 20 du premier signal de référence sur le lien descendant au moyen de la première antenne d’émission 21, - 54 réception du premier signal de référence et du second signal de référence par les au moins trois stations de mesure 31.

Le procédé 50 d’estimation d’attitude comporte ensuite une étape 55 de calcul, pour chaque station de mesure 31, d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de référence et du second signal de référence reçus, dite « mesure différentielle de puissance >>. Le calcul de telles mesures différentielles de puissance permet d’annuler, notamment, les pertes de propagation sur le lien descendant. L’étape 55 de calcul de mesure différentielle de puissance est par exemple exécutée par chaque station de mesure 31.

Le procédé 50 d’estimation d’attitude comporte ensuite une étape 56 d’estimation de l’attitude du satellite en fonction des mesures différentielles de puissance calculées. L’étape 56 d’estimation d’attitude est par exemple exécutée par la station centrale, en fonction des mesures différentielles de puissance reçues des différentes stations de mesure 31.

Par exemple, l’attitude du satellite 20 est estimée en fonction d’une connaissance a priori des positions respectives du satellite 20 et des stations de mesure 31, et des diagrammes de rayonnement respectifs de la première antenne d’émission 21 et de la seconde antenne d’émission 23 par rapport audit satellite 20. Ainsi, on peut déterminer, pour chaque attitude possible du satellite 20, des gains théoriques desdites première antenne d’émission 21 et seconde antenne d’émission dans les directions des stations de mesure 31, et en déduire des mesures différentielles de puissance théoriques associées respectivement auxdites stations de mesure 31. L’attitude du satellite 20 peut alors être estimée, par exemple, en comparant les mesures différentielles de puissance réelles, c'est-à-dire celles calculées à partir du premier signal de référence et du second signal de référence effectivement reçus par les stations de mesure 31, aux différentes mesures différentielles de puissance théoriques.

Dans des modes préférés de mise en oeuvre, l’étape 56 d’estimation d’attitude comporte le calcul, pour au moins deux paires de stations de mesure 31, d’une grandeur représentative d’un rapport entre les mesures différentielles de puissance respectives des stations de mesure 31 de ladite paire, dite « mesure différentielle inter-station >>.

Les paires de stations de mesure 31 considérées sont différentes, c'est-à-dire qu’au moins une station de mesure 31 diffère d’une paire à une autre. Par contre, il est possible de considérer des paires comportant toutes une même station de mesure 31, par exemple comportant toutes la station de mesure de référence 31a dans l’exemple illustré par la figure 2. L’attitude du satellite 20 est ensuite avantageusement estimée en fonction desdites mesures différentielles inter-station.

De telles dispositions sont avantageuses en ce qu’elles permettent d’annuler les éventuelles incertitudes sur les puissances d’émission du premier signal de référence et du second signal de référence par ledit satellite 20.

En effet, la précision avec laquelle lesdites puissances d’émission peuvent être estimées peut s’avérer insuffisante et limiter les performances de l’estimation d’attitude du satellite 20.

Notamment, lesdites puissances d’émission sont susceptibles de fluctuer sensiblement au cours du temps, par exemple du fait des variations de température subies par le satellite 20. Par conséquent, la précision avec laquelle lesdites puissances d’émission peuvent être estimées est limitée par l’amplitude de ces fluctuations.

En outre, la puissance d’émission, par le satellite 20, du second signal de référence peut s’avérer difficile à estimer dans la mesure où elle dépend de plusieurs paramètres qui peuvent être eux-mêmes difficiles à estimer avec une précision suffisante, dont : - la puissance avec laquelle le second signal de référence a été émis par la station d’émission de référence 30, - les gains respectifs de l’antenne d’émission de ladite station d’émission de référence 30 et de l’antenne de réception 22 du satellite 20, - les pertes de propagation sur le lien montant.

Par conséquent, le calcul des mesures différentielles inter-station permet d’améliorer la précision d’estimation de l’attitude du satellite 20.

Par exemple, la puissance Pr1[m] avec laquelle le premier signal de référence est reçu par une station de mesure de rang m, et la puissance Pr2[m] avec laquelle le second signal de référence est reçu par ladite station de mesure de rang m, peuvent être exprimées sous la forme suivante en échelle logarithmique (dB) :

Pr1 [m] = Pt1 + Gt1 [m] + Gr[m] - Ld[m]

Pr2[m] = Pt2 + Gt2[m] + Gr[m] - Ld[m] expressions dans lesquelles : - Pt1 correspond à la puissance d’émission du premier signal de référence par le satellite 20, - Gt1[m] correspond au gain de la première antenne d’émission 21 dans la direction de la station de mesure de rang m, - Gr[m] correspond au gain de l’antenne de réception de la station de mesure de rang m dans la direction du satellite 20, - Ld[m] correspond aux pertes de propagation sur le lien descendant entre le satellite 20 et la station de mesure de rang m, - Pt2 correspond à la puissance d’émission du second signal de référence par le satellite 20, - Gt2[m] correspond au gain de la seconde antenne d’émission 23 dans la direction de la station de mesure de rang m.

Les puissances Pr1[m] et Pr2[m] sont par exemple mesurées dans le domaine fréquentiel, après avoir appliqué une fenêtre temporelle de type « flat-top » sur le signal reçu par la station de mesure 31. Une telle fenêtre temporelle permet de concentrer la puissance d’un signal non modulé sur une fréquence, et est considérée comme optimale pour détecter et mesurer la puissance du premier signal de référence et du second signal de référence, en particulier dans le cas où ceux-ci sont des signaux sinusoïdaux.

La mesure différentielle de puissance 5P[m] est par exemple calculée, pour la station de mesure de rang m, selon l’expression suivante : 5P[m] = Pt1 - Pt2 = Pt1 + Gt1 [m] - Pt2 - Gt2[m]

La mesure différentielle inter-station ΔΡ[ιτι,η], entre la station de mesure de rang m et la station de mesure de rang n (m étant différent de n), est par exemple calculée selon l’expression suivante : ΔΡ[ιτι,η] = 5P[m] - 5P[n] = Gt1 [m] - Gt2[m] - (Gt1 [n] - Gt2[n])

On constate donc que les mesures différentielles inter-station ne dépendent plus que des différentes valeurs des gains de la première antenne d’émission 21 et de la seconde antenne d’émission 23 dans les directions respectives des stations de mesure de rang m et n.

Par conséquent, il est possible de calculer des mesures différentielles inter-station théoriques ΔΡτ[ιτι,η](Υ) pour chaque attitude Y possible du satellite 20, en fonction des positions respectives du satellite 20 et des stations de mesure 31, et en fonction des diagrammes de rayonnement respectifs de la première antenne d’émission 21 et de la seconde antenne d’émission 23 par rapport audit satellite 20. L’attitude du satellite 20 peut être estimée en optimisant une fonction de coût prédéterminée. Par exemple, l’attitude estimée Yest du satellite 20 est déterminée, en fonction des mesures différentielles inter-station AP[k] calculées pour Np paires de stations de mesure 31 (1 < k < Np), de sorte à minimiser l’erreur quadratique entre les mesures différentielles inter-station AP[k] calculées et les mesures différentielles inter-station théoriques APT[k], par exemple pondérée selon l’expression suivante :

expression dans laquelle σι< correspond à la variance du bruit de la mesure différentielle inter-station AP[k],

Tel qu’indiqué précédemment, l’erreur d’attitude en lacet est généralement négligeable pour un satellite 20 en orbite GEO. Par conséquent, il est possible de ne considérer que des attitudes Y possibles pour lesquelles l’attitude en lacet correspond à l’attitude de mission. Alternativement, il est possible de considérer plusieurs valeurs possibles de l’attitude en lacet lors du calcul des mesures différentielles inter-station théoriques APT[k], Il est également possible d’estimer l’attitude en lacet par d’autres moyens, par exemple au moyen de mesures fournies par des capteurs embarqués à bord du satellite 20 (l’attitude en lacet estimée étant par exemple émise par ledit satellite 20 jusqu’à la station centrale), et de ne calculer des mesures différentielles inter-station théoriques APj[k] que pour des attitudes Y possibles pour lesquelles l’attitude en lacet est égale à cette estimation.

Dans des modes préférés de mise en oeuvre, les stations de mesure 31 sont synchronisées temporellement entre elles. Par « synchronisées temporellement entre elles >>, on entend que le système 10 d’estimation est capable de recaler temporellement entre elles des mesures différentielles de puissance calculées pour deux stations de mesure 31 différentes.

De telles dispositions permettent par conséquent d’assurer une meilleure cohérence temporelle des mesures différentielles de puissance prises en compte pour calculer les mesures différentielles inter-station. En effet, il est alors possible d’identifier des mesures différentielles de puissance calculées pour des signaux reçus en même temps par les différentes stations de mesure 31, éventuellement aux différences de temps de propagation entre le satellite 20 et les différentes stations de mesure 31 près. On assure alors que les signaux pris en compte dans les différentes stations de mesure 31 ont été émis avec sensiblement les mêmes puissances d’émission Pt1, pour le premier signal de référence, et Pt2 pour le second signal de référence.

Le procédé 50 d’estimation d’attitude ainsi obtenu est par conséquent plus robuste aux variations temporelles des puissances d’émission par le satellite 20 du premier signal de référence et du second signal de référence.

Les stations de mesure 31 sont de préférence synchronisées temporellement par GPS (« Global Positioning System >>). Toutefois, toute méthode de synchronisation temporelle peut être mise en oeuvre, et le choix d’une méthode particulière ne constitue qu’une variante d’implémentation de l’invention. La précision avec laquelle les stations de mesure 31 sont synchronisées temporellement entre elles est de préférence de l’ordre de 10 millisecondes (ms), voire inférieure.

Dans des modes préférés de mise en oeuvre, les stations de mesure 31 comportant des chaînes de réception respectives, le procédé 50 d’estimation d’attitude comporte, pour chaque station de mesure, l’estimation d’une erreur introduite par ladite chaîne de réception sur le calcul de la mesure différentielle de puissance, dite « erreur différentielle de puissance >>, et la compensation de ladite erreur différentielle de puissance sur la mesure différentielle de puissance.

En effet, les chaînes de réception des stations de mesure 31 sont constituées d’équipements dont les caractéristiques peuvent varier avec la fréquence. Ainsi, le gain introduit, par une chaîne de réception, sur le premier signal de référence (reçu sur la fréquence centrale F1) peut être différent du gain introduit sur le second signal de référence (reçu sur la fréquence centrale F2), et ces différences de gain sont susceptibles d’introduire un biais sur les mesures différentielles de puissance et, in fine, sur les mesures différentielles inter-station. L’estimation des erreurs différentielles de puissance vise précisément à calibrer ces différences de gain et à les compenser.

Par exemple, l’estimation de l’erreur différentielle de puissance comporte, pour l’une au moins des stations de mesure 31, l’injection dans la chaîne de réception de ladite station de mesure d’un premier signal de calibration et d’un second signal de calibration.

De préférence, le premier signal de calibration et le second signal de calibration sont injectés le plus en amont possible de la chaîne de réception, afin que ceux-ci traversent essentiellement les mêmes équipements que le premier signal de référence et le second signal de référence. Par exemple, le premier signal de calibration et le second signal de calibration sont présentés en entrée du LNB (« Low Noise Bock converter >>), c'est-à-dire immédiatement en sortie de l’antenne de réception de la station de mesure 31.

De préférence, le premier signal de calibration et le second signal de calibration sont injectés dans la chaîne de réception simultanément à la réception du premier signal de référence et du second signal de référence. De telles dispositions sont avantageuses en ce que la différence de gain introduite par une chaîne de réception peut varier au cours du temps, et on assure de la sorte une meilleure cohérence temporelle entre l’erreur différentielle de puissance estimée et la mesure différentielle de puissance calculée. Par exemple, il est possible d’injecter, au cours des opérations d’estimation d’attitude, le premier signal de calibration et le second signal de calibration de manière continue dans la chaîne de réception, ce qui permet d’assurer qu’ils seront bien reçus en même temps que le premier signal de référence et le second signal de référence.

Dans des modes préférés de mise en oeuvre, le premier signal de calibration et le second signal de calibration sont injectés sur des fréquences centrales respectives F’1 et F’2 différentes, et sont par exemple des signaux sinusoïdaux. Les fréquences centrales F’1 et F’2 sont de préférence choisies proches des fréquences centrales respectivement F1 et F2, afin d’assurer que le premier signal de calibration et le second signal de calibration soient soumis sensiblement aux mêmes différences de gains que le premier signal de référence et le second signal de référence. Par exemple, l’écart entre les fréquences centrales F’1 et F1 (respectivement F’2 et F2) est inférieur à 100 kilohertz (kFlz).

Le premier signal de calibration et le second signal de calibration sont injectés, dans la chaîne de réception, avec la même puissance ou avec un rapport de puissances prédéterminé. L’erreur différentielle de puissance est ensuite calculée, comme la mesure différentielle de puissance, sous la forme d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de calibration et du second signal de calibration mesurés en sortie de ladite chaîne de réception (éventuellement corrigé par ledit rapport des puissances d’injection dudit premier signal de calibration et dudit second signal de calibration dans la chaîne de réception, si lesdites puissances d’injection ne sont pas égales).

La figure 4 représente schématiquement un mode préféré de réalisation d’une station de mesure 31.

Tel qu’illustré par la figure 4, la station de mesure 31 comporte notamment une antenne de réception, par exemple du type comportant un réflecteur 310 et une source 311, en sortie de laquelle se trouve une chaîne de réception 312. L’entrée de la chaîne de réception 312 comporte un LNB 313, et la sortie de ladite chaîne de réception 312 est reliée à un module de traitement 314 comportant des moyens configurés pour numériser et traiter les signaux en sortie de ladite chaîne de réception 312.

En outre, la station de mesure 31 comporte un module de génération 315 du premier signal de calibration et du second signal de calibration dont la sortie est reliée à un coupleur 316 en entrée du LNB 313.

Plus particulièrement, dans l’exemple illustré par la figure 4, le module de génération 315 comporte un premier générateur 317 d’un signal sur une fréquence centrale Fg1 et un second générateur 318 d’un signal sur une fréquence centrale Fg2. Les fréquences centrales Fg1 et Fg2 sont avantageusement choisies de telle sorte que : - si F’1 < F’2 : |Fg1 - Fg2| = F’1 et |Fg1 + Fg2| = F’2, - si F’1 > F’2 : |Fg1 - Fg2| = F’2 et |Fg1 + Fg2| = F’1.

Le premier générateur 317 et le second générateur 318 sont reliés à un mélangeur non linéaire 319 dont la sortie est reliée au coupleur 316. De manière connue, un tel mélangeur non linéaire 319 («mixer» dans la littérature anglo-saxonne) réalise le produit des signaux en entrée. Ce produit fournit en sortie deux signaux de même amplitude sur des fréquences centrales respectives égales à |Fg1 - Fg2| et |Fg1 + Fg2|. Par conséquent, les signaux en sortie du mélangeur non linéaire 319 sont centrés sur les fréquences centrales F’1 et F’2, et correspondent respectivement au premier signal de calibration et au second signal de calibration.

De telles dispositions sont avantageuses en ce qu’elles permettent d’assurer un meilleur contrôle des puissances d’injection du premier signal de calibration et du second signal de calibration dans la chaîne de réception 312.

En effet, les signaux générés par le premier générateur 317 et le second générateur 318 sont susceptibles de subir des atténuations différentes, du fait notamment qu’ils sont centrés sur des fréquences centrales respectives Fg1 et Fg2 différentes et que les moyens de connexion jusqu’au mélangeur non linéaire 319 peuvent présenter une longueur importante. Dans le cas illustré par la figure 4, le mélangeur non linéaire 319 peut être agencé le plus près possible du coupleur 316, afin de limiter la longueur des moyens de connexion entre ledit mélangeur non linéaire 319 et ledit coupleur 316. Grâce au mélangeur non linéaire 319, le premier signal de calibration et le second signal de calibration sont injectés avec sensiblement la même puissance, et ce quelles que soient les puissances respectives des signaux en entrée dudit mélangeur non linéaire 319.

De manière plus générale, il est à noter que les modes de mise en oeuvre et de réalisation considérés ci-dessus ont été décrits à titre d’exemples non limitatifs, et que d’autres variantes sont par conséquent envisageables.

En particulier, l’invention a été décrite en considérant une estimation d’attitude d’un satellite 20 basée principalement sur des mesures différentielles de puissance entre des signaux émis par ledit satellite 20 et reçus par différentes stations de mesure 31. Rien n’exclut, suivant d’autres exemples, de considérer également d’autres mesures.

Notamment, l’estimation d’attitude peut également prendre en compte les mesures des capteurs à bord du satellite 20. Par exemple, les mesures desdits capteurs peuvent être transmises au sol et le procédé 50 peut estimer l’attitude du satellite 20 en fonction à la fois des mesures différentielles de puissance et des mesures desdits capteurs. Il est également possible, notamment, d’estimer au sol l’attitude du satellite 20 en fonction des mesures différentielles de puissance, et d’envoyer l’attitude estimée au satellite 20. Le satellite 20 peut alors à son tour estimer son attitude en fonction des mesures des capteurs et en fonction de l’attitude estimée reçue du sol.

TECHNICAL AREA

The present invention belongs to the field of attitude control of satellites in Earth orbit, and more particularly relates to a method and a system for estimating the attitude of a telecommunications satellite.

STATE OF THE ART

In a satellite telecommunications system, a ground station transmits a useful signal to a satellite in Earth orbit, for example geostationary ("Geostationary Orbit" or GEO in the Anglo-Saxon literature). Then the satellite retransmits the useful signal to Earth, usually after having shifted it in frequency, to another ground station.

For example, in a broadcast or broadband satellite system, the satellite receives from a ground station a useful signal to be broadcast, such as a DVB-S signal, and retransmits it to its destination. a plurality of ground stations, such as user terminals.

Such a satellite is intended to serve, on the downlink to the user terminals, a predetermined coverage area. For this purpose, the satellite comprises a transmitting antenna, for the broadcasting of the useful signal, whose radiation pattern with respect to said satellite, when said satellite is placed in a predetermined mission attitude, present in the direction of each point. within said coverage area, a gain greater than that towards a point outside said coverage area.

It is therefore understood that it is necessary, in order to ensure that the user terminals that are in the planned coverage area can receive the useful signal, to precisely control the attitude of the satellite, so that it is as close as possible mission attitude. To this end, the current satellites are equipped with a set of sensors for accurately estimating the attitude of said satellite, and also a set of actuators for changing the attitude of the satellite to reduce the gap between the esteemed attitude and mission attitude.

In particular, it is known to use optical sensors (terrestrial or solar horizon sensor, stellar sensor, etc.) to estimate the attitude in an absolute manner, as opposed to other types of sensors that only allow for estimate attitude variations between two instants.

Optical sensors have the advantage of high accuracy, but have the disadvantage of being blind when they face a star hole or dazzled by a star constituting a source of intense light. In addition, attitude estimation is no longer possible in case of temporary or permanent failure of one or more sensors.

US Pat. No. 4,6300,58 describes a satellite attitude estimation method, in which said satellite is configured to generate on board two signals that are emitted by different respective transmission antennas, including the transmitting antenna. useful signals. The signals thus transmitted are received by four ground stations, and the received signals are compared in order to estimate the attitude of said satellite.

Such a solution is advantageous insofar as it does not implement sensors on board the satellite.

However, the solution described by US Pat. No. 4,6300,58 is based on a satellite having a very specific architecture, and therefore has the disadvantage of not being compatible with satellites currently in position in GEO orbit.

STATEMENT OF THE INVENTION

The present invention aims to remedy all or part of the limitations of the solutions of the prior art, including those described above, by proposing a solution for the attitude estimation of a satellite that does not require use of sensor measurements on board the satellite, which is also compatible with satellites currently in Earth orbit. For this purpose, and according to a first aspect, the invention relates to a satellite attitude estimation method, said satellite being configured to generate and transmit a first reference signal on a downlink by means of a first transmitting antenna, said satellite being further configured to receive useful signals on a uplink, and for retransmitting said useful signals on the downlink by means of a second transmitting antenna, the first transmitting antenna serving a coverage area including a coverage area of the second transmitting antenna. The estimation method comprises: - transmission on the uplink of a second reference signal, which is received by said satellite by means of an antenna for receiving useful signals, - retransmission by said satellite of the second reference signal by means of the second transmitting antenna, - receiving the first reference signal and the second reference signal by at least three ground stations located in the coverage area of the second transmitting antenna, called "measuring stations">>, - calculating, for each measuring station, a quantity representative of a ratio between the respective powers of the first reference signal and the second reference signal received, referred to as "differential power measurement", - estimation of the attitude of the satellite as a function of the calculated differential power measurements.

Thus, the attitude estimation method also relies on the reception of signals emitted by the satellite, and does not require the use of sensor measurements on board the satellite.

In addition, the estimation method is compatible with the satellites currently stationed in Earth orbit. Indeed, only one of the signals emitted by the satellite is generated on board, in this case the first reference signal. Such signals already exist in all current satellites. In particular, the telemetry signal or the beacon signal, which are generated on board each satellite and transmitted on the downlink by means of transmitting antennas that are not very directive, may be mentioned. The telemetry signal or the beacon signal can be used as the first reference signal in the estimation method according to the invention. The other signal, that is to say the second reference signal, is generated on the ground and is received by the satellite on the uplink, with useful signals. It is retransmitted on the downlink with said useful signals. Therefore, such a second reference signal can be received and retransmitted by the current satellites, by the same means as those used for the reception and retransmission of useful signals.

The powers of the first reference signal and the second reference signal received depend notably on the gain of the first transmitting antenna and the gain of the second transmitting antenna. They also depend on the propagation losses between the satellite and the Earth, which are not known a priori but affect the first reference signal and the second reference signal substantially in the same way if they are emitted by the satellite sufficiently close in the frequency and time domains. Therefore, if the propagation losses are substantially the same for the first reference signal and for the second reference signal, then the calculation of the differential power measurements makes it possible to cancel said propagation losses without having to estimate them. Further, since the first reference signal and the second reference signal are emitted by different respective transmission antennas, the respective gains of said first transmitting antenna and second transmitting antenna in the direction of a station are different and therefore do not cancel each other by calculating said differential power measurements.

Then, the attitude of the satellite is estimated according to said differential power measurements. Indeed, a variation of the attitude of the satellite causes a displacement of the respective radiation patterns of the first transmitting antenna and the second transmitting antenna, which causes a variation of the gains of said first transmitting antenna and second transmit antenna in the directions of the measuring stations.

The respective positions of the satellite and measurement stations are generally known, as are the respective radiation patterns of the first transmitting antenna and the second transmitting antenna. Thus, for each possible attitude of the satellite, it is possible to determine theoretical gains of said first transmitting antenna and second transmitting antenna in the directions of the measurement stations, and to deduce therefrom theoretical differential power measurements associated respectively with said transmission stations. measured. The attitude of the satellite can then be estimated, for example, by comparing the real power differential measurements, i.e. those calculated from the first reference signal and the second reference signal actually received by the radio stations. measurement, to differential measurements of theoretical power.

In particular embodiments, the attitude estimation method may further comprise one or more of the following characteristics, taken in isolation or in any technically possible combination.

In particular embodiments, said method comprises calculating, for at least two pairs of measurement stations, a quantity representative of a ratio between the respective differential power measurements of the measurement stations of said pair, referred to as "Inter-station differential measurement", and the attitude of the satellite is estimated according to said calculated inter-station differential measurements.

The powers of the first reference signal and the second reference signal received also depend on their respective transmission powers by the satellite, which are not necessarily known a priori and / or are known but with a precision which may be insufficient. . On the other hand, said transmission powers affect in the same way the powers received by the different measurement stations. Consequently, the calculation of the inter-station differential measurements makes it possible to cancel the uncertainties related to a total or partial ignorance of said transmission powers.

In particular embodiments, said method comprises the time synchronization of the measuring stations with each other, and the inter-station differential measurements are calculated from differential power measurements calculated for signals received at the same time by the radio stations. measured.

The transmission powers by the satellite may possibly vary over time. If these variations are too fast, then it may be advantageous to synchronize the measurement stations to make sure to compare differential power measurements for which the transmitting powers by the satellite are indeed the same of a station from one measure to another. Such provisions therefore make it possible to improve the accuracy of the estimation of the attitude of the satellite.

In particular modes of implementation, the measuring stations comprising respective reception chains, said method comprises, for each measuring station, the estimation of an error introduced by said reception chain on the calculation of the differential measurement. of power, called "differential power error", and the compensation of the differential power error on the differential power measurement.

In particular modes of implementation, the estimation of the differential power error comprises, for at least one measuring station, the injection into the reception chain of said measuring station of a first signal. calibration method and a second calibration signal, and calculating a magnitude representative of a ratio between the respective powers of the first calibration signal and the second calibration signal measured at the output of said reception channel.

In particular modes of implementation, the first calibration signal and the second calibration signal are injected on different central frequencies F'1 and F'2.

In particular embodiments, said method comprises generating the first calibration signal and the second nonlinear mixing calibration signal of two respective central frequency signals Fg1 and Fg2 such that: - | Fg1 - Fg2 | = F'1 and | Fg1 + Fg2 | = F'2, or - | Fg1 - Fg2 | = F'2 and | Fg1 + Fg2 | = F'1.

In particular modes of implementation, the first reference signal and the second reference signal are transmitted on different central frequencies F1 and F2 on the downlink, and preferably simultaneously.

In particular modes of implementation, the first reference signal and / or the second reference signal are sinusoidal signals.

According to a second aspect, the present invention relates to a satellite attitude estimation system, said satellite comprising means configured to generate and transmit a first reference signal on a downlink by means of a first antenna. transmission, receiving useful signals on a rising link and retransmitting said useful signals on the downlink by means of a second transmitting antenna, said first transmitting antenna serving a coverage area including a coverage area of said second transmitting antenna transmission antenna. The estimation system comprises: a ground station, referred to as a "reference transmission station", configured to transmit a second reference signal on the uplink, adapted to be received by the satellite with the useful signals; least three ground stations adapted to receive the first reference signal transmitted by means of the first transmitting antenna and the second reference signal retransmitted by means of the second transmitting antenna, called "measuring stations", - means configured to calculate, for each measuring station, a magnitude representative of a ratio between the respective powers of the first reference signal and the second reference signal received, referred to as "differential power measurement", - means configured to estimate the attitude of the satellite according to the calculated differential power measurements.

In particular embodiments, the attitude estimation system may further comprise one or more of the following features, taken alone or in any technically possible combination.

In particular embodiments, said system comprises means configured to calculate, for at least two pairs of measurement stations, a quantity representative of a ratio between the respective differential power measurements of the measurement stations of said pair, referred to as " inter-station differential measurement >>, and the attitude of the satellite is estimated as a function of said calculated inter-station differential measurements.

In particular embodiments, the measurement stations are synchronized temporally with each other.

In particular embodiments, the three measurement stations considered are located, in the coverage area of the second satellite transmission antenna placed in a mission attitude, so that the value of the gradient of the radiation pattern of said second transmitting antenna in the direction of one of said three measuring stations, called "reference measuring station", is lower than the values of said gradient of the radiation pattern in the respective directions of the other two measuring stations.

In particular embodiments, each measurement station comprising a reception chain, said system comprises means configured to estimate, for each measurement station, an error introduced by said reception chain on the calculation of the differential power measurement, said "differential power error", and to compensate for said differential power error on the differential power measurement.

In particular embodiments, at least one of the measurement stations comprises means configured to generate and to inject a first calibration signal and a second calibration signal in the reception channel of said measurement station, and means configured to calculate a magnitude representative of a ratio between the respective powers of the first calibration signal and the second calibration signal measured at the output of said reception chain.

In particular embodiments, the first calibration signal and the second calibration signal being injected on different central frequencies F'1 and F'2, the means for generating said first calibration signal and said second calibration signal are configured to non-linearly mix two respective central frequency signals Fg1 and Fg2 such that: - | Fg1 - Fg2 | = F'1 and | Fg1 + Fg2 | = F'2, or - | Fg1 - Fg2 | = F'2 and | Fg1 + Fg2 | = F'1.

PRESENTATION OF THE FIGURES The invention will be better understood on reading the following description, given by way of non-limiting example, and with reference to the figures which represent: FIG. 1: a schematic representation of an estimation system of a satellite attitude, - Figure 2: a schematic representation of an example of a satellite coverage area and positioning of ground stations of the attitude estimation system, - Figure 3: a diagram illustrating the main steps of an attitude estimation method, FIG. 4: a schematic representation of a preferred embodiment of a ground station of the attitude estimation system.

In these figures, identical references from one figure to another designate identical or similar elements. For the sake of clarity, the elements shown are not to scale unless otherwise stated.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 schematically represents a system 10 for estimating the attitude of a satellite 20 orbiting Earth T.

In the remainder of the description, one places oneself in a nonlimiting manner in the case where the satellite 20 is in orbit GEO. However, there is nothing to exclude, according to other examples, considering a satellite in non-geostationary orbit, for example a geosynchronous orbit of any kind, a low Earth Orbit (LEO in the English literature), a medium orbit ("Medium Earth Orbit" or MOE in the Anglo-Saxon literature), etc., subject to knowing the position of said satellite when its attitude is to be estimated.

As illustrated by FIG. 1, the satellite 20 comprises a first transmission antenna 21 of a first reference signal, generated on board said satellite 20, on a downlink bound for the Earth T.

In addition, the satellite 20 comprises a payload including in particular a receiving antenna 22 for receiving useful signals on a rising link between the Earth T and said satellite 20. The payload also comprises a second transmitting antenna 23 by means of from which the useful signals received are retransmitted on the downlink.

The processing carried out, before retransmission, on the useful signals received is beyond the scope of the invention. It should be noted that the invention, in principle, does not require specific processing on board and finds a particularly advantageous application in the case of so-called "transparent" satellites (that is to say, whose treatments carried out at edge on the useful signals mainly involve the introduction of a frequency shift and amplification) currently stationed in Earth orbit. However, it is also possible to consider so-called "regenerative" satellites, especially for satellites that have not yet been launched. On the other hand, the compatibility with regenerative satellites currently at station is not necessarily ensured, and depends on the type of specific treatments carried out on board.

In order to perform its mission of collecting and retransmitting useful signals, the satellite 20 is placed in a predetermined mission attitude. When the satellite 20 is placed in the mission attitude, the second transmitting antenna 23 serves a Zc2 coverage area.

In the example illustrated in FIG. 1, it is considered in a nonlimiting manner that the receiving antenna 22 serves the same coverage area Zc2 as the second transmission antenna 23. In such a case, the receiving antenna 22 and the second transmitting antenna 23 may be, in alternative embodiments, a single antenna used both for the reception and retransmission of useful signals.

The first transmitting antenna 21, implemented for the transmission of the first reference signal, serves a coverage area Zc1. As illustrated in FIG. 1, the coverage area Zc1 includes the coverage area Zc2 of the second transmission antenna 23.

The estimation system 10 further comprises a ground station, referred to as a "reference transmission station" 30, configured to transmit a second reference signal on the uplink, adapted to be received by the satellite 20 with the useful signals. . In particular, the satellite 20 is configured to receive the useful signals transmitted on the uplink in a predefined frequency band, called "rising frequency band". Therefore, said second reference signal is also transmitted in said rising frequency band, on a central frequency F0, in order to be received by said satellite 20.

The second reference signal is preferably output so as to limit interference on the wanted signals.

For example, the second reference signal is a signal of small spectral width, preferably a substantially sinusoidal signal, in order to be able to be transmitted in a part of the rising frequency band in which no useful signal is emitted, but the satellite 20 may nevertheless receive, for example at the edge of said rising frequency band.

Alternatively, the second reference signal may be a spread spectrum signal by means of a predefined spreading sequence. Indeed, the power spectral density of a spread spectrum signal can be made very low, thus limiting the interference on the useful signals. In addition, the correlation by the spreading sequence makes it possible to introduce a processing gain that makes it possible to extract said second reference signal despite its low power spectral density. Generally, the payload of a telecommunications satellite 20 introduces a frequency offset so that a useful signal is retransmitted on the downlink on a center frequency different from that on which it was received on the uplink. Thus, the frequency band in which the useful signals are retransmitted on the downlink, said "downlink frequency band", is generally different from the rising frequency band, and the second reference signal is retransmitted on a central frequency F2 different from the central frequency FO.

Preferably, the central frequency FO of the second reference signal is chosen such that the center frequency F2 is close to a central frequency F1 on which the first reference signal is emitted, which signal is not necessarily transmitted to the first reference signal. inside the downlink frequency band of useful signals. Indeed, the propagation losses depend on the frequency used and it is therefore advantageous to consider close center frequencies F1 and F2 in order to ensure that the propagation losses incurred on the downlink by the first reference signal and by the second reference signal are substantially the same. For example, the frequency difference between the central frequencies F1 and F2 is of the order of a few tens of megahertz (MFIz), or even less than 10 MFIz.

In the case of an implementation for estimating the attitude of an existing satellite, already at station, the first reference signal is chosen from the signals, other than the useful signals, transmitted by the satellite 20 by means of an emission antenna different from that used for the retransmission of the useful signals. For example, current satellites generally transmit a telemetry signal and a beacon signal by means of a directional transmit antenna, typically a horn antenna, whose coverage area includes the coverage area of the transmitting antenna. useful signals. In addition, in the present satellites, the telemetry signal and the beacon signal are transmitted on central frequencies close to the downward frequency band of the useful signals.

The telemetry signal and / or the beacon signal can therefore be used as the first reference signal. However, in the case of a satellite not yet stationed in Earth orbit, nothing, however, excludes specific means for the transmission of the first reference signal, distinct from the means of transmitting the signal, in said satellite. telemetry and beacon signal.

In the remainder of the description, one places oneself in a nonlimiting manner in the case where the central frequencies F1 and F2 are distinct. However, according to other examples, nothing excludes the consideration of the center frequency F1 equal to the center frequency F2, for example if the first reference signal and the second reference signal are time multiplexed (that is to say they are not simultaneously emitted) and / or spectrum spread spectrum by means of orthogonal spreading sequences, etc.

In particular modes of implementation, the first reference signal and / or the second reference signal are signals with a small spectral width, for example sinusoidal signals. Such arrangements make it possible, when the central frequencies F1 and F2 are close, to ensure a frequency coherence of the propagation losses. In addition, the satellite attitude estimation 20 is based on measurements of the powers with which said first reference signal and said second reference signal are received by ground stations, and sinusoidal signals make it possible to simplify said measurements. power.

In the remainder of the description, one places oneself in a nonlimiting manner in the case where the first reference signal and the second reference signal, transmitted on the downlink, are sinusoidal signals of respective central frequencies F1 and F2. In addition, the first reference signal and the second reference signal are advantageously transmitted simultaneously, in order to ensure a better temporal coherence of the propagation losses. For example, if the reference transmission station 30 transmits the second reference signal continuously, then it will also be retransmitted continuously by the satellite 20, there will always be time intervals during which the first reference signal and the second reference signal are simultaneously transmitted by said satellite 20.

As illustrated by FIG. 1, the attitude control system 10 also comprises at least three ground stations, called "measuring stations" 31, adapted to receive the first reference signal and the second reference signal transmitted by the satellite 20. In the example illustrated by FIG. 1, the reference transmission station 30 is distinct from the measurement stations 31. Nothing, however, excludes, according to other examples, having a ground station which is both a reference transmission station and a measurement station.

Said three measurement stations 31 are not aligned with the satellite 20. In other words, said three measurement stations 31 and the satellite 20 are all in the same plane.

Such arrangements make it possible to estimate the attitude of the satellite 20 along three axes, generally designated by axes of roll, pitch and yaw. Indeed, the rolling attitude error of a satellite 20 in GEO orbit results in a displacement of the coverage area Zc2 of the second transmission antenna 23 along the North-South axis, whereas the error of attitude in pitch causes movement along the East-West axis. In addition, the attitude error of a satellite 20 along the third axis, generally designated by yaw axis and which connects the satellite 20 to the center of the Earth T, causes a rotation of said Zc2 coverage area around said axis. lace. Such displacements can be detected by means of three measuring stations 31 which are not aligned with the satellite 20. However, in practice, the attitude error in yaw of a satellite 20 in GEO orbit is generally negligible.

FIG. 2 schematically represents an exemplary coverage area Zc2 of the second transmission antenna 23 of the satellite 20.

More particularly, FIG. 2 represents the projection of the radiation pattern of said second transmitting antenna 23 on the surface of the Earth T, the satellite 20 being in its mission attitude.

As illustrated in FIG. 2, the projection of the radiation pattern of the second transmitting antenna 23 can be represented as contour lines which join the points on the surface of the Earth T for which the gain of the diagram of radiation is the same.

In the example illustrated in FIG. 2, several level curves are represented, namely level curves respectively corresponding to attenuations of 1 decibel (dB), 2 dB, 3dB, 4 dB and 5 dB with respect to the maximum gain. Gmax of the radiation pattern of the second transmitting antenna 23. In the nonlimiting example illustrated in FIG. 2, the coverage area Zc2 is defined as being the zone for which the attenuation with respect to the maximum gain Gmax n ' is not greater than three decibels, that is, the area for which the gain is equal to or greater than (Gmax - 3 dB).

The three measurement stations 31 are for example located, in the coverage area Zc2 of the second transmission antenna 23, so that the gradient value of the radiation pattern of said second transmitting antenna 23 in the direction d one of said three measuring stations, called "reference measuring station", is lower than the values of said gradient of the radiation pattern in the respective directions of the other two measuring stations, or even much lower than these. In other words, the reference measuring station is placed in an area where the contours are less tight than in the areas where the other two measuring stations are placed.

In the example illustrated in FIG. 2, the reference measurement station, designated 31a, is situated substantially in the center of the coverage area Zc2, and the other two measurement stations, designated respectively by 31b and 31c, are located substantially at the edge of the Zc2 coverage area, in areas where contour lines are narrowed. More particularly, in the example illustrated in FIG. 2, the measuring station 31b is in an area in which the contour lines are narrowed along the East-West axis, and the measuring station 31c is in a zone in which the contours are narrowed along the North-South axis. Thus, an error in attitude roll and / or pitch of the satellite 20, with respect to the mission attitude: - little changes the gain of the second transmitting antenna 23 in the direction of the measuring station of reference 31a with respect to the theoretical gain expected when the satellite 20 is in its mission attitude, - strongly modifies the gain of the second transmitting antenna 23 in the direction of the measuring station 31b and / or in the direction of the station measurement 31c compared to the theoretical gains expected when the satellite 20 is in its mission attitude.

The attitude estimation system 10 also comprises a set of means configured to estimate the attitude of the satellite 20 as a function of the first reference signal and the second reference signal received by the different measurement stations 31. These means can be integrated in the same equipment or distributed on several equipments.

At the level of each equipment, said means are for example in the form of a processing module (not shown in the figures) comprising for example one or more processors and storage means (magnetic hard disk, electronic memory, optical disk etc.) in which a computer program product is stored in the form of a set of program code instructions to be executed for carrying out one or more steps of estimating the attitude of the satellite 20. Alternatively or in addition, the processing module may comprise one or more programmable logic circuits (FPGA, PLD, etc.), and / or one or more specialized integrated circuits (ASIC), and / or a set of discrete electronic components, etc. adapted to implement one or more of said satellite attitude estimation steps 20.

In other words, said means are configured in software (specific computer program product) and / or hardware (FPGA, PLD, ASIC, discrete electronic components, etc.) to estimate the attitude of the satellite 20 as a function of the first reference signal and second reference signal received by the different measurement stations 31.

In the remainder of the description, one places oneself in a nonlimiting manner in the case where these means are distributed on the measuring stations 31 and on a central station (not shown in the figures).

FIG. 3 schematically represents the main steps of a method 50 for estimating the attitude of a satellite 20. As illustrated by FIG. 3, the attitude estimation method 50 firstly comprises steps of: - 51 transmission on the up link, by the reference transmission station 30, of the second reference signal, which is received by the satellite 20 by means of the reception antenna 22 of the useful signals, - 52 retransmission by said satellite 20 of the second reference signal on the downlink by means of the second transmitting antenna 23, - 53 transmitting by said satellite 20 of the first reference signal on the downlink by means of the first transmitting antenna 21 Receiving the first reference signal and the second reference signal by the at least three measurement stations 31.

The method 50 for estimating attitude then comprises a step 55 for calculating, for each measuring station 31, a quantity representative of a ratio between the respective powers of the first reference signal and the second reference signal received, called "differential power measurement". The calculation of such differential power measurements makes it possible to cancel, in particular, propagation losses on the downlink. The step 55 of differential power measurement calculation is for example performed by each measuring station 31.

The attitude estimation method 50 then comprises a step 56 of estimating the attitude of the satellite as a function of the calculated differential power measurements. The attitude estimation step 56 is for example executed by the central station, as a function of the differential power measurements received from the different measurement stations 31.

For example, the attitude of the satellite 20 is estimated according to a priori knowledge of the respective positions of the satellite 20 and the measuring stations 31, and respective radiation diagrams of the first transmitting antenna 21 and the second transmission antenna 23 with respect to said satellite 20. Thus, for each possible attitude of the satellite 20, theoretical gains of said first transmitting antenna 21 and second transmitting antenna can be determined in the directions of the measuring stations 31, and deducing therefrom theoretical differential power measurements respectively associated with said measurement stations 31. The attitude of the satellite 20 can then be estimated, for example, by comparing the real power differential measurements, that is to say those calculated at from the first reference signal and the second reference signal actually received by the measuring stations 31, to the different differential measurements theoretical power.

In preferred embodiments, step 56 of attitude estimation comprises calculating, for at least two pairs of measurement stations 31, a magnitude representative of a ratio between the respective differential power measurements. measuring stations 31 of said pair, called "inter-station differential measurement".

The pairs of measurement stations 31 considered are different, that is to say that at least one measuring station 31 differs from one pair to another. On the other hand, it is possible to consider pairs all having the same measurement station 31, for example all comprising the reference measurement station 31a in the example illustrated in FIG. 2. The attitude of the satellite 20 is then advantageously estimated according to said inter-station differential measurements.

Such provisions are advantageous in that they make it possible to cancel any uncertainties on the transmission powers of the first reference signal and the second reference signal by said satellite 20.

Indeed, the accuracy with which said transmission powers can be estimated may be insufficient and limit the performance of the attitude estimation of the satellite 20.

In particular, said transmission powers are liable to fluctuate substantially over time, for example due to the temperature variations experienced by the satellite 20. Consequently, the accuracy with which said transmission powers can be estimated is limited by the amplitude of these fluctuations.

In addition, the transmission power, by the satellite 20, of the second reference signal may be difficult to estimate since it depends on several parameters which may themselves be difficult to estimate with sufficient accuracy, of which the power with which the second reference signal has been transmitted by the reference transmission station 30, the respective gains of the transmitting antenna of the said reference transmission station and the antenna of the reference transmission station; reception 22 of the satellite 20, propagation losses on the uplink.

Consequently, the calculation of the inter-station differential measurements makes it possible to improve the estimation accuracy of the attitude of the satellite 20.

For example, the power Pr1 [m] with which the first reference signal is received by a measuring station of rank m, and the power Pr2 [m] with which the second reference signal is received by said measuring station of rank m, may be expressed in the following form in logarithmic scale (dB):

Pr1 [m] = Pt1 + Gt1 [m] + Gr [m] - Ld [m]

Pr2 [m] = Pt2 + Gt2 [m] + Gr [m] - Ld [m] expressions in which: - Pt1 corresponds to the transmission power of the first reference signal by the satellite 20, - Gt1 [m] corresponds at the gain of the first transmitting antenna 21 in the direction of the measuring station of rank m, - Gr [m] corresponds to the gain of the receiving antenna of the measuring station of rank m in the direction of the satellite 20 , - Ld [m] corresponds to the propagation losses on the downlink between the satellite 20 and the measuring station of rank m, - Pt2 corresponds to the transmission power of the second reference signal by the satellite 20, - Gt2 [ m] corresponds to the gain of the second transmitting antenna 23 in the direction of the measuring station of rank m.

The powers Pr1 [m] and Pr2 [m] are for example measured in the frequency domain, after having applied a flat-top time window on the signal received by the measurement station 31. Such a time window makes it possible to concentrating the power of an unmodulated signal on a frequency, and is considered optimal for detecting and measuring the power of the first reference signal and the second reference signal, particularly in the case where these are sinusoidal signals.

The differential power measurement 5P [m] is for example calculated for the measuring station of rank m, according to the following expression: 5P [m] = Pt1 - Pt2 = Pt1 + Gt1 [m] - Pt2 - Gt2 [m] ]

The inter-station differential measurement ΔΡ [ιτι, η], between the measuring station of rank m and the measuring station of rank n (m being different from n), is for example calculated according to the following expression: ΔΡ [ιτι , η] = 5P [m] -5P [n] = Gt1 [m] -Gt2 [m] - (Gt1 [n] - Gt2 [n])

It is therefore found that the inter-station differential measurements no longer depend only on the different values of the gains of the first transmitting antenna 21 and the second transmitting antenna 23 in the respective directions of the measuring stations of rank m and n.

Consequently, it is possible to calculate theoretical inter-station differential measurements ΔΡτ [ιτι, η] (Υ) for each possible attitude Y of the satellite 20, as a function of the respective positions of the satellite 20 and the measurement stations 31, and according to the respective radiation patterns of the first transmitting antenna 21 and the second transmitting antenna 23 with respect to said satellite 20. The attitude of the satellite 20 can be estimated by optimizing a predetermined cost function. For example, the estimated attitude Yest of the satellite 20 is determined, as a function of the inter-station differential measurements AP [k] calculated for Np pairs of measurement stations 31 (1 <k <Np), so as to minimize the squared error between the calculated inter-station differential measurements AP [k] and the theoretical inter-station differential measurements APT [k], for example weighted according to the following expression:

expression in which σι <corresponds to the noise variance of the inter-station differential measurement AP [k],

As previously indicated, the attitude error in yaw is generally negligible for a satellite 20 in GEO orbit. Therefore, it is possible to consider only possible Y attitudes for which the yaw attitude corresponds to the mission attitude. Alternatively, it is possible to consider several possible values of the yaw attitude when calculating the theoretical inter-station differential measurements APT [k], It is also possible to estimate the yaw attitude by other means, by example by means of measurements provided by on-board sensors aboard the satellite 20 (the estimated yaw attitude being for example transmitted by said satellite 20 to the central station), and of not calculating theoretical inter-station differential measurements APj [k] only for possible Y attitudes for which the yaw attitude is equal to this estimate.

In preferred embodiments, the measurement stations 31 are synchronized temporally with each other. By "temporally synchronized with each other" is meant that the estimation system 10 is capable of temporally recalibrating between them differential power measurements calculated for two different measurement stations 31.

Such provisions therefore make it possible to ensure a better temporal coherence of the differential power measurements taken into account to calculate the inter-station differential measurements. Indeed, it is then possible to identify differential power measurements calculated for signals received at the same time by the different measurement stations 31, possibly at the time difference differences between the satellite 20 and the different measurement stations 31 . It is then ensured that the signals taken into account in the different measurement stations 31 have been transmitted with substantially the same transmission powers Pt1, for the first reference signal, and Pt2 for the second reference signal.

The attitude estimation method 50 thus obtained is therefore more robust to the temporal variations of the transmission powers by the satellite 20 of the first reference signal and the second reference signal.

The measurement stations 31 are preferably temporally synchronized by GPS ("Global Positioning System"). However, any method of time synchronization can be implemented, and the choice of a particular method is only a variant of implementation of the invention. The accuracy with which the measurement stations 31 are synchronized temporally with each other is preferably of the order of 10 milliseconds (ms), or even less.

In preferred embodiments, the measurement stations 31 comprising respective reception chains, the attitude estimation method 50 comprises, for each measurement station, the estimation of an error introduced by said chain of measurement. receiving on the calculation of the differential power measurement, called "differential power error", and the compensation of said differential power error on the differential power measurement.

Indeed, the reception channels of the measurement stations 31 consist of equipment whose characteristics may vary with the frequency. Thus, the gain introduced, by a reception chain, onto the first reference signal (received on the central frequency F1) may be different from the gain introduced on the second reference signal (received on the central frequency F2), and these differences of gain are likely to introduce a bias on differential power measurements and, ultimately, on inter-station differential measurements. The estimation of differential power errors aims precisely to calibrate these differences in gain and to compensate for them.

For example, the estimation of the power differential error comprises, for at least one of the measurement stations 31, the injection into the reception chain of said measurement station of a first calibration signal and of a second calibration signal.

Preferably, the first calibration signal and the second calibration signal are injected as far upstream as possible from the reception chain, so that they pass essentially the same equipment as the first reference signal and the second reference signal. For example, the first calibration signal and the second calibration signal are presented at the input of the LNB ("Low Noise Bock converter"), that is to say immediately at the output of the receiving antenna of the station. measure 31.

Preferably, the first calibration signal and the second calibration signal are injected into the reception chain simultaneously with the reception of the first reference signal and the second reference signal. Such arrangements are advantageous in that the gain difference introduced by a reception chain can vary over time, and in this way a better temporal coherence is ensured between the estimated differential power error and the calculated power differential measurement. . For example, it is possible to inject, during the attitude estimation operations, the first calibration signal and the second calibration signal continuously into the reception chain, which makes it possible to ensure that will be well received at the same time as the first reference signal and the second reference signal.

In preferred embodiments, the first calibration signal and the second calibration signal are injected at different central frequencies F'1 and F'2, and are, for example, sinusoidal signals. The central frequencies F'1 and F'2 are preferably chosen close to the central frequencies respectively F1 and F2, to ensure that the first calibration signal and the second calibration signal are subject to substantially the same differences in gains as the first one. reference signal and the second reference signal. For example, the difference between the central frequencies F'1 and F1 (respectively F'2 and F2) is less than 100 kilohertz (kFlz).

The first calibration signal and the second calibration signal are injected, in the reception chain, with the same power or with a predetermined power ratio. The differential power error is then calculated, as the differential power measurement, in the form of a magnitude representative of a ratio between the respective powers of the first calibration signal and the second calibration signal measured at the output of said chain. receiving (possibly corrected by said ratio of the injection powers of said first calibration signal and said second calibration signal in the reception chain, if said injection powers are not equal).

FIG. 4 schematically represents a preferred embodiment of a measuring station 31.

As illustrated by FIG. 4, the measurement station 31 notably comprises a reception antenna, for example of the type comprising a reflector 310 and a source 311, at the output of which is a reception channel 312. The input of the reception chain 312 comprises an LNB 313, and the output of said reception channel 312 is connected to a processing module 314 comprising means configured to digitize and process the signals at the output of said reception channel 312.

In addition, the measuring station 31 comprises a generation module 315 of the first calibration signal and the second calibration signal, the output of which is connected to a coupler 316 at the input of the LNB 313.

More particularly, in the example illustrated in FIG. 4, the generation module 315 comprises a first generator 317 of a signal on a central frequency Fg1 and a second generator 318 of a signal on a central frequency Fg2. The central frequencies Fg1 and Fg2 are advantageously chosen so that: - if F'1 <F'2: | Fg1 - Fg2 | = F'1 and | Fg1 + Fg2 | = F'2, - if F'1>F'2: | Fg1 - Fg2 | = F'2 and | Fg1 + Fg2 | = F'1.

The first generator 317 and the second generator 318 are connected to a nonlinear mixer 319 whose output is connected to the coupler 316. In a known manner, such a nonlinear mixer 319 ("mixer" in the English literature) produces the product input signals. This product outputs two signals of the same amplitude at respective center frequencies equal to | Fg1 - Fg2 | and | Fg1 + Fg2 |. Consequently, the signals at the output of the non-linear mixer 319 are centered on the central frequencies F'1 and F'2, and correspond respectively to the first calibration signal and the second calibration signal.

Such arrangements are advantageous in that they make it possible to ensure better control of the injection powers of the first calibration signal and the second calibration signal in the reception chain 312.

Indeed, the signals generated by the first generator 317 and the second generator 318 are likely to undergo different attenuations, in particular because they are centered on respective central frequencies Fg1 and Fg2 different and that the connection means until Nonlinear mixer 319 may have a large length. In the case illustrated in FIG. 4, the nonlinear mixer 319 can be arranged as close as possible to the coupler 316, in order to limit the length of the connection means between said nonlinear mixer 319 and said coupler 316. Thanks to the nonlinear mixer 319, the first calibration signal and the second calibration signal are injected with substantially the same power, regardless of the respective powers of the input signals of said nonlinear mixer 319.

More generally, it should be noted that the modes of implementation and realization considered above have been described by way of non-limiting examples, and that other variants are therefore possible.

In particular, the invention has been described by considering an attitude estimate of a satellite 20 based mainly on differential power measurements between signals transmitted by said satellite 20 and received by different measurement stations 31. Nothing excludes according to other examples, to consider also other measures.

In particular, the attitude estimation can also take into account the measurements of the sensors on board the satellite 20. For example, the measurements of said sensors can be transmitted to the ground and the method 50 can estimate the attitude of the satellite 20 according to both differential power measurements and measurements of said sensors. It is also possible, in particular, to estimate on the ground the attitude of the satellite 20 as a function of the differential power measurements, and to send the estimated attitude to the satellite 20. The satellite 20 can then, in turn, estimate its attitude by according to the measurements of the sensors and according to the estimated attitude received from the ground.

Claims (15)

REVENDICATIONS 1 - Procédé (50) d’estimation d’attitude d’un satellite (20), ledit satellite étant configuré pour générer et pour émettre un premier signal de référence sur un lien descendant au moyen d’une première antenne d’émission (21), ledit satellite étant en outre configuré pour recevoir des signaux utiles sur un lien montant, et pour retransmettre lesdits signaux utiles sur le lien descendant au moyen d’une seconde antenne d’émission (23), la première antenne d’émission desservant une zone de couverture (Zc1) englobant une zone de couverture (Zc2) de la seconde antenne d’émission, caractérisé en ce qu’il comporte : - l’émission (51) sur le lien montant d’un second signal de référence, qui est reçu par ledit satellite au moyen d’une antenne de réception (22) des signaux utiles, - la retransmission (52) par ledit satellite du second signal de référence au moyen de la seconde antenne d’émission, - la réception (54) du premier signal de référence et du second signal de référence par au moins trois stations sol se trouvant dans la zone de couverture de la seconde antenne d’émission, dites « stations de mesure >> (31), - le calcul (55), pour chaque station de mesure, d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de référence et du second signal de référence reçus, dite « mesure différentielle de puissance >>, - l’estimation (56) de l’attitude du satellite en fonction des mesures différentielles de puissance calculées.A method (50) for attitude estimation of a satellite (20), said satellite being configured to generate and transmit a first reference signal on a downlink using a first transmitting antenna (21). ), said satellite being further configured to receive useful signals on a uplink, and to retransmit said useful signals on the downlink by means of a second transmitting antenna (23), the first transmitting antenna serving a zone of coverage (Zc1) encompassing a coverage area (Zc2) of the second transmission antenna, characterized in that it comprises: - the transmission (51) on the uplink of a second reference signal, which received by said satellite by means of a reception antenna (22) of the wanted signals, - retransmission (52) by said satellite of the second reference signal by means of the second transmission antenna, - reception (54) the first ref signal erence and the second reference signal by at least three ground stations located in the coverage area of the second transmitting antenna, called "measurement stations" (31), - the calculation (55), for each station of measuring, a magnitude representative of a ratio between the respective powers of the first reference signal and the second reference signal received, said "differential power measurement", - the estimate (56) of the attitude of the satellite based on the calculated differential power measurements. 2 - Procédé (50) selon la revendication 1, comportant le calcul, pour au moins deux paires de stations de mesure, d’une grandeur représentative d’un rapport entre les mesures différentielles de puissance respectives des stations de mesure de ladite paire, dite « mesure différentielle interstation >>, et dans lequel l’attitude du satellite (20) est estimée en fonction desdites mesures différentielles inter-station calculées.2 - Method (50) according to claim 1, comprising the calculation, for at least two pairs of measuring stations, of a magnitude representative of a ratio between the respective differential power measurements of the measurement stations of said pair, so-called "Interstation differential measurement", and wherein the attitude of the satellite (20) is estimated as a function of said calculated inter-station differential measurements. 3 - Procédé (50) selon la revendication 2, comportant la synchronisation temporelle des stations de mesure entre elles, et dans lequel les mesures différentielles inter-station sont calculées à partir de mesures différentielles de puissance calculées pour des signaux reçus en même temps par les stations de mesure.3 - Process (50) according to claim 2, comprising the temporal synchronization of the measuring stations with each other, and wherein the inter-station differential measurements are calculated from differential power measurements calculated for signals received at the same time by the measuring stations. 4 - Procédé (50) selon l’une des revendications précédentes, caractérisé en ce que, les stations de mesure comportant des chaînes de réception respectives, ledit procédé comporte, pour chaque station de mesure, l’estimation d’une erreur introduite par ladite chaîne de réception sur le calcul de la mesure différentielle de puissance, dite « erreur différentielle de puissance >>, et la compensation de ladite erreur différentielle de puissance sur la mesure différentielle de puissance.4 - Method (50) according to one of the preceding claims, characterized in that, the measuring stations comprising respective reception chains, said method comprises, for each measuring station, the estimate of an error introduced by said reception chain on the calculation of the differential power measurement, called "differential power error", and the compensation of said differential power error on the differential power measurement. 5 - Procédé (50) selon la revendication 4, dans lequel l’estimation de l’erreur différentielle de puissance comporte, pour l’une au moins des stations de mesure, l’injection dans la chaîne de réception de ladite station de mesure d’un premier signal de calibration et d’un second signal de calibration, et le calcul d’une grandeur représentative d’un rapport entre les puissances respectives du premier signal de calibration et du second signal de calibration mesurés en sortie de ladite chaîne de réception.5 - Method (50) according to claim 4, wherein the estimation of the power differential error comprises, for at least one measuring station, the injection in the reception chain of said measuring station d a first calibration signal and a second calibration signal, and the calculation of a quantity representative of a ratio between the respective powers of the first calibration signal and the second calibration signal measured at the output of said reception channel; . 6 - Procédé (50) selon la revendication 5, dans lequel le premier signal de calibration et le second signal de calibration sont injectés sur des fréquences centrales respectives F’1 et F’2 différentes.6 - Process (50) according to claim 5, wherein the first calibration signal and the second calibration signal are injected on different central frequencies F'1 and F'2. 7 - Procédé (50) selon la revendication 6, comportant la génération du premier signal de calibration et du second signal de calibration par mélange non linéaire de deux signaux de fréquences centrales respectives Fg1 et Fg2 telles que : - |Fg1 - Fg2| = F’1 et |Fg1 + Fg2| = F’2, ou - |Fg1 - Fg2| = F’2 et |Fg1 +Fg2| = F’1.7 - Method (50) according to claim 6, comprising generating the first calibration signal and the second calibration signal by nonlinear mixing of two respective central frequency signals Fg1 and Fg2 such that: - | Fg1 - Fg2 | = F'1 and | Fg1 + Fg2 | = F'2, or - | Fg1 - Fg2 | = F'2 and | Fg1 + Fg2 | = F'1. 8 - Procédé (50) selon l’une des revendications précédentes, dans lequel le premier signal de référence et le second signal de référence sont émis sur des fréquences centrales respectives F1 et F2 différentes sur le lien descendant.8 - Process (50) according to one of the preceding claims, wherein the first reference signal and the second reference signal are emitted on different central frequencies F1 and F2 on the downlink. 9- Système (10) d’estimation d’attitude d’un satellite (20), ledit satellite comportant des moyens configurés pour émettre un premier signal de référence sur un lien descendant au moyen d’une première antenne d’émission (21), recevoir des signaux utiles sur un lien montant et retransmettre lesdits signaux utiles sur le lien descendant au moyen d’une seconde antenne d’émission (23), ladite première antenne d’émission desservant une zone de couverture (Zc1) englobant une zone de couverture (Zc2) de ladite seconde antenne d’émission, caractérisé en ce qu’il comporte : - une station sol, dite « station d’émission de référence >> (30), configurée pour émettre un second signal de référence sur le lien montant, adapté à être reçu par le satellite avec les signaux utiles, - au moins trois stations sol adaptées à recevoir le premier signal de référence émis au moyen de la première antenne d’émission et le second signal de référence retransmis au moyen de la seconde antenne d’émission, dites « stations de mesure >> (31), - des moyens configurés pour calculer, pour chaque station de mesure, une grandeur représentative d’un rapport entre les puissances respectives du premier signal de référence et du second signal de référence reçus, dite « mesure différentielle de puissance >>, - des moyens configurés pour estimer l’attitude du satellite en fonction des mesures différentielles de puissance calculées.A system (10) for attitude estimation of a satellite (20), said satellite having means configured to transmit a first reference signal on a downlink by means of a first transmitting antenna (21). , receiving useful signals on an uplink and retransmitting said useful signals on the downlink by means of a second transmitting antenna (23), said first transmitting antenna serving a coverage area (Zc1) including an area of cover (Zc2) of said second transmitting antenna, characterized in that it comprises: a ground station, called "reference transmission station" (30), configured to transmit a second reference signal on the link amount, adapted to be received by the satellite with the useful signals, - at least three ground stations adapted to receive the first reference signal transmitted by means of the first transmitting antenna and the second reference signal retracted nsmis by means of the second transmitting antenna, called "measuring stations" (31), - means configured to calculate, for each measuring station, a quantity representative of a ratio between the respective powers of the first signal of reference and the second reference signal received, called "differential power measurement", - means configured to estimate the attitude of the satellite as a function of the calculated differential power measurements. 10 - Système (10) selon la revendication 9, comportant des moyens configurés pour calculer, pour au moins deux paires de stations de mesure, une grandeur représentative d’un rapport entre les mesures différentielles de puissance respectives des stations de mesure de ladite paire, dite « mesure différentielle inter-station >>, et dans lequel l’attitude du satellite (20) est estimée en fonction desdites mesures différentielles inter-station calculées.10 - System (10) according to claim 9, comprising means configured to calculate, for at least two pairs of measurement stations, a quantity representative of a ratio between the respective differential power measurements of the measurement stations of said pair, so-called "inter-station differential measurement", and wherein the attitude of the satellite (20) is estimated as a function of said calculated inter-station differential measurements. 11- Système (10) selon la revendication 10, dans lequel les stations de mesure sont synchronisées temporellement entre elles.11- System (10) according to claim 10, wherein the measuring stations are synchronized temporally with each other. 12- Système (10) selon l’une des revendications 9 à 11, dans lequel les trois stations de mesure considérées sont situées, dans la zone de couverture de la seconde antenne d’émission du satellite placé dans une attitude de mission, de telle sorte que la valeur du gradient du diagramme de rayonnement de ladite seconde antenne d’émission dans la direction d’une desdites trois stations de mesure, dite « station de mesure de référence >> (31a), est inférieure aux valeurs dudit gradient du diagramme de rayonnement dans les directions respectives des deux autres stations de mesure (31b, 31c).12- System (10) according to one of claims 9 to 11, wherein the three measurement stations considered are located, in the coverage area of the second transmitting antenna of the satellite placed in a mission attitude, such so that the gradient value of the radiation pattern of said second transmitting antenna in the direction of one of said three measuring stations, referred to as the "reference measuring station" (31a), is less than the values of said gradient of the diagram radiation in the respective directions of the other two measuring stations (31b, 31c). 13 - Système (10) selon l’une des revendications 9 à 12, dans lequel, chaque station de mesure comportant une chaîne de réception, ledit système comporte des moyens configurés pour estimer, pour chaque station de mesure, une erreur introduite par ladite chaîne de réception sur le calcul de la mesure différentielle de puissance, dite « erreur différentielle de puissance >>, et pour compenser ladite erreur différentielle de puissance sur la mesure différentielle de puissance.13 - System (10) according to one of claims 9 to 12, wherein, each measuring station comprising a receiving chain, said system comprises means configured to estimate, for each measuring station, an error introduced by said chain receiving on the calculation of the differential power measurement, called "differential power error", and to compensate for said differential power error on the differential power measurement. 14- Système (10) selon la revendication 13, dans lequel l’une au moins des stations de mesure comporte des moyens configurés pour générer et pour injecter un premier signal de calibration et un second signal de calibration dans la chaîne de réception de ladite station de mesure, et des moyens configurés pour calculer une grandeur représentative d’un rapport entre les puissances respectives du premier signal de calibration et du second signal de calibration mesurés en sortie de ladite chaîne de réception.The system (10) of claim 13, wherein at least one of the measurement stations comprises means configured to generate and inject a first calibration signal and a second calibration signal into the reception string of said station. measuring device, and means configured to calculate a magnitude representative of a ratio between the respective powers of the first calibration signal and the second calibration signal measured at the output of said reception channel. 15 - Système (10) selon la revendication 14, dans lequel, le premier signal de calibration et le second signal de calibration étant injectés sur des fréquences centrales respectives F’1 et F’2 différentes, les moyens de génération dudit premier signal de calibration et dudit second signal de calibration sont configurés pour mélanger de manière non linéaire deux signaux de fréquences centrales respectives Fg1 et Fg2 telles que : - |Fg1 - Fg2| = F’1 et |Fg1 + Fg2| = F’2, ou - |Fg1 - Fg2| = F’2 et |Fg1 +Fg2| = F’1.15 - System (10) according to claim 14, wherein, the first calibration signal and the second calibration signal being injected on respective central frequencies F'1 and F'2 different, the means for generating said first calibration signal and said second calibration signal are configured to non-linearly mix two respective central frequency signals Fg1 and Fg2 such that: - | Fg1 - Fg2 | = F'1 and | Fg1 + Fg2 | = F'2, or - | Fg1 - Fg2 | = F'2 and | Fg1 + Fg2 | = F'1.
FR1558621A 2015-09-15 2015-09-15 METHOD AND SYSTEM FOR ESTIMATING THE ATTITUDE OF A SATELLITE BY MEANS OF MEASUREMENTS TAKEN BY GROUND STATIONS Active FR3041103B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1558621A FR3041103B1 (en) 2015-09-15 2015-09-15 METHOD AND SYSTEM FOR ESTIMATING THE ATTITUDE OF A SATELLITE BY MEANS OF MEASUREMENTS TAKEN BY GROUND STATIONS
EP16766946.4A EP3350080A1 (en) 2015-09-15 2016-09-15 Method and system for estimating the attitude of a satellite by means of measurements carried out by ground stations
PCT/EP2016/071892 WO2017046279A1 (en) 2015-09-15 2016-09-15 Method and system for estimating the attitude of a satellite by means of measurements carried out by ground stations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1558621A FR3041103B1 (en) 2015-09-15 2015-09-15 METHOD AND SYSTEM FOR ESTIMATING THE ATTITUDE OF A SATELLITE BY MEANS OF MEASUREMENTS TAKEN BY GROUND STATIONS

Publications (2)

Publication Number Publication Date
FR3041103A1 true FR3041103A1 (en) 2017-03-17
FR3041103B1 FR3041103B1 (en) 2020-07-31

Family

ID=55451261

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1558621A Active FR3041103B1 (en) 2015-09-15 2015-09-15 METHOD AND SYSTEM FOR ESTIMATING THE ATTITUDE OF A SATELLITE BY MEANS OF MEASUREMENTS TAKEN BY GROUND STATIONS

Country Status (3)

Country Link
EP (1) EP3350080A1 (en)
FR (1) FR3041103B1 (en)
WO (1) WO2017046279A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210344416A1 (en) * 2018-09-04 2021-11-04 Satixfy Israel Ltd. Allocation of Downlink Carrier Power in LEO Communication Satellites
FR3099672B1 (en) * 2019-07-31 2021-06-25 Thales Sa METHOD OF DETERMINING A MAXIMUM TRANSMIT POWER OF A NON-GEOSTATIONARY SATELLITE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697050A (en) * 1995-08-23 1997-12-09 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US20020169578A1 (en) * 2001-02-01 2002-11-14 Chun Yang Method and device for obtaining attitude under interference by a GPS receiver equipped with an array antenna
US20140022120A1 (en) * 2012-07-18 2014-01-23 Viasat, Inc. Ground assisted satellite antenna pointing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630058A (en) 1982-02-26 1986-12-16 Rca Corporation Satellite communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697050A (en) * 1995-08-23 1997-12-09 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US20020169578A1 (en) * 2001-02-01 2002-11-14 Chun Yang Method and device for obtaining attitude under interference by a GPS receiver equipped with an array antenna
US20140022120A1 (en) * 2012-07-18 2014-01-23 Viasat, Inc. Ground assisted satellite antenna pointing system

Also Published As

Publication number Publication date
WO2017046279A1 (en) 2017-03-23
EP3350080A1 (en) 2018-07-25
FR3041103B1 (en) 2020-07-31

Similar Documents

Publication Publication Date Title
EP2795813B1 (en) Method and system for estimating a path-length difference of a target signal transmitted by a spacecraft or aircraft
CA2917066C (en) Method and system for monitoring a phase for transferring a satellite from an initial orbit to a mission orbit
EP3698173B1 (en) Positioning system with gnss signal generation means and radiating cable
FR2978835A1 (en) SATELLITE PAYLOAD FOR INCREASE SYSTEMS
EP3491408B1 (en) Method and system for estimating the direction of a satellite in the transfer phase from an initial orbit to a mission orbit
EP3706238B1 (en) Ground calibration system of a payload of a satellite
WO2017046279A1 (en) Method and system for estimating the attitude of a satellite by means of measurements carried out by ground stations
EP2959308B1 (en) Method and system for estimating the direction of arrival of a target signal relative to a satellite
EP3345013B1 (en) Payload of a positioning system measurement satellite, and positioning method
EP2997668B1 (en) Phase difference measure of a signal received from a satellite or aircraft for its localisation using two receivers with generation of a receiver calibration signal
EP3560114A1 (en) Optical transmission from a satellite to a reception terminal
EP2629439B1 (en) Method for generating an emitting or receiving membrane of a satellite antenna
EP4081821B1 (en) Locating a transmitter by means of a plurality of geographically remote receiving stations using known object paths
WO2022162294A1 (en) Method and system for controlling an antenna in a satellite communication system
WO2023198978A1 (en) Positioning system having radiating cable segments

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170317

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9