FR3038083A1 - METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES - Google Patents

METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES Download PDF

Info

Publication number
FR3038083A1
FR3038083A1 FR1556004A FR1556004A FR3038083A1 FR 3038083 A1 FR3038083 A1 FR 3038083A1 FR 1556004 A FR1556004 A FR 1556004A FR 1556004 A FR1556004 A FR 1556004A FR 3038083 A1 FR3038083 A1 FR 3038083A1
Authority
FR
France
Prior art keywords
touch screen
control
screen
actuator
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1556004A
Other languages
French (fr)
Other versions
FR3038083B1 (en
Inventor
Gregory Soulier
Guennan Robert Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogeclair SA
Original Assignee
Sogeclair SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogeclair SA filed Critical Sogeclair SA
Priority to FR1556004A priority Critical patent/FR3038083B1/en
Priority to PCT/IB2016/053762 priority patent/WO2016207839A1/en
Publication of FR3038083A1 publication Critical patent/FR3038083A1/en
Application granted granted Critical
Publication of FR3038083B1 publication Critical patent/FR3038083B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/039Accessories therefor, e.g. mouse pads
    • G06F3/0393Accessories for touch pads or touch screens, e.g. mechanical guides added to touch screens for drawing straight lines, hard keys overlaying touch screens or touch pads
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Abstract

L'invention vise à mettre en œuvre un simulateur simple, léger et peu encombrant, tout en offrant une ergonomie 3D réaliste pour l'interface homme-machine . A cette fin, il est proposé d'élaborer des contacts de commandes physiques sur des écrans tactiles du simulateur configurés pour fournir des données de réglage d'affichage de ces écrans. Une façade de commande (10) d'un tel simulateur comporte, selon un mode de réalisation, un clavier (2, 2L, 8, 9) équipé d'actionneurs (20) pour former plastron (30), et un écran tactile (1) à technologie multipoints et/ou multitouches. Cet écran tactile (1) se compose d'une dalle (4, 4F) qui incorpore une grille chargée (4G), un écran de visualisation (13) et une unité de traitement (100) dédiée à un pilotage de visualisation. Chaque appui d'un actionneur (20) sur la dalle tactile (4) réalise un contact conducteur qui génère des signaux de localisation transmis à l'unité de traitement numérique (100) afin de produire, par une corrélation entre chaque signal de localisation de chaque actionneur (20) et un paramétrage adapté d'un affichage auquel l'actionneur (20) est dédié, des données de réglage et/ou de modification des paramètres d'affichage.The invention aims to implement a simulator simple, lightweight and compact, while providing a realistic 3D ergonomics for the human-machine interface. To this end, it is proposed to develop physical control contacts on simulator touch screens configured to provide display adjustment data of these screens. A control panel (10) of such a simulator comprises, according to one embodiment, a keyboard (2, 2L, 8, 9) equipped with actuators (20) for forming a front plate (30), and a touch screen ( 1) with multipoint and / or multitouch technology. This touch screen (1) consists of a slab (4, 4F) which incorporates a loaded grid (4G), a display screen (13) and a processing unit (100) dedicated to viewing control. Each press of an actuator (20) on the touch screen (4) makes a conductive contact which generates locating signals transmitted to the digital processing unit (100) to produce, by a correlation between each localization signal of each actuator (20) and a parameterization adapted to a display to which the actuator (20) is dedicated, setting data and / or modification of the display parameters.

Description

1 PROCÉDÉ D'INTERFAÇAGE ENTRE ORGANES D'INTERACTION ET ÉCRAN TACTILE, FAÇADE DE COMMANDE ET TERMINAUX MUNIS DE TELLES FAÇADES DESCRIPTION DOMAINE TECHNIQUE [0001]L'invention se rapporte à un procédé d'interfaçage entre des organes d'interaction - des actionneurs, des voyants, des alarmes sonores ou visuelles, ou d'autres organes de fonction équivalente - et un écran tactile en contact afin de transmettre des données d'interaction. L'invention concerne également une façade de commande (encore appelée ci-après « plastron ») comportant des organes d'interaction logés dans un châssis et un écran tactile interfacés selon ce procédé, ainsi qu'un terminal de commande et/ou de contrôle muni d'au moins une telle façade. L'invention s'applique notamment, mais pas exclusivement, à un simulateur de vol d'aéronef. [0002] Le domaine de l'invention se situe plus particulièrement dans la simulation de conduite destinée à l'apprentissage, à l'entraînement, à la qualification ou à la formation à de nouveaux équipements, notamment des ensembles de contrôle et/ou de commande dotés d'une Interface de dialogue Homme-Système (IHS) ou Homme-Machine (IHM), ci-après dénommée « terminal ». Outre le domaine aéronautique, l'invention peut s'appliquer dans de multiples domaines le bâtiment, la chirurgie, le rail, la route, le milieu maritime ou fluvial, la malvoyance, etc.). [0003]Les équipements de simulation de vol d'avion reconstituent un cockpit de pilotage combinant classiquement plusieurs panneaux, le panneau principal de contrôle localisé devant les pilotes (le « tableau de bord »), le panneau inférieur de gestion du guidage de vol situé entre les pilotes (appelé aussi « pylône »), le panneau supérieur de gestion des circuits s'étendant au-dessus des pilotes et le panneau de pilotage automatique localisé en auvent, au- dessus du panneau principal. Ces panneaux comportent des écrans de contrôle 3038083 2 en liaison avec des actionneurs (boutons, interrupteurs, commutateurs, manettes, etc.) de réglage, de sélection, de déclenchement /arrêt des systèmes de contrôle, de commande et de guidage de vol, ainsi que des voyants et/ou des alarmes. [0004]Ainsi, le panneau principal de contrôle rassemble en général les 5 écrans de contrôle (écrans de navigation, de contrôle des moteurs, de vol primaire avec l'assiette, l'altitude et le cap, écran de contrôle des circuits: hydrauliques, électriques, ventilation, etc.) ainsi que certaines commandes, par exemple la manette d'entrée/sortie du train d'atterrissage et la commande de freinage automatique. 10 [0005] Le panneau inférieur intègre généralement les unités d'affichage de commande multiple (ou « MCDU », acronyme de « Multi Control Display Unit » en terminologie anglaise) en liaison l'ordinateur de bord dans un vrai cockpit, ainsi que des manettes de poussée des gaz des moteurs (une manette par moteur) et d'autres commandes (par exemple: démarrage et extinction des moteurs, 15 commande d'aérofreins, des volets, de sélection d'affichage des circuits à contrôler et des fréquences de radionavigation, etc.), alors que le panneau supérieur peut regrouper les commandes de gestion des circuits (hydrauliques, électriques, ventilation, carburant, dégivrage et antigivre, éclairages, etc.). [0006] Les actionneurs sont matérialisés par des boutons (boutons 20 poussoirs monostables et bistables, rotacteurs multi-positions, leviers, interrupteurs bistables, codeurs etc.) et des manettes (poussée des gaz, levier de vitesse de freinage, etc.) agissant en variation continue ou discontinue pour activer les fonctions dédiées. Ces boutons et manettes reproduisent les actionneurs réels en conservant les parties externes pour satisfaire l'aspect visuel 25 et haptique de l'ergonomie d'interaction homme-machine. [0007] Ces parties externes activent, sous chaque actionneur, des mécanismes internes complexes et volumineux, mécaniques ou électromécaniques, pour les équipements de l'avion dans les cockpits réels. Ces mécanismes internes sont également présents dans les simulateurs pour 30 conserver le réalisme de la manipulation des parties externes. [0008] Dans les simulateurs, les images visualisées sur les écrans de contrôle proviennent de bibliothèques de données gérées par une unité centrale 3038083 3 de traitement numérique qui reçoit les instructions fournies par les commandes et modifient en conséquence les images des écrans de contrôle. ÉTAT DE LA TECHNIQUE [0009] Les simulateurs réalistes sont complexes, lourds et encombrants.TECHNICAL FIELD [0001] The invention relates to a method of interfacing between interacting members - actuators, a method for interfacing between interaction organs and a touch screen, a control facade and terminals with such facades. LEDs, audible or visual alarms, or other devices of equivalent function - and a touch screen in contact to transmit interaction data. The invention also relates to a control panel (hereinafter referred to as a "front panel") comprising interaction members housed in a chassis and a touch screen interfaced according to this method, as well as a control and / or control terminal. provided with at least one such facade. The invention applies in particular, but not exclusively, to an aircraft flight simulator. The field of the invention is more particularly in the driving simulation for learning, training, qualification or training in new equipment, including control assemblies and / or command with a Human-System (IHS) or Man-Machine (HMI) dialogue interface, hereinafter referred to as "terminal". In addition to the aeronautical field, the invention can be applied in a variety of fields: building, surgery, rail, road, maritime or fluvial environment, low vision, etc.). [0003] The aircraft flight simulation equipment reconstitute a cockpit of piloting conventionally combining several panels, the main control panel located in front of the pilots (the "dashboard"), the lower management panel of the flight guidance located between the pilots (also called "pylon"), the upper circuit management panel extending above the pilots and the autopilot panel located in the awning, above the main panel. These panels include control screens 3038083 2 in conjunction with actuators (buttons, switches, switches, levers, etc.) for adjusting, selecting, tripping / stopping control, control and flight guidance systems, as well as only lights and / or alarms. Thus, the main control panel generally gathers the 5 control screens (navigation screens, engine control, primary flight with attitude, altitude and heading, control screen circuits: hydraulic , electrical, ventilation, etc.) as well as certain controls, such as landing gear input / output lever and automatic brake control. [0005] The lower panel generally integrates the multi-control display units (or "MCDU", acronym for "Multi Control Display Unit" in English terminology) in connection with the on-board computer in a real cockpit, as well as engine thrust levers (one throttle per engine) and other controls (for example, starting and extinguishing engines, controlling air brakes, flaps, selecting display of circuits to be controlled and frequency radionavigation, etc.), while the upper panel can group circuit management controls (hydraulic, electrical, ventilation, fuel, defrost and anti-icing, lighting, etc.). The actuators are materialized by buttons (pushbuttons 20 monostable and bistable, multi-position rotators, levers, bistable switches, encoders etc.) and levers (thrust of the throttle, brake speed lever, etc.) acting in continuous or discontinuous variation to activate the dedicated functions. These buttons and levers reproduce the actual actuators while maintaining the external parts to satisfy the visual and haptic appearance of human-machine interaction ergonomics. These external parts activate, under each actuator, complex internal mechanisms and voluminous, mechanical or electromechanical, for the equipment of the aircraft in the actual cockpits. These internal mechanisms are also present in the simulators to preserve the realism of the manipulation of the external parts. In simulators, the images displayed on the control screens come from data libraries managed by a digital processing unit 3038083 3 which receives the instructions provided by the commands and modifies the images of the control screens accordingly. STATE OF THE ART [0009] Realistic simulators are complex, heavy and bulky.

5 Afin de simplifier l'interface homme-machine d'ergonomie tridimensionnelle (3D) de ces simulateurs, des simulateurs bidimensionnels (2D) utilisant des écrans tactiles pour visualiser les commandes et les écrans de contrôle ont été développés. Les écrans tactiles de ces simulateurs 2D traduisent directement les contacts exercés sur l'image des commandes par des variations dans les données 10 fournies aux écrans de contrôle, ce qui simplifie et diminue en taille et poids les simulateurs 3D. [0010]Cependant cette approche n'est pas satisfaisante car la manipulation des commandes 2D n'est pas comparable au regard du ressenti et de la maîtrise du geste à celle des commandes 3D. Ainsi, tout apprentissage ou 15 entraînement, toute formation à de nouvelles commandes ou à de nouvelles organisations de commandes ne peut être réalisé dans des conditions réalistes. [0011] Une évolution de cette approche 2D consiste à utiliser un panneau interchangeable de commandes superposé à un écran de visualisation laissant apparaître l'image des écrans de contrôle. Cette approche est en particulier 20 illustrée par le document de brevet US 2010/266992. De tels panneaux interchangeables permettent de s'adapter aux cockpits de différents avions ou à de nouveaux cockpits. Cependant, la problématique concernant la complexité, la lourdeur et l'encombrement des simulateurs n'est pas résolue car la partie interne des commandes est, dans le cas de panneaux interchangeables, simplement 25 déportée pour permettre la superposition de ces panneaux aux écrans de visualisation. [0012] Par ailleurs, il existe également des claviers physiques superposés à des claviers virtuels d'écrans tactiles afin d'optimiser le toucher ou la précision de la saisie. La manipulation 3D des touches de clavier est ainsi récréée à partir 30 d'un clavier virtuel 2D. De tels claviers sont décrits par exemple dans les documents de brevet US 8 206 47 ou US 8 558 796. Cependant, ce type de 3038083 4 solution est basé sur la substitution d'une pression directe sur une localisation du clavier virtuel par une pression exercée via une touche dédiée du clavier physique. Une telle correspondance entre des claviers physique et virtuel est incompatible avec l'utilisation de commandes de cockpit d'avion qui sont conçues pour se 5 déplacer de manière plus élaborée qu'un simple contact afin d'exercer des actions variées. EXPOSÉ DE L'INVENTION [0013] L'invention vise à résoudre les problèmes évoqués plus haut, à savoir la mise en oeuvre de terminaux moins complexes, moins lourds et moins 10 encombrants, tout en offrant une ergonomie 3D réaliste pour l'interface homme- machine. A cette fin, la présente invention propose d'élaborer des configurations de contact des commandes physiques sur des écrans tactiles aptes à permettre d'élaborer des données de réglage ou de modification d'un affichage donné. [0014] Plus précisément, la présente invention a pour objet un procédé 15 d'interfaçage entre des organes interactifs dédiés et un écran tactile à technologie multipoints et/ou multitouches comportant une dalle tactile et une unité de traitement numérique dédiée à un pilotage de visualisation. Chaque appui d'un organe interactif de type actionneur dédié parmi les actionneurs sur la dalle tactile réalise un contact sur la dalle tactile qui génère alors des signaux de localisation 20 du contact. Ces signaux de localisation sont transmis ensuite à l'unité de traitement numérique qui produit alors, par une corrélation prédéterminée entre chaque signal de localisation de chaque actionneur et un paramétrage adapté d'un affichage préétabli auquel l'actionneur est dédié, des données de réglage et/ou de modification des paramètres d'affichage en fonction de la localisation et 25 de la trajectoire du contact. [0015] Selon des particularités avantageuses, le procédé selon l'invention prévoit les mises en oeuvre suivantes: - la trajectoire du contact de chaque actionneur sur la dalle tactile peut être ponctuelle, au moins en partie linéaire, circulaire, discontinue, en traits 30 pointillés et/ou en points en fonction du mouvement donné à l'actionneur; 3038083 5 - les organes interactifs sont rétro-éclairables par un écran de visualisation associée à la dalle tactile; - l'affichage préétabli peut être visualisé sur un écran choisi entre un écran de visualisation associé à la dalle tactile en interface avec les organes 5 d'interaction et l'écran de visualisation d'un autre écran. Cet autre écran peut être tactile ou non tactile. [0016] L'invention se rapporte également à une façade de commande comportant un clavier équipé d'organes interactifs pour former un plastron et un écran tactile à technologie multipoints et/ou multitouches comportant une dalle 10 tactile, un écran de visualisation et une unité de traitement numérique dédiée à un pilotage de visualisation, le plastron et l'écran tactile étant interfacés selon le procédé défini ci-dessus. Avantageusement, la conductivité électrique de la dalle tactile est exploitée par une technologie choisie entre capacitive, résistive et inductive. Alternativement des technologies non conductrices (par exemple à 15 infrarouge ou à ultrasons) peuvent être utilisées. De plus, les organes interactifs de type bouton-poussoir peuvent être montés sur une plaque élastique isolante afin de les stabiliser et exercer sur eux une force de rappel. Alternativement, la façade de commande peut intégrer une membrane souple solidaire du plastron et qui présente au regard de chaque organe interactif de type bouton-poussoir un 20 dôme convexe traversé par un orifice situé au point culminant du dôme. En outre, des moyens antivibratoires peuvent être montés sur la façade de commande. [0017] L'invention se rapporte aussi à un terminal de commande et/ou de contrôle comportant au moins une façade de commande telle que définie ci-dessus. En particulier, à un simulateur de vol d'aéronef comportant des panneaux 25 de cockpit d'un avion du type définis ci-dessus et localisés devant, au-dessus et à côté des opérateurs. Dans ce simulateur de vol, au moins l'un de ces panneaux intègre au moins une façade de commande définie ci-dessus. De plus, les données de réglage et/ou de modification provenant de l'unité de traitement numérique de la (chaque) façade de commande sont transmises à une unité 30 centrale de gestion numérique qui traduit ces données de réglage et/ou de modification en signaux vidéo d'adaptation des paramètres d'affichage d'au moins 3038083 6 un écran de contrôle d'au moins un panneau et transmet ces signaux aux écrans concernés. PRÉSENTATION DES FIGURES 5 [0018] D'autres données, caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description non limitée qui suit, en référence aux figures annexées qui représentent, respectivement : - la figure 1, une vue supérieure partielle de panneau inférieur ou pylône de simulateur de vol comportant un exemple de façade de commande selon 10 l'invention sous la forme d'une unité MCDU; - la figure 2, une vue en coupe de la façade de commande selon le plan I -Ide la figure 1; - les figures 3a et 3b, une vue agrandie en coupe partielle d'un bouton poussoir dans un châssis de plastron, avant et après son appui sur la dalle tactile 15 de la façade de commande; - les figures 4a et 4b, deux vues en coupe partielle d'un actionneur rotatif et d'un actionneur linéaire utilisés dans des façades de commande selon l'invention; - la figure 5, des vues frontales de différents types d'actionneurs utilisés 20 dans les plastrons selon l'invention; - la figure 6, un logigramme fonctionnel du procédé d'interfaçage selon l'invention appliqué à un simulateur de vol selon l'invention, et - la figure 7, une vue en perspective d'un exemple de simulateur de vol comportant des façades de commande selon l'invention.In order to simplify the human-machine interface of three-dimensional ergonomics (3D) of these simulators, two-dimensional (2D) simulators using touch screens to display the controls and the control screens have been developed. The touch screens of these 2D simulators directly translate the contacts exerted on the image of the controls by variations in the data supplied to the control screens, which simplifies and decreases the size and weight of the 3D simulators. However, this approach is not satisfactory because the manipulation of 2D commands is not comparable to the perception of feeling and control of the gesture to that of 3D commands. Thus, any training or training, any training in new orders or ordering organizations can not be achieved under realistic conditions. An evolution of this 2D approach is to use an interchangeable panel of commands superimposed on a display screen revealing the image of the control screens. This approach is particularly illustrated by US patent document 2010/266992. Such interchangeable panels make it possible to adapt to the cockpits of different aircraft or to new cockpits. However, the problematic concerning the complexity, the heaviness and the bulk of the simulators is not solved because the internal part of the commands is, in the case of interchangeable panels, simply offset to allow the superposition of these panels to the display screens. . Moreover, there are also physical keyboards superimposed on virtual keyboards touch screens to optimize the touch or precision of the input. The 3D manipulation of the keyboard keys is thus recreated from a 2D virtual keyboard. Such keyboards are described, for example, in US Pat. No. 8,206,447 or US Pat. No. 8,558,796. However, this type of solution is based on the substitution of a direct pressure on a location of the virtual keyboard by a pressure exerted on it. via a dedicated key of the physical keyboard. Such correspondence between physical and virtual keyboards is incompatible with the use of aircraft cockpit controls which are designed to move more elaborately than a single contact in order to perform various actions. SUMMARY OF THE INVENTION [0013] The invention aims to solve the problems mentioned above, namely the implementation of less complex terminals, less heavy and less bulky, while providing a realistic 3D ergonomics for the human interface - machine. To this end, the present invention proposes to develop contact configurations of physical controls on touch screens capable of developing adjustment data or modification of a given display. More specifically, the present invention relates to a method 15 for interfacing between dedicated interactive organs and a touch screen with multipoint technology and / or multitouch comprising a touch screen and a digital processing unit dedicated to viewing control . Each support of a dedicated actuator type interactive member among the actuators on the touch screen makes contact on the touch screen which then generates contact location signals 20. These location signals are then transmitted to the digital processing unit which then produces, by a predetermined correlation between each location signal of each actuator and a parameterization adapted from a preset display to which the actuator is dedicated, adjustment data. and / or modifying the display parameters as a function of the location and the path of the contact. According to advantageous features, the method according to the invention provides the following implementations: the trajectory of the contact of each actuator on the touch screen may be one-off, at least partly linear, circular, discontinuous, in phantom dotted and / or in points depending on the movement given to the actuator; The interactive organs are backlit by a display screen associated with the touch screen; - The preset display can be viewed on a screen selected between a display screen associated with the touch screen interface with the interaction members 5 and the display screen of another screen. This other screen can be touch or non-touch. The invention also relates to a control panel comprising a keyboard equipped with interactive organs to form a plastron and a touch screen multipoint technology and / or multitouches comprising a touch panel 10, a display screen and a unit digital processing dedicated to viewing control, the front plate and the touch screen being interfaced according to the method defined above. Advantageously, the electrical conductivity of the touch screen is exploited by a technology chosen between capacitive, resistive and inductive. Alternatively nonconductive (e.g. infrared or ultrasound) technologies may be used. In addition, the interactive organs push button type can be mounted on an insulating elastic plate to stabilize them and exert on them a restoring force. Alternatively, the control panel may incorporate a flexible membrane integral with the front plate and which has, with respect to each push button-type interactive member, a convex dome through which a hole at the highest point of the dome passes. In addition, antivibration means can be mounted on the control panel. The invention also relates to a control terminal and / or control comprising at least one control panel as defined above. In particular, an aircraft flight simulator comprising cockpit panels 25 of an aircraft of the type defined above and located in front of, above and beside the operators. In this flight simulator, at least one of these panels incorporates at least one control panel defined above. In addition, the adjustment and / or modification data from the digital processing unit of the (each) control panel are transmitted to a digital central management unit which translates these adjustment and / or modification data into the control unit. video signals for adapting the display parameters of at least one control panel of at least one panel and transmits these signals to the relevant screens. PRESENTATION OF THE FIGURES [0018] Other data, characteristics and advantages of the present invention will appear on reading the following nonlimited description, with reference to the appended figures which represent, respectively: FIG. 1, a partial top view lower panel or flight simulator pylon having an exemplary control panel according to the invention in the form of a MCDU unit; - Figure 2, a sectional view of the control panel according to the plane I -Ide of Figure 1; - Figures 3a and 3b, an enlarged partial sectional view of a push button in a frame of plastron, before and after its support on the touch screen 15 of the control panel; - Figures 4a and 4b, two views in partial section of a rotary actuator and a linear actuator used in control facades according to the invention; - Figure 5, front views of different types of actuators used in the plastrons according to the invention; FIG. 6, a functional diagram of the interfacing method according to the invention applied to a flight simulator according to the invention, and FIG. 7, a perspective view of an example of a flight simulator comprising facades of control according to the invention.

25 DESCRIPTION DÉTAILLÉE [0019] Une unité d'affichage de commande multiple dite MCDU 10, est illustrée en vue supérieure et en coupe sur les figures 1 et 2. Les unités MCDU 10 sont situées à l'avant du pylône 530 (panneau inférieur) d'un simulateur de vol 500 (cf. figure 7). 30 [0020] Cette unité MCDU 10 comporte un clavier 2 d'actionneurs dédiés 20 agencés dans un châssis 3 en matériau plastique. Le clavier 2 et le châssis 3 forme un plastron 30 qui repose sur la dalle tactile capacitive 4 d'un écran de 3038083 7 visualisation 13 à cristaux liquides, la dalle tactile 4 et l'écran de visualisation 13 formant la base d'un écran tactile 1. Le châssis 3 est fixé sur sa périphérie à l'écran tactile 4. Des avancées latérales 2L du plastron 30 dépourvus d'actionneur sont également illustrées. Avantageusement, le plastron 30 est localement rétro- 5 éclairé par des LED intégrées dans l'écran de visualisation 13 ou par d'autres technologies (par exemple des LED organiques ou OLED), ces sources lumineuses étant gérées par les formes et les couleurs affichées à l'écran. [0021] Les actionneurs dédiés 20 sont ici des boutons poussoirs qui agissent par contact ponctuel sur la dalle tactile capacitive 4 selon un interfaçage 10 piloté par l'unité de traitement numérique 100 de l'écran tactile 1. L'unité MCDU 10 constituée par le plastron 30 et l'écran tactile 13 forme ainsi une façade de commande selon l'invention, fonctionnant selon le procédé d'interfaçage de l'invention (cf. figure 6). [0022] Plus précisément, chaque bouton poussoir 20 est constitué en 15 matériau plastique conducteur électrique ou, alternativement, recouvert d'une pellicule de peinture conductrice afin de réaliser un contact électrique avec la dalle tactile capacitive 4. Alternativement, les boutons - ou actionneurs de manière générale - peuvent être en aluminium usiné. [0023] Une plaque de silicone 8 est montée sur une embase 11 formée 20 dans le châssis 3 pour exercer une triple fonction: maintenir les boutons pressions 20 dans leur logement délimité dans le châssis 3, isoler électriquement les boutons 20 entre eux et exercer une force de rappel élastique sur le bouton lors de l'appui par l'opérateur. Alternativement la plaque 8 peut être une feuille de polypropylène, de PVC ou de tout autre matériau plastique souple. 25 [0024] La dalle tactile capacitive 4 bénéficie de la technologie multipoints ou multitouches en fonction du type d'actionneurs - statiques ou dynamiques que le clavier accueille. Dans le cas d'un clavier équipé uniquement de boutons poussoirs 20, tel que le clavier 2, la technologie statique multipoints suffit. La dalle tactile 4 incorpore une grille 4G électriquement chargée sur sa face externe 4F. 30 [0025] Lors d'un contact par l'appui d'un bouton poussoir 20, les charges accumulées sur la dalle 3 sont transférées vers le bouton poussoir 20, ce qui créé un déficit de charge. L'appui exercé est localisé par la conversion du déficit de 3038083 8 charge en un signal de coordonnées de localisation sur la grille 4G qui est transmis à l'unité de traitement numérique 100. Cette unité 100 traduit le signal de localisation reçu - en liaison avec d'autres signaux de localisation provenant d'autres actionneurs - en données de réglage/modification et transmet des 5 signaux vidéo d'adaptation à l'écran tactile 1 de l'unité MCDU correspondante (cf. figure 6). Par exemple, les données permettent de calculer des estimations de temps pour en déduire des heures d'arrivée, des vitesses de décollage et d'atterrissage, etc. [0026] En référence à la vue agrandie en coupe partielle des figures 3a et 10 3b, un bouton poussoir 20' - équivalent au bouton poussoir 20 mais selon une conformation légèrement différente - est illustré dans un châssis 3' de plastron 30' d'une façade de commande 301 selon l'invention, respectivement avant et après son appui sur la dalle tactile capacitive 4. Outre le bouton poussoir 20' dans un logement 9 du châssis 3', ces figures montrent une membrane souple 5 - par 15 exemple en silicone ou en polypropylène - solidaire du châssis 3' en regard d'un film isolant antidérapant 6 solidaire de la dalle tactile 4, la membrane 5 et le film 6 s'étendant entre le châssis 3 et la dalle 4. Dans cette version, le châssis 3' n'intègre pas de plaque de silicone du fait de la présence de la membrane souple 5, de la configuration simplifiée du bouton 20' et de la structure de guidage du 20 logement 9. [0027]Avant appui (figure 3a), la membrane souple 5 présente un dôme convexe 51 au regard du bouton poussoir 20. Ce dôme 51 est traversé en son centre ou point culminant 5c par un orifice 52 de faible diamètre par rapport à celui de la section qui sous-tend le dôme 5. Les faces 5F du dôme 51 sont 25 avantageusement recouvertes d'un dépôt argentique conducteur 52. [0028] Par ailleurs, le film isolant antidérapant 6 s'étend sur la dalle tactile capacitive 4 et sous la membrane souple 5. Ce film isolant antidérapant 6 présente une ouverture 61 de diamètre légèrement supérieur à celui la section qui sous-tend le dôme 51. 30 [0029] Suite à l'appui de l'opérateur sur le bouton 20' par son index D1 (figure 3b), il apparaît qu'une extrémité avancée 2a du bouton 20' exerce une pression suffisante pour que le dôme 51 vienne « s'écraser » contre la dalle tactile 3038083 9 capacitive 4 réalisant un contact 1 c. Le bouton 20' étant électriquement conducteur, les charges accumulées sur la dalle 4 sont transférées au bouton poussoir 20' via l'orifice 52 de la membrane souple 5, puis évacués par le doigt D1 pour former un circuit fermé C1. La dalle 4 acquiert un signal « S » qui est traduit 5 en donnée de localisation du contact lc par l'unité de traitement 100 (cf. figures 2 et 6). Par combinaison avec d'autres données de localisation, des signaux vidéo d'adaptation sont transmis aux écrans de contrôle ou de commande d'un simulateur de vol (cf. figures 6 et 7). [0030] D'autres actionneurs dédiés - statiques ou dynamiques - sont 10 également adaptés pour fournir des points de contact formant des configurations respectivement ponctuelles ou continues - identifiées sur la dalle tactile capacitive 4. Dans le cas d'utilisation d'actionneurs dynamiques, la dalle tactile associée intègre la technologie multitouches qui permet de traiter plusieurs contacts dynamiques simultanés (alors que la technologie multipoints ne traite 15 simultanément que plusieurs contacts statiques). [0031] A titre d'exemple, la vue en coupe partielle de la figure 4a illustre un actionneur rotatif 21 d'une façade de commande 302 selon l'invention, ici sous la forme d'un rotacteur. Sur cette figure 4a, on retrouve des éléments de la figure 3a adaptés au rotacteur 21, à savoir: le châssis 3', un logement 9' formé dans le 20 châssis 3', la dalle tactile capacitive 4 et le film antidérapant 6. [0032] Le châssis 3' intègre un poussoir à ressort 7 qui vient en contact d'un pignon à trente-deux dents 2p qui, monté sur le rotacteur 21, permet de stabiliser avec précision sa position lors de la rotation et sa position finale (flèche F1). Deux doigts D2, formés à l'extrémité du rotacteur 21, sont en contact avec la 25 dalle tactile capacitive 4. [0033] L'actionneur 21 réalise un contact statique permanent en tant que rotacteur, pour fournir des données discontinues ou discrètes, par exemple des valeurs de fréquences de radioguidage ou de radiocommunication. Pour transmettre ces données, l'unité de traitement numérique 100 (cf. figures 2 et 6) 30 conserve la donnée correspondant à la position finale de l'actionneur 21. Alternativement, une dalle tactile en technologie multipoints est dédiée aux 3038083 10 actionneurs statiques regroupés sur cette dalle pour former une façade de commande (telle qu'évoquée en référence aux figures 1 et 2). [0034] L'actionneur 21 peut également être utilisé pour simuler un codeur en contact dynamique permanent avec la dalle tactile capacitive 4. Dans ce cas, la 5 dalle tactile est de technologie multitouches afin que l'unité de traitement numérique 100 (cf. figures 2 et 6) puisse prendre en compte la progression de la trajectoire réalisée par le contact et traduire cette progression en donnée variable à des instants successifs. [0035] Un autre type d'actionneur, à savoir un actionneur linéaire 22 à 10 contact dynamique permanent, est illustré par la vue en coupe de la figure 4b. Un tel actionneur 22 permet de simuler ici un bloc manette de poussée des gaz. Il comporte deux manettes radiales 8a et 8b en rotation autour d'un arbre 80 entre trois roues 81 coaxiales le long de l'arbre 80, la rotation étant ici provoquée par l'appui exercé par l'index D1 de l'opérateur sur la manette 8a. L'autre manette 8b 15 n'est pas manoeuvrée dans l'exemple illustré. [0036] La vue en coupe de la figure 4b laisse apparaître le mécanisme réalisé à titre d'exemple pour mettre en oeuvre un contact dynamique permanent et linéaire. Ce mécanisme se compose d'un câble en acier 82, venant d'une section de couronne principale 8c axée sur l'arbre 80 et guidé par un réa 83 vers 20 un point de fixation 84, ce point de fixation étant positionné en périphérie de roue 81 via un ressort 85 de mise sous tension élastique. Entre la sortie du réa 83 et le point de fixation 84, le câble 82 se déploie parallèlement à la face externe 4F de la dalle capacitive 4 de l'écran tactile 1 (cf. figure 1). Cette dalle 4 bénéficie de la technologie multitouches pour identifier et traiter les contacts dynamiques 25 permanents. [0037] De plus, un doigt frotteur D3 est agencé sur la portion de câble 82 parallèle à la face externe 4F de la dalle tactile capacitive 4. Ainsi le doigt frotteur D3 reste en contact avec la dalle tactile 4 en se déplaçant linéairement lorsque la manette 8a est actionnée en rotation. Lors de cette rotation (flèche F2), l'excès de 30 charge vient s'écouler dans le circuit fermé C2 formé par l'index D1 de l'opérateur via le câble 82. La dalle 4 acquiert des signaux « S » lors du déplacement linéaire du doigt D3, ces signaux « S » étant traduits en donnée de localisation par l'unité 3038083 11 de traitement 100 (cf. figures 2 et 6). La longueur de la trajectoire linéaire ainsi localisée fournit des données d'amplitude de la poussée des gaz souhaitée, ce qui va générer des signaux vidéo d'adaptation des paramètres d'affichage des écrans de contrôle des panneaux du simulateur de vol (cf. figures 6 et 7). 5 [0038] Des mécanismes de contact statique ou dynamique peuvent ainsi être adaptés de manière équivalente pour tout type d'actionneur classiquement utilisé dans un cockpit d'avion ou dans un poste de conduite d'autres véhicules, comme ceux illustrés par les vues frontales de la figure 5: bouton avec voyant 41, actionneur bistable 42, interrupteur multi-positions 43, commutateur rotatif 44, 10 bouton « push-pull » 45, bouton analogique 46, levier 47 et joystick 48. Ces mécanismes adaptés réalisent, de façon équivalente à celles décrites en référence aux figures 4a et 4b, des trajectoires en partie ou totalement linéaires, circulaires, courbes, continues ou discontinues, en traits pointillés et/ou en points. [0039] Le logigramme fonctionnel d'un simulateur de vol selon l'invention 15 est illustré sur la figure 6. Il fait intervenir l'interfaçage selon l'invention entre les actionneurs 200 et les écrans tactiles 1 (cf. figure 2) de façades de commande 300 ainsi qu'entre ces façades et des panneaux d'un simulateur de vol 500 (cf. figure 7). [0040] Par pressions successives exercées par l'opérateur sur une façade 20 de commande 300, les actionneurs 200 - tels que les actionneurs 20, 20', 21, 22, 41 à 48 décrits précédemment - réalisent des contacts ponctuels ou continus 1c sur l'écran tactile 1 (étape « A »). Ces contacts, électriquement conducteurs, génèrent des signaux de localisation « S » au niveau de la dalle tactile 4 qui sont transmis à l'unité de traitement numérique 100 de l'écran tactile 1 (étape « B »). 25 [0041] Des données de réglage des paramètres de vol (vitesse, poussée, altitude, horizontalité, etc.) ou de modification d'information (de guidage, de route, d'estimations de durée, etc.) sont alors calculées par l'unité 100 à partir de corrélations pré-acquises entre des signaux de localisation de chaque actionneur 200 et des variations de paramétrage de l'affichage de l'écran de contrôle 30 concerné - situé dans un panneau du simulateur de vol - et auquel l'actionneur 200 est dédié (étape « C »). 3038083 12 [0042] Ces données de réglage sont ensuite transmises à une unité centrale de gestion numérique 400. Cette unité centrale 400 recueille en fait les données de toutes les unités de traitement numériques 100 de toutes les façades de commande 300 (telles que des façades 10, 301 ou 302 décrites ci-dessus) du 5 simulateur. [0043] Lorsque les données de réglage reçues par l'unité centrale 400 ne sont pas cohérentes entre elles (flèche « NON »), l'unité centrale 400 transmet un signal d'erreur sur l'écran concerné de contrôle du simulateur 500 concerné et l'opérateur est invité sur cet écran à reprendre les manipulations sur les façades 10 de commande concernées (étape « D »). Sinon (flèche « OUI »), l'unité centrale 400 traduit de manière cohérente l'ensemble des données de réglage reçues en signaux vidéo d'adaptation et transmet ces signaux vidéo aux écrans concernés, ici aux écrans de contrôle du simulateur 500 (étape « E »). [0044]Afin de montrer l'architecture d'un simulateur de vol d'un avion 15 selon l'invention, le simulateur de vol 500 comportant des façades de commande 300 selon l'invention est illustré (sans les sièges) sur la vue en perspective de la figure 7. Ce simulateur 500 se compose d'un panneau de contrôle principal 510 (ou tableau de bord) coiffé du panneau de pilotage automatique 520 (qui n'intervient pas dans l'exemple de simulation décrit, mais dans d'autres 20 réalisations afin de couper, de déclencher ou de définir des limites au pilotage automatique), un panneau longitudinal de guidage de vol 530 disposé en position inférieure entre les opérateurs (le « pylône »), et un panneau supérieur de gestion des circuits 540, au-dessus des opérateurs. [0045] Tous ces panneaux (sauf le panneau de pilotage automatique 520) 25 sont constitués d'écrans tactiles 1 (cf. figure 2) au format 16/9 (rapport entre grand et petit côtés), à savoir plus précisément sur cette figure 7: trois écrans tactiles d'affichage de contrôle 91a et 91c, adjacents par le petit côté pour former le panneau principal de contrôle 510, trois écrans tactiles 93a à 93c d'affichage de commande adjacents par le grand côté pour former le panneau de guidage 30 longitudinal (pylône) 530, et deux écrans tactiles 94a et 94b adjacents par le grand côté pour représenter le panneau supérieur 540. 3038083 13 [0046] Des plastrons 33 à 39 forment des façades de commande 300 (cf. figures 6) avec les écrans tactiles sur lesquels ils sont fixés. Ainsi, sur l'écran central 91c du panneau de contrôle 510, un plastron 33 est fixé afin de former avec l'écran central 91c une façade de commande 300 selon l'invention. Le 5 plastron 33 comporte un levier 47 servant de manette d'entrée/sortie de train d'atterrissage de l'avion, et des boutons poussoirs munis de voyants 41 pour les commandes de freins automatiques. L'écran central 91c affiche des informations de contrôle des moteurs sur l'écran de contrôle 14 (puissance, consommation, alertes) et des systèmes sur l'écran de contrôle 12 (circuits hydrauliques, de 10 ventilation, etc.). Les écrans 91a du panneau de contrôle 510 affichent des informations sur la navigation avec l'écran de contrôle 18 (cap de l'avion, météorologie, trajectoire du vol, balises de radionavigation, etc.) et un écran de contrôle de vol primaire 16. [0047] Sur l'écran 93a du pylône 530 placé au plus près du panneau de 15 contrôle 510, deux plastrons 34 sont placés latéralement pour former deux unités MCDU d'entrée d'informations (nombre de passagers, aéroports de départ et d'arrivée, trajet choisi, etc.) telles que l'unité 10 décrite en référence aux figure 1 et 2. De plus, sur ce même pylône 530, sont également disposés (les signes de référence des actionneurs cités ci-dessous renvoient aux figures 4a, 4b et 5): 20 - entre les unités MCDU 10, un plastron central 35 comportant des boutons poussoirs 20', des commutateurs rotatifs 44 et des codeurs 21 de sélection dédiés au choix des affichages des écrans de contrôle 12, 14, 18 du panneau de contrôle 510 ; - derrière les unités MCDU 10, deux plastrons latéraux 36 munis 25 de boutons poussoirs 20 et 20', de codeurs 21 et d'un commutateur rotatif 44 de sélection des fréquences de radionavigation et communication; - entre les plastrons latéraux 36, le bloc manettes de poussée des gaz 22, ainsi que des boutons poussoirs 20' de mise à feu des moteurs; - à l'arrière du pylône 530, un plastron 37 regroupe des leviers 47 30 et 48 de commande des aérofreins et des volets d'ailes. 3038083 14 [0048] Quand aux écrans 94a et 94b du panneau supérieur 540, ils sont recouverts respectivement de plastrons centraux 38 et 39 comportant, respectivement: - des interrupteurs 43 servant de coupe-circuits associés aux 5 différents systèmes avioniques (air conditionné, éclairage, dégivrage, pressurisation, etc.); - des boutons poussoirs 20' de déclenchement d'extincteurs pour les moteurs et l'APU (l'unité d'énergie auxiliaire) et pour la gestion des circuits hydrauliques, de carburant et des circuits électriques; des commutateurs trois 10 positions 44 en liaison avec des boutons poussoirs 20' pour la gestion des circuits d'air, et des interrupteurs 43 pour les commandes de dégivrage / antigivrage, d'éclairages extérieurs / intérieurs de l'avion et de démarrage de l'APU. [0049] L'invention n'est pas limitée aux exemples de réalisation décrits et représentés. Ainsi, la technologie utilisée pour exploiter la conductivité électrique 15 de la dalle tactile peut être autre que capacitive, par exemple de type résistive ou encore inductive, les actionneurs étant alors autant de stylets habituellement adaptés à ce type de technologie. Alternativement, des dalles tactiles exploitant des technologies non conductrices - à infrarouge, ultrasons, ondes de surface peuvent être utilisées. 20 [0050] De plus, ces dalles tactiles peuvent se réduire à des « surfaces » tactiles lorsque la fonction tactile est intégrée directement dans l'écran de visualisation ou est déportée dans une autre partie. Par exemple, lorsque la fonction tactile est mise en oeuvre sans le support d'un écran de visualisation. [0051] Par ailleurs, des moyens antivibratoires - par exemple des plots, 25 des plaques, des manchons ou équivalents en matériau absorbant - peuvent être montés sur les façades de commande afin de sécuriser la tenue des actionneurs.DETAILED DESCRIPTION [0019] A multi-control display unit called MCDU 10, is shown in a top view and in section in FIGS. 1 and 2. The MCDU units 10 are located at the front of the tower 530 (lower panel) a flight simulator 500 (see Figure 7). This MCDU unit 10 comprises a keyboard 2 dedicated actuators 20 arranged in a frame 3 of plastic material. The keyboard 2 and the frame 3 form a plastron 30 which rests on the capacitive touch screen 4 of a liquid crystal display screen 13, the touch screen 4 and the display screen 13 forming the base of a screen 1. The chassis 3 is fixed on its periphery to the touch screen 4. Advances side 2L of the plastron 30 without actuator are also illustrated. Advantageously, the plastron 30 is locally backlit by LEDs integrated in the display screen 13 or by other technologies (for example organic LEDs or OLEDs), these light sources being managed by the shapes and colors displayed. on the screen. The dedicated actuators 20 are here push buttons that act by point contact on the capacitive touch screen 4 according to an interfacing 10 controlled by the digital processing unit 100 of the touch screen 1. The MCDU unit 10 constituted by the plastron 30 and the touch screen 13 thus forms a control panel according to the invention, operating according to the interfacing method of the invention (see Figure 6). More specifically, each push button 20 is made of electrically conductive plastic material or, alternatively, covered with a conductive paint film in order to make an electrical contact with the capacitive touch pad 4. Alternatively, the buttons - or actuators in general - can be machined aluminum. A silicone plate 8 is mounted on a base 11 formed 20 in the frame 3 to perform a triple function: maintain the snaps 20 in their housing defined in the frame 3, electrically isolate the buttons 20 between them and exercise a elastic restoring force on the button when supported by the operator. Alternatively the plate 8 may be a sheet of polypropylene, PVC or any other flexible plastic material. The capacitive touch screen 4 benefits from multi-point or multitouch technology depending on the type of actuators - static or dynamic that the keyboard accommodates. In the case of a keyboard equipped only with pushbuttons 20, such as the keyboard 2, static multipoint technology is sufficient. The touch screen 4 incorporates an electrically charged 4G grid on its outer face 4F. At the time of a contact by the support of a push button 20, the charges accumulated on the slab 3 are transferred to the push button 20, which creates a load deficit. The support exerted is localized by the conversion of the load deficit into a location coordinate signal on the 4G gate which is transmitted to the digital processing unit 100. This unit 100 translates the received location signal - in connection with with other locating signals from other actuators - in adjustment / modification data and transmits matching video signals to the touch screen 1 of the corresponding MCDU (see Fig. 6). For example, the data can be used to calculate time estimates to derive arrival times, take-off and landing speeds, and so on. With reference to the enlarged partial sectional view of FIGS. 3a and 3b, a pushbutton 20 '- equivalent to the pushbutton 20 but in a slightly different conformation - is illustrated in a frame 3' of plastron 30 'of FIG. a control panel 301 according to the invention, respectively before and after its support on the capacitive touch panel 4. In addition to the push button 20 'in a housing 9 of the frame 3', these figures show a flexible membrane 5 - for example in silicone or polypropylene - secured to the frame 3 'facing a non-slip insulating film 6 integral with the touch screen 4, the membrane 5 and the film 6 extending between the frame 3 and the slab 4. In this version, the frame 3 'does not include a silicone plate due to the presence of the flexible membrane 5, the simplified configuration of the button 20' and the guide structure of the housing 9. [0027] Before pressing (FIG. 3a) , the flexible membrane 5 has a convex dome 51 with respect to the pushbutton 20. This dome 51 is crossed at its center or culminating point 5c by a small diameter orifice 52 relative to that of the section underlying the dome 5. The faces 5F of the dome 51 are 25 Furthermore, the non-slip insulating film 6 extends over the capacitive touch screen 4 and under the flexible membrane 5. This non-slip insulating film 6 has an opening 61 of slightly diameter. greater than that section underlying the dome 51. [0029] Following the support of the operator on the button 20 'by its index D1 (Figure 3b), it appears that an advanced end 2a of the button 20 'exerts sufficient pressure for the dome 51 to "crash" against the capacitive touch screen 4 making contact 1 c. The button 20 'being electrically conductive, the charges accumulated on the slab 4 are transferred to the push button 20' via the orifice 52 of the flexible membrane 5, then discharged by the finger D1 to form a closed circuit C1. The slab 4 acquires a signal "S" which is translated into the location data of the contact 1c by the processing unit 100 (see FIGS. 2 and 6). By combining with other location data, adaptation video signals are transmitted to control or control screens of a flight simulator (see Figures 6 and 7). [0030] Other dedicated actuators - static or dynamic - are also adapted to provide contact points forming respectively point or continuous configurations - identified on the capacitive touch screen 4. In the case of using dynamic actuators, the associated touch screen incorporates multitouch technology which makes it possible to process several simultaneous dynamic contacts (whereas multipoint technology processes simultaneously only several static contacts). By way of example, the partial sectional view of FIG. 4a illustrates a rotary actuator 21 of a control facade 302 according to the invention, here in the form of a rotator. In this figure 4a, there are elements of Figure 3a adapted to the rotator 21, namely: the frame 3 ', a housing 9' formed in the frame 3 ', the capacitive touch screen 4 and the non-slip film 6. [ 0032] The frame 3 'incorporates a spring plunger 7 which comes into contact with a pinion with thirty-two teeth 2p which, mounted on the rotator 21, makes it possible to precisely stabilize its position during the rotation and its final position ( arrow F1). Two fingers D2, formed at the end of the rotator 21, are in contact with the capacitive touch pad 4. The actuator 21 makes a permanent static contact as a rotator, to provide discontinuous or discrete data, by example of radio frequency or radiocommunication frequency values. To transmit these data, the digital processing unit 100 (see FIGS. 2 and 6) retains the data corresponding to the final position of the actuator 21. Alternatively, a touch-sensitive panel with multipoint technology is dedicated to the 3038083 10 static actuators. grouped on this slab to form a control panel (as evoked with reference to Figures 1 and 2). The actuator 21 can also be used to simulate an encoder in permanent dynamic contact with the capacitive touch screen 4. In this case, the touch panel is of multitouch technology so that the digital processing unit 100 (see FIG. Figures 2 and 6) can take into account the progression of the trajectory achieved by the contact and translate this progression into variable data at successive times. Another type of actuator, namely a linear actuator 22 with 10 permanent dynamic contact, is illustrated by the sectional view of FIG. 4b. Such an actuator 22 makes it possible to simulate here a gas thrust block block. It comprises two radial levers 8a and 8b rotated about a shaft 80 between three coaxial wheels 81 along the shaft 80, the rotation being here caused by the support exerted by the index D1 of the operator on the handle 8a. The other handle 8b is not operated in the illustrated example. The sectional view of Figure 4b shows the mechanism made by way of example to implement a permanent and linear dynamic contact. This mechanism consists of a steel cable 82, coming from a main crown section 8c centered on the shaft 80 and guided by a sheave 83 to an attachment point 84, this fixing point being positioned on the periphery of wheel 81 via a spring 85 for elastic tensioning. Between the outlet of the sheave 83 and the attachment point 84, the cable 82 extends parallel to the outer face 4F of the capacitive plate 4 of the touch screen 1 (see FIG. This slab 4 benefits from multitouch technology to identify and process permanent dynamic contacts. In addition, a rubbing finger D3 is arranged on the cable portion 82 parallel to the outer face 4F of the capacitive touch screen 4. Thus the rubbing finger D3 remains in contact with the touch screen 4 by moving linearly when the handle 8a is actuated in rotation. During this rotation (arrow F2), the excess charge flows in the closed circuit C2 formed by the index D1 of the operator via the cable 82. The panel 4 acquires signals "S" during the linear displacement of the finger D3, these signals "S" being translated into location data by the processing unit 100 (see FIGS. 2 and 6). The length of the linear trajectory thus localized provides data of amplitude of the desired thrust of the gases, which will generate video signals of adaptation of the display parameters of the control screens of the panels of the flight simulator (see figures 6 and 7). Static or dynamic contact mechanisms can thus be adapted in an equivalent manner for any type of actuator conventionally used in an aircraft cockpit or in a driving position of other vehicles, such as those illustrated by the frontal views. of FIG. 5: button with indicator 41, bistable actuator 42, multi-position switch 43, rotary switch 44, 10 push-pull button 45, analog button 46, lever 47 and joystick 48. These adapted mechanisms realize, equivalent to those described with reference to Figures 4a and 4b, trajectories partially or totally linear, circular, curved, continuous or discontinuous, in dashed lines and / or in points. The functional logic diagram of a flight simulator according to the invention 15 is illustrated in FIG. 6. It involves the interfacing according to the invention between the actuators 200 and the touch screens 1 (see FIG. control facades 300 and between these facades and panels of a flight simulator 500 (see Figure 7). By successive presses exerted by the operator on a control panel 300, the actuators 200 - such as the actuators 20, 20 ', 21, 22, 41 to 48 described above - make point or continuous contacts 1c on touch screen 1 (step "A"). These contacts, electrically conductive, generate location signals "S" at the touch screen 4 which are transmitted to the digital processing unit 100 of the touch screen 1 (step "B"). [0041] Adjustment data of the flight parameters (speed, thrust, altitude, horizontality, etc.) or modification of information (guidance, route, time estimates, etc.) are then calculated by the unit 100 from pre-acquired correlations between location signals of each actuator 200 and parameter variations of the display of the relevant control screen - located in a panel of the flight simulator - and to which actuator 200 is dedicated (step "C"). These adjustment data are then transmitted to a digital central processing unit 400. This central unit 400 actually collects the data of all the digital processing units 100 from all the control facades 300 (such as facades). 10, 301 or 302 described above) of the simulator. When the adjustment data received by the central unit 400 are not coherent with each other (arrow "NO"), the central unit 400 transmits an error signal on the relevant control screen of the simulator 500 concerned. and the operator is invited on this screen to resume manipulations on the relevant control facades (step "D"). Otherwise ("YES" arrow), the central unit 400 coherently translates all the adjustment data received into adaptation video signals and transmits these video signals to the relevant screens, here in the control screens of the simulator 500 (step "E"). In order to show the architecture of a flight simulator of an aircraft 15 according to the invention, the flight simulator 500 comprising control facades 300 according to the invention is illustrated (without the seats) on the view in perspective of Figure 7. This simulator 500 consists of a main control panel 510 (or dashboard) capped the automatic control panel 520 (which is not involved in the example of simulation described, but in d other embodiments to cut, trigger or set limits to the autopilot), a longitudinal flight guidance panel 530 disposed in a lower position between the operators (the "pylon"), and an upper circuit management panel. 540, above the operators. All these panels (except the automatic control panel 520) 25 consist of touch screens 1 (see Figure 2) in the format 16/9 (ratio between large and small sides), namely more precisely on this figure 7: three control display touch screens 91a and 91c, adjacent by the short side to form the main control panel 510, three adjacent control display touch screens 93a to 93c by the long side to form the guide panel 530, and two touch screens 94a and 94b adjacent by the long side to represent the top panel 540. [0046] Plates 33 to 39 form control facades 300 (see FIG. touch screens on which they are attached. Thus, on the central screen 91c of the control panel 510, a plastron 33 is fixed to form with the central screen 91c a control panel 300 according to the invention. The front plate 33 comprises a lever 47 serving as an input / output lever of the landing gear of the aircraft, and push buttons provided with indicator lights 41 for the automatic brake controls. The central screen 91c displays engine control information on the control screen 14 (power, consumption, alerts) and systems on the control screen 12 (hydraulic, ventilation, etc.). The screens 91a of the control panel 510 display information on the navigation with the control screen 18 (aircraft heading, meteorology, flight path, radio navigation beacons, etc.) and a primary flight control screen 16 On the screen 93a of the tower 530 placed as close as possible to the control panel 510, two plastrons 34 are placed laterally to form two information input MCDU units (number of passengers, departure and departure airports). arrival, chosen path, etc.) such as the unit 10 described with reference to FIGS. 1 and 2. Moreover, on this same tower 530, are also arranged (the reference signs of the actuators cited below refer to FIGS. 4a, 4b and 5): - between the MCDU units 10, a central front plate 35 comprising pushbuttons 20 ', rotary switches 44 and selection coders 21 dedicated to the choice of the displays of the control screens 12, 14, 18 the control panel 510; behind the MCDU units 10, two side plates 36 provided with pushbuttons 20 and 20 ', with coders 21 and with a rotary switch 44 for selecting the radio-navigation and communication frequencies; - Between the side plates 36, the thrust block throttle 22, and push buttons 20 'firing the engines; - At the rear of the tower 530, a front plate 37 includes levers 47 30 and 48 control of the airbrakes and wing flaps. When the screens 94a and 94b of the upper panel 540, they are covered respectively with central plates 38 and 39 respectively comprising: - switches 43 serving as circuit breakers associated with the different avionics systems (air conditioning, lighting). de-icing, pressurization, etc.); push buttons 20 'for triggering fire extinguishers for the engines and APU (the auxiliary energy unit) and for the management of hydraulic circuits, fuel and electrical circuits; three-position switches 44 in conjunction with push-buttons 20 'for air circuit management, and switches 43 for defrost / anti-ice controls, aircraft exterior / interior lights, and starter lights. 'COULD. The invention is not limited to the embodiments described and shown. Thus, the technology used to exploit the electrical conductivity of the touchscreen may be other than capacitive, for example of the resistive or inductive type, the actuators then being as many stylets usually adapted to this type of technology. Alternatively, touchscreens using non-conductive technologies - infrared, ultrasound, surface waves can be used. In addition, these touch panels can be reduced to tactile "surfaces" when the touch function is integrated directly into the display screen or is transferred to another part. For example, when the touch function is implemented without the support of a display screen. In addition, antivibration means - for example pads, plates, sleeves or equivalent of absorbent material - can be mounted on the control facades to secure the behavior of the actuators.

Claims (11)

REVENDICATIONS1. Procédé d'interfaçage entre des organes interactifs dédiés (200) et un écran tactile (1; 91c, 93a à 93c, 94a, 94b) à technologie multipoints et/ou multitouches comportant une dalle tactile (4), et une unité de traitement numérique (100) dédiée à un pilotage de visualisation, caractérisé en ce que chaque appui d'un organe interactif de type actionneur dédié (200) parmi plusieurs actionneurs dédiés (200) sur la dalle tactile (4) réalise un contact (1c) sur la dalle tactile (4) qui génère alors des signaux de localisation du contact transmis ensuite à l'unité de traitement numérique (100), cette unité produit alors, par une corrélation prédéterminée entre chaque signal de localisation de chaque actionneur (200) et un paramétrage adapté d'un affichage préétabli auquel l'actionneur (200) est dédié, des données de réglage et/ou de modification des paramètres d'affichage en fonction de la localisation et de la trajectoire du contact (1c).REVENDICATIONS1. A method of interfacing between dedicated interactive organs (200) and a touch screen (1; 91c, 93a to 93c, 94a, 94b) with multipoint technology and / or multitouch comprising a touch screen (4), and a digital processing unit (100) dedicated to a viewing control, characterized in that each support of a dedicated actuator-type interactive member (200) among several dedicated actuators (200) on the touch screen (4) makes a contact (1c) on the touch screen (4) which then generates contact location signals subsequently transmitted to the digital processing unit (100), this unit then produces, by a predetermined correlation between each location signal of each actuator (200) and a parameterization adapted from a preset display to which the actuator (200) is dedicated, setting data and / or modification of the display parameters according to the location and path of the contact (1c). 2. Procédé d'interfaçage selon la revendication 1, dans lequel la trajectoire du contact (1c) de chaque actionneur (200) sur la dalle tactile (4) est ponctuelle, au moins en partie linéaire, circulaire, discontinue, en traits pointillés et/ou en points en fonction du mouvement donné à l'actionneur (200).2. Interfacing method according to claim 1, wherein the path of the contact (1c) of each actuator (200) on the touch screen (4) is punctiform, at least partially linear, circular, discontinuous, dashed lines and or in points according to the movement given to the actuator (200). 3. Procédé d'interfaçage selon l'une quelconque des revendications 1 ou 2, dans lequel les organes interactifs (200) sont rétro-éclairables par un écran de visualisation (13; 91a, 91c, 93a à 93c, 94a, 94b) associée à la dalle tactile (4).3. Interfacing method according to any one of claims 1 or 2, wherein the interactive members (200) are backlit by a display screen (13; 91a, 91c, 93a to 93c, 94a, 94b) associated to the touch screen (4). 4. Procédé d'interfaçage selon l'une quelconque des revendications précédentes, dans lequel l'affichage préétabli est visualisé sur un écran choisi entre un écran de visualisation (13) de la dalle tactile (4) en interface avec les actionneurs (200) et l'écran de visualisation d'un autre écran (91a, 91c, 93a à 93c, 94a, 94b).4. Interfacing method according to any one of the preceding claims, wherein the preset display is displayed on a selected screen between a display screen (13) of the touch screen (4) in interface with the actuators (200). and the display screen of another screen (91a, 91c, 93a-93c, 94a, 94b). 5. Façade de commande (300) caractérisée en ce qu'elle comporte un clavier (2) équipé d'organes interactifs (200) pour former plastron (30, 30', 33 à 39) et un écran tactile (1; 91c, 93a à 93c, 94a, 94b) à technologie multipoints et/ou multitouches comportant une dalle tactile (4), un écran de visualisation (13) et une unité de traitement numérique (100) dédiée à un pilotage de visualisation, le 3038083 16 plastron (30, 30', 33 à 39) et l'écran tactile (1; 91c, 93a à 93c, 94a, 94b) étant interfacés par le procédé selon l'une quelconque des revendications précédentes.5. Control facade (300) characterized in that it comprises a keyboard (2) equipped with interactive members (200) for forming a plastron (30, 30 ', 33 to 39) and a touch screen (1; 91c, 93a to 93c, 94a, 94b) with multipoint technology and / or multitouch comprising a touch screen (4), a display screen (13) and a digital processing unit (100) dedicated to viewing control, the 3038083 16 plastron (30, 30 ', 33-39) and the touch screen (1; 91c, 93a-93c, 94a, 94b) being interfaced by the method of any one of the preceding claims. 6. Façade de commande (300) selon la revendication précédente, dans laquelle la conductivité électrique de la dalle tactile (4) est exploitée par une 5 technologie choisie entre capacitive, résistive et inductive.6. Control facade (300) according to the preceding claim, wherein the electrical conductivity of the touch screen (4) is exploited by a technology selected between capacitive, resistive and inductive. 7. Façade de commande (300) selon l'une quelconque des revendications 5 ou 6, dans laquelle les organes interactifs de type bouton-poussoir (20) sont montés sur une plaque élastique isolante (8) afin de les stabiliser et d'exercer sur eux une force de rappel. 107. Control facade (300) according to any one of claims 5 or 6, wherein the interactive organs push button type (20) are mounted on an insulating elastic plate (8) to stabilize and exercise on them a restoring force. 10 8. Façade de commande (300) selon l'une quelconque des revendications 5 ou 6, dans laquelle est intégrée une membrane souple (5) solidaire du plastron (30, 30', 33 à 39), cette membrane souple (5) présentant au regard de chaque organe interactif de type bouton-poussoir (20') un dôme convexe (51) traversé par un orifice (52) situé au point culminant (5c) du dôme 15 (51).8. control facade (300) according to any one of claims 5 or 6, wherein is integrated a flexible membrane (5) integral with the plastron (30, 30 ', 33 to 39), the flexible membrane (5) having with respect to each interactive push-button member (20 ') a convex dome (51) traversed by a hole (52) at the highest point (5c) of the dome (51). 9. Façade de commande (300) selon l'une quelconque des revendications 5 à 8, sur laquelle des moyens antivibratoires sont montés.9. Control facade (300) according to any one of claims 5 to 8, wherein antivibration means are mounted. 10. Terminal de commande et/ou de contrôle comportant au moins une façade de commande selon l'une quelconque des revendications 5 à 9. 2010. Control and / or control terminal comprising at least one control panel according to any one of claims 5 to 9. 11. Simulateur de vol d'aéronef (500) comportant des panneaux (510 à 540) de cockpit d'un avion, à savoir un panneau principal de contrôle de vol (510), un panneau de pilotage automatique (520), un panneau inférieur de gestion de guidage (530) et un panneau supérieur de gestion des circuits des systèmes avion (540), ces panneaux (510 à 540) étant localisés devant, à côté et au-dessus 25 des opérateurs, ce simulateur de vol (500) étant caractérisé en ce qu'au moins l'un de ces panneaux (510 à 540) intègre au moins une façade de commande (300) selon l'une quelconque des revendications 5 à 9, les données de réglage et/ou de modification provenant de l'unité de traitement numérique (100) de la (chaque) façade de commande étant transmises à une unité centrale de gestion 30 numérique (400) qui traduit ces données de réglage et/ou de modification en signaux vidéo d'adaptation des paramètres d'affichage d'au moins un écran de 3038083 17 contrôle d'au moins un panneau (510) et qui transmet ces signaux aux écrans concernés (91a, 91c).Aircraft flight simulator (500) having cockpit panels (510 to 540) of an airplane, namely a main flight control panel (510), an autopilot panel (520), a panel guidance management system (530) and an aircraft system circuit management top panel (540), said panels (510 to 540) being located in front of, beside and above the operators, this flight simulator (500 ) being characterized in that at least one of these panels (510 to 540) integrates at least one control panel (300) according to any one of claims 5 to 9, the adjustment and / or modification data from the digital processing unit (100) of the (each) control panel being transmitted to a digital central processing unit (400) which translates these adjustment and / or modification data into video adaptation signals of the digital control unit (400). display settings of at least one screen of 3038083 17 control of at least u n panel (510) and which transmits these signals to the relevant screens (91a, 91c).
FR1556004A 2015-06-26 2015-06-26 METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES Active FR3038083B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1556004A FR3038083B1 (en) 2015-06-26 2015-06-26 METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES
PCT/IB2016/053762 WO2016207839A1 (en) 2015-06-26 2016-06-24 Method for interfacing between interaction members and a touch screen, front control panel, and terminals having such front panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556004A FR3038083B1 (en) 2015-06-26 2015-06-26 METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES
FR1556004 2015-06-26

Publications (2)

Publication Number Publication Date
FR3038083A1 true FR3038083A1 (en) 2016-12-30
FR3038083B1 FR3038083B1 (en) 2018-08-17

Family

ID=53879692

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1556004A Active FR3038083B1 (en) 2015-06-26 2015-06-26 METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES

Country Status (2)

Country Link
FR (1) FR3038083B1 (en)
WO (1) WO2016207839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973451A (en) * 2020-07-24 2022-01-25 纬联电子科技(中山)有限公司 Panel and case with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211448A1 (en) * 2002-05-07 2003-11-13 Cae Inc. 3-dimensional apparatus for self-paced integrated procedure training and method of using same
US20060256090A1 (en) * 2005-05-12 2006-11-16 Apple Computer, Inc. Mechanical overlay
US20130118881A1 (en) * 2011-08-17 2013-05-16 Steelseries Aps Actuation assembly for use with a touchscreen device
GB2516439A (en) * 2013-07-22 2015-01-28 Sanjay Karelia Tactile keypad overlay for capacitive touch screen devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US820647A (en) 1906-01-15 1906-05-15 Samuel Katz Safety gas-burner.
US20100266992A1 (en) 2009-04-16 2010-10-21 Redbird Flight Simulations, Inc. Interchangeable instrument panel overlay system for a flight simulator
US8558796B2 (en) 2009-05-07 2013-10-15 Headwater Partners Ii Llc Overlay keyboard for touch screen devices
WO2012169367A1 (en) * 2011-06-06 2012-12-13 株式会社ソニー・コンピュータエンタテインメント Controller device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211448A1 (en) * 2002-05-07 2003-11-13 Cae Inc. 3-dimensional apparatus for self-paced integrated procedure training and method of using same
US20060256090A1 (en) * 2005-05-12 2006-11-16 Apple Computer, Inc. Mechanical overlay
US20130118881A1 (en) * 2011-08-17 2013-05-16 Steelseries Aps Actuation assembly for use with a touchscreen device
GB2516439A (en) * 2013-07-22 2015-01-28 Sanjay Karelia Tactile keypad overlay for capacitive touch screen devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973451A (en) * 2020-07-24 2022-01-25 纬联电子科技(中山)有限公司 Panel and case with same
CN113973451B (en) * 2020-07-24 2023-07-18 纬联电子科技(中山)有限公司 Panel and chassis with panel

Also Published As

Publication number Publication date
FR3038083B1 (en) 2018-08-17
WO2016207839A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
CN102862675B (en) For the simplified user interface of aircraft
US10347140B2 (en) Flight planning and communication
US7103455B2 (en) Man/machine interface for control of the automatic pilot for piloted aerodyne provided with an ATN transmission network terminal
CN111630363B (en) Method and apparatus for displaying an interactive interface during an aircraft anomaly event
EP1491444B1 (en) Display system for a vehicle
US20150262545A1 (en) Standby Instrument Panel For Aircraft
IL99360A (en) Training device on-board instruction station
EP2557556A2 (en) Redundant display assembly
CA2478535A1 (en) Method and apparatus for tactile cueing of aircraft controls
US9128594B1 (en) Touch interfaces and controls for aviation displays
KR20100007060A (en) Instructor operating system
KR20170005971A (en) Training simulator and method for special vehicles using argmented reality technology
US8262479B2 (en) Rotational joint assembly and method for constructing the same
US9045219B2 (en) Hand controller assembly
CN206049362U (en) Information display system in facilities for transport and communication
US8159416B1 (en) Synthetic vision dynamic field of view
EP2022040B1 (en) Multi-functional mission grip for a vehicle
US8083186B2 (en) Input/steering mechanisms and aircraft control systems for use on aircraft
EP3547287B1 (en) Vr emulator using galvanic vestibular stimulation devices
FR3038083A1 (en) METHOD FOR INTERFACING BETWEEN INTERACTION OR TOUCH SCREEN, CONTROL PANEL AND TERMINALS PROVIDED WITH SUCH FACADES
Ernst et al. Virtual cockpit instruments—how head-worn displays can enhance the obstacle awareness of helicopter pilots
CN107628258A (en) Display system and method, aircraft cockpit and computer program product
Avsar et al. Target size guidelines for interactive displays on the flight deck
EP2189371B1 (en) Input/steering mechanisms and aircraft control systems
Li et al. Discussion on the application of active side stick on civil aircraft

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20161230

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9