FR3032560B1 - ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID - Google Patents

ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID Download PDF

Info

Publication number
FR3032560B1
FR3032560B1 FR1551033A FR1551033A FR3032560B1 FR 3032560 B1 FR3032560 B1 FR 3032560B1 FR 1551033 A FR1551033 A FR 1551033A FR 1551033 A FR1551033 A FR 1551033A FR 3032560 B1 FR3032560 B1 FR 3032560B1
Authority
FR
France
Prior art keywords
electrolyte
ion battery
electrode material
positive electrode
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1551033A
Other languages
French (fr)
Other versions
FR3032560A1 (en
Inventor
Irina Profatilova
Barbara Bianchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR1551033A priority Critical patent/FR3032560B1/en
Publication of FR3032560A1 publication Critical patent/FR3032560A1/en
Application granted granted Critical
Publication of FR3032560B1 publication Critical patent/FR3032560B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

L'invention a pour objet un électrolyte comprenant : - de l'hexafluorophosphate de lithium, - un mélange de solvants comprenant du carbonate d'éthylÚne, du carbonate de méthyle et d'éthyle et du carbonate de diméthyle, et - du 1-butyl-1-méthylpyrrolidinium bis(trifluoro-méthanesulfonyl)imide.The subject of the invention is an electrolyte comprising: - lithium hexafluorophosphate, - a mixture of solvents comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate, and - 1-butyl 1-methylpyrrolidinium bis (trifluoro-methanesulfonyl) imide.

Description

Electrolyte pour batterie lithium-ion comprenant un liquide ionique particulierElectrolyte for lithium-ion battery comprising a particular ionic liquid

L’invention concerne le domaine gĂ©nĂ©ral des batteries rechargeables lithium-ion (Li-ion).The invention relates to the general field of rechargeable lithium-ion (Li-ion) batteries.

L’invention concerne plus prĂ©cisĂ©ment les Ă©lectrolytes pour batteries Li-ion comprenant une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et un sĂ©parateur.The invention more specifically relates to electrolytes for Li-ion batteries comprising a positive electrode based on platy laminated oxide, a negative electrode based graphite and a separator.

L’invention concerne Ă©galement un procĂ©dĂ© de prĂ©paration de batteries lithium-ion.The invention also relates to a method for preparing lithium-ion batteries.

Enfin, l’invention concerne un procĂ©dĂ© de cyclage de batteries lithium-ion Ă  des capacitĂ©s modĂ©rĂ©es permettant d’amĂ©liorer la durĂ©e de vie d’une cellule de batterie Li-ion et la stabilitĂ© de la tension moyenne de ladite cellule.Finally, the invention relates to a method for cycling lithium-ion batteries with moderate capacities for improving the life of a Li-ion battery cell and the stability of the average voltage of said cell.

Classiquement, les batteries Li-ion comprennent une ou plusieurs Ă©lectrodes positives, une ou plusieurs Ă©lectrodes nĂ©gatives, un Ă©lectrolyte et un sĂ©parateur composĂ© d’un polymĂšre poreux ou de tout autre matĂ©riau appropriĂ© afin d’éviter tout contact direct entre les Ă©lectrodes.Conventionally, the Li-ion batteries comprise one or more positive electrodes, one or more negative electrodes, an electrolyte and a separator composed of a porous polymer or any other suitable material in order to avoid any direct contact between the electrodes.

Les batteries Li-ion sont de plus en plus utilisĂ©es comme source d'Ă©nergie autonome, en particulier dans les applications liĂ©es Ă  la mobilitĂ© Ă©lectrique. Cette tendance s'explique notamment par des densitĂ©s d'Ă©nergie massique et volumique nettement supĂ©rieures Ă  celles des accumulateurs classiques nickel cadmium (Ni-Cd) et nickelhydrure mĂ©tallique (Ni-MH), une absence d’effet mĂ©moire, une autodĂ©charge faible par rapport Ă  d’autres accumulateurs et Ă©galement par une baisse des coĂ»ts au kilowatt-heure liĂ©e Ă  cette technologie.Li-ion batteries are increasingly being used as an autonomous power source, particularly in applications related to electric mobility. This trend can be explained in particular by densities of mass and volume energy which are much higher than those of conventional nickel cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) accumulators, a lack of memory effect, a low self-discharge compared to to other accumulators and also by a drop in costs per kilowatt-hour related to this technology.

Les électrolytes utilisés généralement dans les batteries Li-ion comprennent un ou plusieurs sel(s) de lithium et un ou plusieurs solvant(s).The electrolytes generally used in Li-ion batteries include one or more lithium salt (s) and one or more solvent (s).

Le sel de lithium le plus commun est un sel inorganique, Ă  savoir l’hexafluorophosphate de lithium (LiPF6). D’autres sels inorganiques sont appropriĂ©s et peuvent ĂȘtre choisis parmi L1CIO4, LiAsF6, L1BF4 ou Lil. Des sels organiques sont Ă©galement appropriĂ©s et peuvent ĂȘtre choisis parmi le bis[(trifluoromĂ©thyl)sulfonyl]imide de lithium (LiN(CF3 SO2)2), le trifluoromĂ©thane sulfonate de lithium (L1CF3SO3), le bis(oxalato)borate de lithium (LiBOB), le fluoro(oxolato)borate de lithium (LiFOB), le difluoro(oxolato)borate de lithium (LiDFOB), le bis(perfluoroĂ©thylsulfonyl)imide de lithium (LiN(CF3CF2SO2)2), L1CH3SO3, LiRFSOSRF, LiN(RFSO2)2, LiC(RFSO2)3, Rf Ă©tant un groupement choisi parmi un atome de fluor et un groupement perfluoroalkyle comportant entre un et huit atomes de carbone.The most common lithium salt is an inorganic salt, namely lithium hexafluorophosphate (LiPF 6 ). Other inorganic salts are suitable and may be chosen from L1CIO4, LiAsF 6, or Lil L1BF4. Organic salts are also suitable and may be selected from lithium bis [(trifluoromethyl) sulfonyl] imide (LiN (CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate (L1CF3SO3), lithium bis (oxalato) borate (LiBOB), lithium fluoro (oxolato) borate (LiFOB), lithium difluoro (oxolato) borate (LiDFOB), lithium bis (perfluoroethylsulfonyl) imide (LiN (CF 3 CF 2 SO 2 ) 2 ), L 1 CH 3 SO 3 , LiR F SOSR F , LiN (R F SO 2 ) 2 , LiC (R F SO 2 ) 3, R f being a group selected from a fluorine atom and a perfluoroalkyl group having between one and eight carbon atoms.

Le ou les sel(s) de lithium sont, de prĂ©fĂ©rence, dissous dans un ou plusieurs solvants choisis parmi les solvants polaires aprotiques, par exemple, le carbonate d’éthylĂšne (notĂ© « EC »), le carbonate de propylĂšne (notĂ© « PC »), le carbonate de dimĂ©thyle (notĂ© « DMC »), le carbonate de diĂ©thyle (notĂ© « DEC ») et le carbonate d’éthyle et de mĂ©thyle (notĂ© « EMC »).The lithium salt (s) are preferably dissolved in one or more solvents chosen from aprotic polar solvents, for example, ethylene carbonate (denoted "EC"), propylene carbonate (denoted "PC "), Dimethyl carbonate (denoted" DMC "), diethyl carbonate (denoted" DEC ") and methyl and ethyl carbonate (denoted" EMC ").

Parmi cette liste de solvants, le carbonate d’éthylĂšne est le solvant indispensable Ă  la formation d’une couche solide et stable appelĂ©e « Solid Electrolyte Interphase » (SEI) Ă  la surface de l’électrode nĂ©gative. Cette SEI est un Ă©lĂ©ment essentiel au bon fonctionnement de l’accumulateur Li-ion, bien que responsable de l’importante capacitĂ© irrĂ©versible observĂ©e lors du premier cycle, car non seulement elle conduit trĂšs bien les ions lithium mais elle prĂ©sente aussi l’avantage de stopper la dĂ©composition catalytique du solvant.Among this list of solvents, ethylene carbonate is the essential solvent for the formation of a solid and stable layer called "Solid Electrolyte Interphase" (SEI) on the surface of the negative electrode. This SEI is an essential element for the proper functioning of the Li-ion battery, although it is responsible for the large irreversible capacity observed during the first cycle, because it not only conducts lithium ions very well but it also has the advantage of stop the catalytic decomposition of the solvent.

Par ailleurs, le dĂ©veloppement de matĂ©riaux pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, gĂ©nĂ©ralement reprĂ©sentĂ©s par la formule xLiMO2(l-x)Li2MnO3, x Ă©tant compris entre 0 et 1, est apparu intĂ©ressant grĂące Ă  leurs capacitĂ©s de dĂ©charge spĂ©cifiques Ă©levĂ©es, typiquement jusqu’à 250 mAh/g, pendant un trĂšs grand nombre de cycles de charge et de dĂ©charge Ă  des tensions Ă©levĂ©es (supĂ©rieures Ă  4,2 V).Moreover, the development of materials for positive electrode based on platy oxide overlithiated, generally represented by the formula xLiMO 2 (lx) Li 2 MnO 3, x being between 0 and 1, appeared interesting thanks to their specific discharge capacities high, typically up to 250 mAh / g, during a very large number of charging and discharging cycles at high voltages (greater than 4.2 V).

Le processus dit d’ « activation », nĂ©cessaire au bon fonctionnement d’une batterie, du matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© se dĂ©roule gĂ©nĂ©ralement pendant les cycles initiaux d’un procĂ©dĂ© de cyclage d’une batterie Li-ion Ă  des tensions supĂ©rieures Ă  4,5 V. Cette « activation » est notamment accompagnĂ©e d’un dĂ©gagement d’oxygĂšne dans la structure des matĂ©riaux pour Ă©lectrode positive et de transformation de phase de ces matĂ©riaux.The so-called "activation" process, necessary for the proper functioning of a battery, of the overlited laminated oxide-based positive electrode material generally takes place during the initial cycles of a cycling process of a Li-ion battery. at voltages greater than 4.5 V. This "activation" is in particular accompanied by a release of oxygen in the structure of the materials for positive electrode and phase transformation of these materials.

NĂ©anmoins, l’application de cette tension Ă©levĂ©e reprĂ©sente un problĂšme majeur pour les batteries Li-ion.Nevertheless, the application of this high voltage represents a major problem for Li-ion batteries.

En effet, les électrolytes généralement utilisés, à savoir du LiPF6 dissous dans un ou plusieurs solvants carbonates, comme décrit ci-dessus, ne sont pas thermodynamiquement stables à ces tensions, ce qui conduit à une dégradation rapide de la cellule de batterie Li-ion.In fact, the electrolytes generally used, namely LiPF 6 dissolved in one or more carbonate solvents, as described above, are not thermodynamically stable at these voltages, which leads to a rapid degradation of the battery cell L1. ion.

Ainsi, un Ă©lectrolyte alternatif doit ĂȘtre proposĂ© pour rĂ©pondre Ă  cette problĂ©matique.Thus, an alternative electrolyte must be proposed to answer this problem.

En outre, des problĂšmes liĂ©s Ă  la sĂ©curitĂ© des batteries Li-ion ont Ă©tĂ© soulevĂ©s dus au stockage d’une quantitĂ© d’énergie toujours plus importante dans de plus petits volumes.In addition, problems related to the safety of Li-ion batteries have been raised due to the storage of an ever greater amount of energy in smaller volumes.

Cette problématique est aggravée par la mise en place à grande échelle de batteries Li-ion. Un court-circuit peut facilement conduire à une combustion spontanée et une explosion de la batterie.This problem is aggravated by the large scale implementation of Li-ion batteries. A short circuit can easily lead to spontaneous combustion and an explosion of the battery.

Par ailleurs, la dĂ©composition de la SEI Ă  l’électrode nĂ©gative Ă  une tempĂ©rature Ă©levĂ©e, de l’ordre de 100°C, est suivie d’une interaction exothermique avec des Ă©lectrolytes gĂ©nĂ©ralement utilisĂ©s.Moreover, the decomposition of the SEI at the negative electrode at an elevated temperature, of the order of 100 ° C., is followed by an exothermic interaction with electrolytes generally used.

Ainsi, il serait avantageux de fournir un Ă©lectrolyte particulier permettant une amĂ©lioration de la stabilitĂ© thermique des diffĂ©rents composants d’une batterie Li-ion. Cette stabilitĂ© thermique est en effet essentielle pour le bon fonctionnement desdites batteries.Thus, it would be advantageous to provide a particular electrolyte for improving the thermal stability of the various components of a Li-ion battery. This thermal stability is indeed essential for the proper functioning of said batteries.

RĂ©cemment, les liquides ioniques ont Ă©tĂ© envisagĂ©s en tant que composant pour Ă©lectrolyte. En effet, leurs bonnes propriĂ©tĂ©s Ă©lectrochimiques ou encore leurs faibles volatilitĂ©s comparĂ©es aux solvants carbonates peuvent en faire un excellent candidat afin d’amĂ©liorer la stabilitĂ© thermique.Recently, ionic liquids have been considered as an electrolyte component. Indeed, their good electrochemical properties or their low volatilities compared to carbonate solvents can make it an excellent candidate to improve thermal stability.

Ainsi, un Ă©lectrolyte comprenant du N-butyl-NmĂ©thylpyrrolidinium bis(fluorosulfonyl)imide (Pyrl4 FSI) en tant que solvant et du bis(trifluoromĂ©thanesulfonyl)imide de lithium (LiTFSI) en tant que sel lithiĂ©, a Ă©tĂ© dĂ©veloppĂ© pour des batteries Li-ion, comme l’indique la publication intitulĂ©e « Improved electrochemical performance of L1MO2 (M=Mn, Ni, Coj-IAMnCh cathode materials in ionic liquid-based electrolyte » dans Journal of Power Sources, 239 (2013) 490-495.Thus, an electrolyte comprising N-butyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide (Pyr14 FSI) as the solvent and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) as the lithiated salt was developed for lithium batteries. as indicated in the publication entitled "Improved electrochemical performance of L1MO2 (M = Mn, Ni, Coj-IAMnCh cathode materials in ionic liquid-based electrolyte" in Journal of Power Sources, 239 (2013) 490-495.

Une autre composition d’électrolyte a Ă©tĂ© Ă©laborĂ©e comme le document « Lithium bis(fluorosulfonyl)imide-Pyr 14 TFSI ionic liquid electrolyte compatible with graphite » dans Journal of Power Sources, 196 (2011) 7700-7706, le dĂ©crit. Elle comprend du 1-butyl-lmĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide (Pyrl4 TFSI) en tant que solvant et du bis(trifluoromĂ©thanesulfonyl)imide de lithium (LiTFSI) en tant que sel lithiĂ©.Another electrolyte composition has been developed as the document "Lithium bis (fluorosulfonyl) imide-Pyr 14 TFSI ionic liquid compatible electrolyte with graphite" in Journal of Power Sources, 196 (2011) 7700-7706, describes it. It comprises 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PyrI 4 TFSI) as a solvent and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) as the lithiated salt.

Le document « The effects of N-mĂ©thyl-N-butylpyrrolidinium bis(trifluoromĂ©thylsulfonyl)imide-based electrolyte on the electrochemical performance of high capacity method material Li[Lio.2Mno.54Nio.i3Coo.i3]02 » dans Electrochimica Acta, 59 (2012) 14-22, divulgue un Ă©lectrolyte comprenant du LiPF6 dissous dans un mĂ©lange de solvants carbonates comprenant du carbonate d’éthylĂšne et du carbonate de dimĂ©thyle selon des proportions volumiques de 1/1, en prĂ©sence de N-mĂ©thyl-N-butylpyrrolidinium bis(trifluoromĂ©thylsulfonyl)imide. Plus prĂ©cisĂ©ment, ce document dĂ©crit un Ă©lectrolyte comprenant au moins 40% en volume de NmĂ©thyl-N-butylpyrrolidinium bis(trifluoromĂ©thylsulfonyl)imide par rapport au volume total de l’électrolyte.The document "The effects of N-methyl-N-butylpyrrolidinium bis (trifluoromethylsulfonyl) imide-based electrolyte on the electrochemical performance of high capacity method material Li [Lio.2Mno.54NiO.i3Coo.i3] 02" in Electrochimica Acta, 59 ( 2012) 14-22, discloses an electrolyte comprising LiPF 6 dissolved in a mixture of carbonate solvents comprising ethylene carbonate and dimethyl carbonate in proportions of 1/1 volume in the presence of N-methyl-N-butylpyrrolidinium. bis (trifluoromethylsulfonyl) imide. More specifically, this document describes an electrolyte comprising at least 40% by volume of N-methyl-N-butylpyrrolidinium bis (trifluoromethylsulfonyl) imide relative to the total volume of the electrolyte.

La demande US 2014/0134501 décrit quant à elle un électrolyte comprenant un ou plusieurs sels ioniques, au moins un agent formateur de SEI, au moins un composé fluoré et un ou plusieurs solvant(s) non aqueux.Application US 2014/0134501 describes an electrolyte comprising one or more ionic salts, at least one SEI-forming agent, at least one fluorinated compound and one or more non-aqueous solvent (s).

La demande US 2010/0028785 porte sur un électrolyte comprenant un solvant organique, un sel lithié, un liquide ionique et un additif.The application US 2010/0028785 relates to an electrolyte comprising an organic solvent, a lithiated salt, an ionic liquid and an additive.

La demanderesse a dĂ©couvert, de maniĂšre surprenante, qu’un Ă©lectrolyte pour batterie Li-ion, comprenant une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et un sĂ©parateur, dont la composition comprend de l’hexafluorophosphate de lithium (LiPF6) dissous dans un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne (EC), du carbonate de mĂ©thyle et d’éthyle (EMC) et du carbonate de dimĂ©thyle (DMC), et du 1 -butyl- 1-mĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide (Pyrl4 TFSI) permettait d’amĂ©liorer la stabilitĂ© thermique de la batterie. L’obtention de bonnes performances Ă©lectrochimiques est Ă©galement constatĂ©e grĂące Ă  cet Ă©lectrolyte particulier.The Applicant has surprisingly discovered that a Li-ion battery electrolyte comprising a platy-laminated oxide-based positive electrode, a graphite-based negative electrode and a separator, whose composition comprises hexafluorophosphate. of lithium (LiPF 6 ) dissolved in a solvent mixture comprising ethylene carbonate (EC), methyl and ethyl carbonate (EMC) and dimethyl carbonate (DMC), and 1-butyl-1 Methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PyrI4 TFSI) allowed to improve the thermal stability of the battery. Obtaining good electrochemical performance is also observed thanks to this particular electrolyte.

L’invention a donc pour objet un Ă©lectrolyte comprenant de l’hexafluorophosphate de lithium, un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle, et du 1-butyl-l-mĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide.The subject of the invention is therefore an electrolyte comprising lithium hexafluorophosphate, a mixture of solvents comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate, and 1-butyl-1 methylpyrrolidinium bis (trifluoromethanesulfonyl) imide.

L’invention a Ă©galement pour objet un procĂ©dĂ© de prĂ©paration de l’électrolyte selon l’invention et l’utilisation dudit Ă©lectrolyte pour une batterie Li-ion.The invention also relates to a method for preparing the electrolyte according to the invention and the use of said electrolyte for a Li-ion battery.

Un autre objet de l’invention est une batterie Li-ion comprenant l’électrolyte selon l’invention.Another object of the invention is a Li-ion battery comprising the electrolyte according to the invention.

L’invention a Ă©galement pour objet un procĂ©dĂ© de prĂ©paration de cellule de batteries Li-ion comprenant l’électrolyte selon l’invention ainsi qu’un procĂ©dĂ© de fabrication de batterie Li-ion.The subject of the invention is also a process for preparing a Li-ion battery cell comprising the electrolyte according to the invention as well as a method for manufacturing a Li-ion battery.

Enfin, l’invention concerne aussi un procĂ©dĂ© de cyclage particulier pour les batteries comprenant un Ă©lectrolyte selon l’invention.Finally, the invention also relates to a particular cycling method for batteries comprising an electrolyte according to the invention.

D’autres avantages et caractĂ©ristiques de l’invention apparaĂźtront plus clairement Ă  l’examen de la description dĂ©taillĂ©e et des dessins annexĂ©s sur lesquels :Other advantages and features of the invention will appear more clearly on examining the detailed description and the attached drawings in which:

la figure 1 est un graphe comparant les capacitĂ©s de dĂ©charge spĂ©cifiques de cellules de batteries Li-ion comprenant une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et diffĂ©rentes compositions d’électrolytes, en fonction du nombre de cycles de charge et de dĂ©charge, la figure 2 est un graphe comparant les tensions de dĂ©charge moyennes de cellules de batteries Li-ion comprenant une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et diffĂ©rentes compositions d’électrolytes, en fonction du nombre de cycles de charge et de dĂ©charge, la figure 3 est un graphe comparant les diffĂ©rentes impĂ©dances de cellules de batteries Li-ion comprenant une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et diffĂ©rentes compositions d’électrolytes, mesurĂ©es Ă  tempĂ©rature ambiante et Ă  une tension de 3,75V, la figure 4 est un graphe comparant les flux de chaleur de matĂ©riaux pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, dans un Ă©tat chargĂ© de 4,7 V, en prĂ©sence de diffĂ©rentes compositions d’électrolytes, en fonction de la tempĂ©rature.FIG. 1 is a graph comparing the specific discharge capacities of Li-ion battery cells comprising a platy-oxide surlithiated positive electrode, a graphite-based negative electrode and different electrolyte compositions, as a function of the number of FIG. 2 is a graph comparing the average discharge voltages of Li-ion battery cells comprising a platy-laminated oxide-based positive electrode, a graphite-based negative electrode, and various electrode compositions. electrolytes, as a function of the number of charging and discharging cycles, FIG. 3 is a graph comparing the different impedances of Li-ion battery cells comprising a positive electrode based on platy-laminated oxide, a negative electrode based on graphite. and different electrolyte compositions, measured at room temperature and at a voltage of 3.75V, the FIG. 4 is a graph comparing heat fluxes of laminate oxide-based positive electrode materials in a charged state of 4.7 V in the presence of different electrolyte compositions as a function of temperature.

Dans la description de l’invention, le terme « Ă  base de » est synonyme de « comprenant majoritairement ».In the description of the invention, the term "based on" is synonymous with "comprising predominantly".

Il est par ailleurs prĂ©cisĂ© que les expressions « compris entre... et... » et « de... Ă ... » utilisĂ©es dans la prĂ©sente description doivent s’entendre comme incluant chacune des bornes mentionnĂ©es.It is furthermore specified that the expressions "between ... and ..." and "from ... to ..." used in the present description must be understood as including each of the mentioned terminals.

Les batteries Li-ion comprennent généralement une électrode positive, une électrode négative, un séparateur entre les électrodes et un électrolyte.Li-ion batteries generally include a positive electrode, a negative electrode, a separator between the electrodes and an electrolyte.

L’électrolyte selon l’invention comprend :The electrolyte according to the invention comprises:

- de l’hexafluorophosphate de lithium,- lithium hexafluorophosphate,

- un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle, eta solvent mixture comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate, and

- du 1-butyl-l-méthylpyrrolidinium bis(trifluorométhanesulfonyl)imide.1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide.

Dans un mode de rĂ©alisation prĂ©fĂ©rĂ©, l’électrolyte selon l’invention comprend de 0,1 Ă  50% en volume, de prĂ©fĂ©rence de 15 Ă  25% en volume, de 1-butyl-l-mĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide par rapport au volume total dudit Ă©lectrolyte.In a preferred embodiment, the electrolyte according to the invention comprises from 0.1 to 50% by volume, preferably from 15 to 25% by volume, of 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide relative to to the total volume of said electrolyte.

Selon un mode de rĂ©alisation particulier de l’invention, le mĂ©lange de solvants comprend du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle dans des proportions volumiques de 1/1/1, c’est-Ă -dire en un volume identique pour chaque solvant.According to one particular embodiment of the invention, the solvent mixture comprises ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate in volume proportions of 1/1/1, that is, ie in an identical volume for each solvent.

De maniĂšre prĂ©fĂ©rĂ©e, l’électrolyte selon l’invention comprend en outre du difluoro(oxolato)borate de lithium.Preferably, the electrolyte according to the invention further comprises lithium difluoro (oxolato) borate.

Avantageusement, le pourcentage massique du difluoro(oxolato)borate de lithium est compris entre 0,005 et 10% par rapport au poids total de l’électrolyte.Advantageously, the weight percentage of lithium difluoro (oxolato) borate is between 0.005 and 10% relative to the total weight of the electrolyte.

L’invention a Ă©galement pour objet un procĂ©dĂ© de prĂ©paration de l’électrolyte selon l’invention pour batterie Li-ion comprenant un matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© et un matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite, ledit hexafluorophosphate de lithium et ledit 1-butyl-l-mĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide Ă©tant dissous dans un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle.The subject of the invention is also a process for preparing the electrolyte according to the invention for a Li-ion battery comprising a platy-oxide layer-based positive electrode material and a graphite-based negative electrode material, said hexafluorophosphate. of lithium and said 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide being dissolved in a solvent mixture comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate.

Un autre objet de l’invention est l’utilisation de l’électrolyte selon l’invention pour une batterie Li-ion.Another object of the invention is the use of the electrolyte according to the invention for a Li-ion battery.

L’invention a Ă©galement pour objet une batterie Li-ion comprenant l’électrolyte selon l’invention.The invention also relates to a Li-ion battery comprising the electrolyte according to the invention.

La batterie Li-ion, comprenant l’électrolyte selon l’invention, comprend un matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©. Ledit matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© comprend un matĂ©riau actif qui est gĂ©nĂ©ralement un oxyde lithiĂ© de mĂ©tal choisi parmi le nickel, le cobalt et/ou le manganĂšse et Ă©ventuellement un autre mĂ©tal dopant.The Li-ion battery, comprising the electrolyte according to the invention, comprises a material for positive electrode based platy oxide overlithiated. Said laminate oxide surlithiated positive electrode material comprises an active material which is generally a lithiated metal oxide selected from nickel, cobalt and / or manganese and optionally another doping metal.

Le matĂ©riau actif pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© est de formule Lii+x(MaDb)i-xO2, dans laquelle M reprĂ©sente un mĂ©tal ou plusieurs mĂ©taux choisis parmi le nickel, le manganĂšse et le cobalt, x est compris entre 0,01 et 0,33. Lorsque b est compris entre 0 et 0,05 et a+b = l, alors D est un Ă©lĂ©ment choisi parmiThe ophthalmic platy-oxide-based positive electrode active material is of the formula Li 1 + x (M a Db) 1- x O 2, wherein M represents a metal or several metals selected from nickel, manganese and cobalt, x is between 0.01 and 0.33. When b is between 0 and 0.05 and a + b = 1, then D is a member selected from

Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al or K ou un mélange de ces éléments.Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al or K or a mixture of these elements.

Avantageusement, le matĂ©riau actif pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© est le ΕΐÎč^Νΐο,ÎčÎœÎ·Îż,όΟÎč.Advantageously, the active material for positive electrode based platinum oxide overlithiated is the ΕΐÎč ^ Νΐο, ÎčÎœÎ·Îż, όΟÎč.

Outre le matĂ©riau actif, le matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© peut Ă©galement comprendre des fibres de carbone. De prĂ©fĂ©rence, ce sont des fibres de carbone Ă  croissance en phase vapeur (VGCF pour « Vapor Grown Carbon Fibers ») commercialisĂ©es par la sociĂ©tĂ© Showa Denko. D’autres types de fibres de carbone appropriĂ©s peuvent ĂȘtre des nanotubes de carbone, des nanotubes dopĂ©s (Ă©ventuellement au graphite), des nanofibres de carbone, des nanofibres dopĂ©es (Ă©ventuellement au graphite), des nanotubes de carbone monofeuillets ou des nanotubes de carbone multifeuillets. Les mĂ©thodes de synthĂšse relatives Ă  ces matĂ©riaux peuvent inclure une dĂ©charge par arc, une ablation laser, une torche Ă  plasma et une dĂ©composition chimique en phase vapeur.In addition to the active material, the platy-laminated oxide-based positive electrode material may also include carbon fibers. Preferably, these are vapor phase growth carbon fibers (VGCF for "Vapor Grown Carbon Fibers") marketed by the company Showa Denko. Other types of suitable carbon fibers may be carbon nanotubes, doped nanotubes (possibly with graphite), carbon nanofibers, doped nanofibers (possibly with graphite), single-walled carbon nanotubes or multi-walled carbon nanotubes . Synthetic methods for these materials may include arc discharge, laser ablation, plasma torch, and chemical vapor phase decomposition.

Le matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© peut en outre comprendre un ou plusieurs liants.The platy-laminated oxide-based positive electrode material may further comprise one or more binders.

De maniĂšre prĂ©fĂ©rĂ©e, le ou les liant(s) peuvent ĂȘtre choisis parmi les latex de polybutadiĂšne-styrĂšne et les polymĂšres organiques, et de prĂ©fĂ©rence parmi les latex de polybutadiĂšne-styrĂšne, les polyesters, les polyĂ©thers, les dĂ©rivĂ©s polymĂšre de mĂ©thylmĂ©thacrylate, les dĂ©rivĂ©s polymĂšres d’acrylonitrile, la carboxyle mĂ©thyle cellulose et ses dĂ©rivĂ©s, les polyvinyles acĂ©tates ou polyacrylate acĂ©tate, les polyfluorure de vinylidĂšne, et leurs mĂ©langes.Preferably, the binder (s) may be chosen from polybutadiene-styrene latices and organic polymers, and preferably from polybutadiene-styrene latices, polyesters, polyethers, methylmethacrylate polymer derivatives, polymeric derivatives of acrylonitrile, carboxyl methyl cellulose and its derivatives, polyvinyl acetates or polyacrylate acetate, polyvinylidene fluoride, and mixtures thereof.

De préférence, le liant est le polyfluorure de vinylidÚne (PVdF).Preferably, the binder is polyvinylidene fluoride (PVdF).

La batterie Li-ion, comprenant l’électrolyte selon l’invention, comprend un matĂ©riau actif pour Ă©lectrode nĂ©gative Ă  base de graphite. Le carbone graphite peut ĂȘtre choisi parmi les carbones graphite synthĂ©tiques, et naturels Ă  partir de prĂ©curseurs naturels suivis d’une purification et/ou d’un post traitement.The Li-ion battery, comprising the electrolyte according to the invention, comprises an active material for negative electrode based on graphite. The graphite carbon may be chosen from synthetic graphite carbons, and natural from natural precursors followed by purification and / or post-treatment.

D’autres matĂ©riaux actifs Ă  base de carbone peuvent ĂȘtre utilisĂ©s comme le carbone pyrolitique, le carbone amorphe, le charbon actif, le coke, le brai de houille et le graphĂšne. Des mĂ©langes de graphite avec l’un ou plusieurs de ces matĂ©riaux sont possibles. Des matĂ©riaux possĂ©dant une structure noyau-enveloppe peuvent ĂȘtre utilisĂ©s quand le noyau comprend du graphite haute capacitĂ© et lorsque l’enveloppe comprend un matĂ©riau Ă  base de carbone protĂ©geant le noyau de la dĂ©gradation liĂ©e au phĂ©nomĂšne rĂ©pĂ©tĂ© de l’intercalation/dĂ©sintercalation des ions lithiums.Other active carbon-based materials can be used such as pyrolytic carbon, amorphous carbon, activated carbon, coke, coal tar pitch and graphene. Mixtures of graphite with one or more of these materials are possible. Materials having a core-shell structure may be used when the core comprises high capacity graphite and when the shell comprises a carbon-based material protecting the core from degradation related to the repeated phenomenon of intercalation / deintercalation of lithium ions .

Avantageusement, le matériau actif pour électrode négative est du graphite fourni par la société Hitachi (SMGHE2).Advantageously, the negative electrode active material is graphite supplied by the company Hitachi (SMGHE2).

Le matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite peut en outre comprendre un ou plusieurs liants comme pour l’électrode positive.The graphite-based negative electrode material may further comprise one or more binders as for the positive electrode.

Les liants dĂ©crits ci-dessus pour l’électrode positive peuvent ĂȘtre utilisĂ©s pour l’électrode nĂ©gative.The binders described above for the positive electrode can be used for the negative electrode.

De maniĂšre prĂ©fĂ©rĂ©e, les liants utilisĂ©s sont la carboxyle mĂ©thyle cellulose (CMC) et le latex StyrofanÂź, c’est-Ă -dire un copolymĂšre styrĂšne-butadiĂšne carboxylĂ©.Preferably, the binders used are carboxyl methyl cellulose (CMC) and latex StyrofanÂź, that is to say a carboxylated styrene-butadiene copolymer.

La batterie Li-ion, comprenant l’électrolyte selon l’invention, comprend Ă©galement un sĂ©parateur localisĂ© entre les Ă©lectrodes. Il joue le rĂŽle d’isolant Ă©lectrique.The Li-ion battery, comprising the electrolyte according to the invention, also comprises a separator located between the electrodes. It plays the role of electrical insulation.

Plusieurs matĂ©riaux peuvent ĂȘtre utilisĂ©s comme sĂ©parateurs. Les sĂ©parateurs sont gĂ©nĂ©ralement composĂ©s de polymĂšres poreux, de prĂ©fĂ©rence de polyĂ©thylĂšne et/ou de polypropylĂšne.Several materials can be used as separators. The separators are generally composed of porous polymers, preferably polyethylene and / or polypropylene.

Avantageusement, le sĂ©parateur utilisĂ© est le sĂ©parateur CelgardÂź 2500, c’est-Ă -dire une membrane microporeuse monocouche d’une Ă©paisseur de 25 pm composĂ©e de polypropylĂšne.Advantageously, the separator used is the CelgardÂź 2500 separator, that is to say a microporous single-layer membrane with a thickness of 25 ÎŒm composed of polypropylene.

L’invention a Ă©galement pour objet un procĂ©dĂ© de prĂ©paration de cellule de batteries Li-ion, comprenant l’électrolyte selon l’invention, comprenant les Ă©tapes suivantes :The subject of the invention is also a method for preparing a Li-ion battery cell, comprising the electrolyte according to the invention, comprising the following steps:

- assemblage d’une cellule par empilement d’un matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, d’un matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite et d’un sĂ©parateur situĂ© entre les deux Ă©lectrodes,- assembling a cell by stacking a positive-laminated oxide-based positive electrode material, a graphite-based negative electrode material and a separator located between the two electrodes,

- imprĂ©gnation du sĂ©parateur par l’électrolyte tel que prĂ©cĂ©demment dĂ©crit.impregnation of the separator with the electrolyte as previously described.

De prĂ©fĂ©rence, le matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© comprend le matĂ©riau actif de formule Lii^NioyMnO’îCU.Preferably, the platy-laminated oxide-based positive electrode material comprises the active material of the formula Li 1 NioyMnO 2 -CU.

De maniÚre préférée, le matériau pour électrode négative à base de graphite comprend le graphite fourni par la société Hitachi (SMGHE2) en tant que matériau actif.Preferably, the graphite-based negative electrode material comprises graphite supplied by Hitachi (SMGHE2) as an active material.

De prĂ©fĂ©rence, le sĂ©parateur est le sĂ©parateur CelgardÂź 2500, c’est-Ă -dire une membrane microporeuse monocouche d’une Ă©paisseur de 25 pm composĂ©e de polypropylĂšne.Preferably, the separator is the CelgardÂź 2500 separator, i.e. a 25 ÎŒm monolayer microporous membrane composed of polypropylene.

L’invention porte Ă©galement sur un procĂ©dĂ© de fabrication d’une batterie Li-ion, comprenant l’électrolyte selon l’invention, par assemblage d’une ou plusieurs cellule(s) telle(s) que prĂ©cĂ©demment prĂ©parĂ©e(s).The invention also relates to a method for manufacturing a Li-ion battery, comprising the electrolyte according to the invention, by assembling one or more cells such as previously prepared.

L’invention a Ă©galement pour objet un procĂ©dĂ© de cyclage particulier d’une batterie Li-ion comprenant l’électrolyte selon l’invention comprenant les Ă©tapes suivantes :The invention also relates to a particular cycling process of a Li-ion battery comprising the electrolyte according to the invention comprising the following steps:

- les deux premiers cycles d’activation entre une tension supĂ©rieure (Tsup) strictement supĂ©rieure Ă  4,40 V, de prĂ©fĂ©rence comprise entre 4,40 V borne exclue et 4,70 V, et une tension infĂ©rieure (Tinf) comprise entre 1,60 et 2,50 V, de prĂ©fĂ©rence Ă©gale Ă  2 V,the first two activation cycles between a higher voltage (T sup ) strictly greater than 4.40 V, preferably between 4.40 V excluded and 4.70 V, and a lower voltage (Tinf) between 1 , 60 and 2.50 V, preferably equal to 2 V,

- les cycles de charge et de décharge suivants à des tensions comprises entre une tension Tsup comprise entre 4,30 et 4,45 V, de préférence égale à 4,40 V, et une tension Tinf comprise entre 2 et 2,50 V, de préférence égale à 2,30 V ;the following charging and discharging cycles at voltages lying between a voltage T sup of between 4.30 and 4.45 V, preferably equal to 4.40 V, and a voltage Ti n f of between 2 and 2, 50 V, preferably equal to 2.30 V;

les cycles s’effectuant Ă  un rĂ©gime de cyclage compris entre C/20 et 3C, C dĂ©signant le rĂ©gime de cyclage de la batterie Li-ion.the cycles being carried out at a cycling speed of between C / 20 and 3C, C designating the cycling regime of the Li-ion battery.

Dans un mode de rĂ©alisation prĂ©fĂ©rĂ©, les deux premiers cycles d’activation s’effectuent Ă  un rĂ©gime de cyclage de C/10.In a preferred embodiment, the first two activation cycles are carried out at a C / 10 cycling rate.

Dans un autre mode de rĂ©alisation prĂ©fĂ©rĂ©, les cycles de charge et de dĂ©charge suivants s’effectuent Ă  un rĂ©gime de cyclage de C/2.In another preferred embodiment, the following charge and discharge cycles are performed at a C / 2 cycling rate.

La présente invention est illustrée de maniÚre non-limitative par les exemples suivants.The present invention is illustrated in a nonlimiting manner by the following examples.

ExemplesExamples

PrĂ©paration de l’électrode positivePreparation of the positive electrode

L d’eau sont ajoutĂ©s dans un rĂ©acteur, puis l’eau est chauffĂ©e Ă  une tempĂ©rature comprise entre 50 et 70°C. 12,5 L d’une solution de sulfate de nickel et de sulfate de manganĂšse (selon un ratio molaire de 1/3), dont la concentration est de 0,8 mol/L, est injectĂ©e en continu dans le rĂ©acteur maintenu sous agitation constante.1 L of water are added to a reactor, and the water is heated to a temperature between 50 and 70 ° C. 12.5 L of a solution of nickel sulphate and manganese sulphate (at a molar ratio of 1/3), the concentration of which is 0.8 mol / L, is injected continuously into the stirred reactor constant.

Le pH du rĂ©acteur est rĂ©gulĂ© entre 7 et 8,5 en ajoutant une solution de carbonate de sodium et une solution d’ammoniaque.The pH of the reactor is regulated between 7 and 8.5 by adding a solution of sodium carbonate and an ammonia solution.

L’apparition d’un prĂ©cipitĂ© est observĂ©e au cours de l’injection. A la fin de l’injection, le rĂ©acteur est maintenu sous la mĂȘme agitation constante et Ă  la mĂȘme tempĂ©rature pendant une pĂ©riode comprise entre 4 et 10 heures.The appearance of a precipitate is observed during the injection. At the end of the injection, the reactor is kept under the same constant stirring and at the same temperature for a period of between 4 and 10 hours.

Le prĂ©cipitĂ© est ensuite sĂ©parĂ© de la phase liquide par filtration, puis lavĂ© abondamment avec de l’eau et sĂ©chĂ© sur filtre sĂ©cheur.The precipitate is then separated from the liquid phase by filtration, then washed extensively with water and dried on a drying filter.

Le matériau ainsi formé est alors mélangé de façon intime avec du carbonate de lithium. Le mélange résultant est ensuite calciné à une température comprise entre 850 et 900°C pendant 24 heures.The material thus formed is then intimately mixed with lithium carbonate. The resulting mixture is then calcined at a temperature between 850 and 900 ° C for 24 hours.

Le matĂ©riau actif obtenu est un oxyde lamellaire surlithiĂ© de formule ΕΐÎč^Νΐο,ÎčÎœÎ·Îż,όΟÎč se prĂ©sentant sous la forme d’une poudre.The active material obtained is an ophthalmic lamellar oxide of formula ΕΐÎč ^ Νΐο, ÎčÎœÎ·Îż, όΟÎč being in the form of a powder.

L’électrode positive est prĂ©parĂ©e en mĂ©langeant 86% en poids de matĂ©riau actif, 6% en poids d’un additif carbone Super PÂź, et 8% en poids de polyfluorure de vinylidĂšne.The positive electrode is prepared by mixing 86% by weight of active material, 6% by weight of a Super PÂź carbon additive, and 8% by weight of polyvinylidene fluoride.

L’électrode est fabriquĂ©e en dĂ©posant le mĂ©lange sur une feuille d’aluminium. Les Ă©lectrodes sont sĂ©chĂ©es et compressĂ©es par calandrage Ă  80°C.The electrode is made by depositing the mixture on an aluminum foil. The electrodes are dried and calendered at 80 ° C.

La masse surfacique de matĂ©riau pour Ă©lectrode positive est de 6,1 mg/cm2. L’aire de l’électrode positive utilisĂ©e en cellule est de 10,24 cm2.The density of material for positive electrode material is 6.1 mg / cm 2 . The area of the positive electrode used in the cell is 10.24 cm 2 .

PrĂ©paration de l’électrode nĂ©gativePreparation of the negative electrode

Un matĂ©riau actif de graphite est fourni par la sociĂ©tĂ© Hitachi (SMGHE2). L’électrode est fabriquĂ©e en mĂ©langeant 96% en poids de graphite, 2% en poids de carboxyle mĂ©thyle cellulose (CMC) et 2% en poids de latex StyrofanÂź, c’est-Ă -dire un copolymĂšre styrĂšnebutadiĂšne carboxylĂ©.Active graphite material is provided by Hitachi (SMGHE2). The electrode is made by mixing 96% by weight of graphite, 2% by weight of carboxyl methyl cellulose (CMC) and 2% by weight of Styrofan latex, that is to say a carboxylated styrene butadiene copolymer.

Le mélange résultant est déposé sur une feuille de cuivre puis séché et compressé par calandrage à 80°C.The resulting mixture is deposited on a copper foil and then dried and calendered at 80 ° C.

La masse surfacique de matĂ©riau pour Ă©lectrode nĂ©gative est de 4,4 mg/cm2. L’aire de l’électrode nĂ©gative utilisĂ©e en cellule est de 12,25 cm2.The density of negative electrode material is 4.4 mg / cm 2 . The area of the negative electrode used in the cell is 12.25 cm 2 .

SĂ©parateurSeparator

Le sĂ©parateur CelgardÂź 2500 est utilisĂ© afin d’éviter tout court-circuit entre l’électrode positive et l’électrode nĂ©gative durant les cycles de charge et de dĂ©charge. Le sĂ©parateur CelgardÂź 2500 est une membrane microporeuse monocouche d’une Ă©paisseur de 25 pm composĂ©e de polypropylĂšne.The CelgardÂź 2500 separator is used to prevent short circuits between the positive electrode and the negative electrode during charging and discharging cycles. The CelgardÂź 2500 separator is a 25 ÎŒm thick monolayer microporous membrane made of polypropylene.

ElectrolyteElectrolyte

Le 1-butyl-l-méthylpyrrolidinium bis(trifluorométhanesulfonyl)imide (Pyrl4 TFSI) utilisé est fourni la société Fluka (Pyrl4 TFSI, > 98,5%).The 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PyrI 4 TFSI) used is supplied by Fluka (Pyrl4 TFSI,> 98.5%).

Quatre électrolytes sont utilisés pour mener les essais comparatifs, dont les compositions sont reportées dans le tableau 1 :Four electrolytes are used to carry out the comparative tests, whose compositions are reported in Table 1:

Electrolyte Electrolyte A (comparatif) AT (comparative) B (comparatif) B (comparative) C (invention) C (invention) D (invention) D (invention) LiPF6 (mol/L)LiPF 6 (mol / L) 1 1 1 1 1 1 1 1 EC/EMC/DMC (ratio en volume) EC / EMC / DMC (volume ratio) 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 Pyrl4 TFSI (% volumique) Pyrl4 TFSI (% volumetric) - - - - 20 20 20 20 LiDFOB (% massique) LiDFOB (% by mass) - - 0,3 0.3 - - 0,3 0.3

Tableau 1Table 1

L’électrolyte A est composĂ© d’IM de sel de lithium LiPF6 dissous dans un mĂ©lange de carbonate d’éthylĂšne, de carbonate de mĂ©thyle et d’éthyle et de carbonate de dimĂ©thyle (EC/EMC/DMC) selon un ratio 1/1/1 en volume.Electrolyte A is composed of 1M LiPF 6 lithium salt dissolved in a mixture of ethylene carbonate, methyl carbonate and ethyl and dimethyl carbonate (EC / EMC / DMC) in a ratio of 1 / 1/1 by volume.

L’électrolyte B est composĂ© d’IM de sel de lithium LiPF6 dissous dans un mĂ©lange de carbonate d’éthylĂšne, de carbonate de mĂ©thyle et d’éthyle et de carbonate de dimĂ©thyle (EC/EMC/DMC) selon un ratio 1/1/1 en volume et de 0,3% en poids de difluoro(oxolato)borate de lithium (LiDFOB).Electrolyte B is composed of 1M LiPF 6 lithium salt dissolved in a mixture of ethylene carbonate, methyl carbonate and ethyl and dimethyl carbonate (EC / EMC / DMC) in a ratio of 1 / 1/1 by volume and 0.3% by weight of lithium difluoro (oxolato) borate (LiDFOB).

L’électrolyte C est composĂ© d’IM de sel de lithium LiPF6 dissous dans un mĂ©lange de carbonate d’éthylĂšne, de carbonate de mĂ©thyle et d’éthyle et de carbonate de dimĂ©thyle (EC/EMC/DMC) selon un ratio 1/1/1 en volume et de 20% en volume de 1-butyl-lmĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide (Pyrl4 TFSI).Electrolyte C is composed of 1M LiPF 6 lithium salt dissolved in a mixture of ethylene carbonate, methyl carbonate and ethyl and dimethyl carbonate (EC / EMC / DMC) in a ratio of 1 / 1/1 by volume and 20% by volume of 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PyrI 4 TFSI).

L’électrolyte D est composĂ© d’IM de sel de lithium LiPF6 dissous dans un mĂ©lange de carbonate d’éthylĂšne, de carbonate de mĂ©thyle et d’éthyle et de carbonate de dimĂ©thyle (EC/EMC/DMC) selon un ratio 1/1/1 en volume, de 20% en volume de 1-butyl-lmĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide (Pyrl4 TFSI) et de 0,3% en poids de difluoro(oxolato)borate de lithium (LiDFOB).The electrolyte D is composed of 1M LiPF 6 lithium salt dissolved in a mixture of ethylene carbonate, methyl carbonate and ethyl and dimethyl carbonate (EC / EMC / DMC) in a ratio 1 / 1/1 by volume, 20% by volume of 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PyrI 4 TFSI) and 0.3% by weight of lithium difluoro (oxolato) borate (LiDFOB).

CelluleCell

Les cellules sont finalement assemblĂ©es par empilement de l’électrode positive, de l’électrode nĂ©gative telles que prĂ©parĂ©es cidessus, et du sĂ©parateur CelgardÂź 2500, situĂ© entre les deux Ă©lectrodes. Le sĂ©parateur est imprĂ©gnĂ© par l’électrolyte tel que prĂ©cĂ©demment dĂ©crit.The cells are finally assembled by stacking the positive electrode, the negative electrode as prepared above, and the CelgardÂź 2500 separator, located between the two electrodes. The separator is impregnated with the electrolyte as previously described.

Ainsi, quatre cellules, que l’on nommera cellule A, B, C ou D, comprenant respectivement l’électrolyte A, B, C ou D sont prĂ©parĂ©es. La cellule A contient l’électrolyte A de rĂ©fĂ©rence.Thus, four cells, which will be named cell A, B, C or D, respectively comprising the electrolyte A, B, C or D are prepared. Cell A contains the reference electrolyte A.

Performances Ă©lectrochimiques de cellules de batterie Li-ionElectrochemical performance of Li-ion battery cells

Evaluation des capacités de décharge spécifiques en fonction du nombre de cyclesEvaluation of the specific discharge capacities according to the number of cycles

La figure 1 reprĂ©sente un graphe comparant les capacitĂ©s de dĂ©charge spĂ©cifiques de cellules de batteries Li-ion comprenant chacune une Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, une Ă©lectrode nĂ©gative Ă  base de graphite et prĂ©sentant diffĂ©rentes compositions d’électrolyte, en fonction du nombre de cycle de charge et de dĂ©charge. Les cellules de batterie A, B, C et D contiennent respectivement les Ă©lectrolytes A, B, C et D.FIG. 1 represents a graph comparing the specific discharge capacities of Li-ion battery cells, each comprising a platy-oxide surlithiated positive electrode, a graphite-based negative electrode and having different electrolyte compositions, as a function of number of charge and discharge cycles. Battery cells A, B, C and D respectively contain the electrolytes A, B, C and D.

MĂ©thodeMethod

Un procĂ©dĂ© de cyclage a Ă©tĂ© utilisĂ©. Les deux premiers cycles, ou cycles d’activation, se sont dĂ©roulĂ©s entre 4,6 et 2 V Ă  un rĂ©gime de cyclage C/10. Les cycles de charge et de dĂ©charge suivants se sont dĂ©roulĂ©s Ă  des tensions rĂ©duites comprises entre 4,4 et 2,3 V Ă  un rĂ©gime de cyclage C/2.A cycling process was used. The first two cycles, or activation cycles, took place between 4.6 and 2 V at a C / 10 cycling rate. The following charging and discharging cycles were conducted at reduced voltages between 4.4 and 2.3 V at a C / 2 cycling rate.

RĂ©sultatResult

Ainsi, la figure 1 montre clairement que la cellule de batterie A (courbe A) prĂ©sente un comportement Ă©lectrochimique trĂšs instable. Une chute des performances Ă©lectrochimiques est observĂ©e et une capacitĂ© de dĂ©charge spĂ©cifique d’environ 110 mAh/g est mesurĂ©e aprĂšs environ 650 cycles.Thus, Figure 1 clearly shows that the battery cell A (curve A) has a very unstable electrochemical behavior. A drop in electrochemical performance is observed and a specific discharge capacity of about 110 mAh / g is measured after about 650 cycles.

La cellule de batterie B (courbe B) prĂ©sente un comportement Ă©lectrochimique amĂ©liorĂ© avec la mesure d’une capacitĂ© de dĂ©charge spĂ©cifique d’environ 130 mAh/g aprĂšs 638 cycles.Battery cell B (curve B) exhibits improved electrochemical behavior with the measurement of a specific discharge capacity of about 130 mAh / g after 638 cycles.

La cellule de batterie C (courbe C) prĂ©sente un trĂšs bon comportement Ă©lectrochimique avec la mesure d’une capacitĂ© de dĂ©charge spĂ©cifique d’environ 140 mAh/g aprĂšs environ 650 cycles.The battery cell C (curve C) has a very good electrochemical behavior with the measurement of a specific discharge capacity of about 140 mAh / g after about 650 cycles.

Enfin, la cellule de batterie D (courbe D) prĂ©sente Ă©galement un trĂšs bon comportement Ă©lectrochimique avec la mesure d’une capacitĂ© de dĂ©charge spĂ©cifique d’environ 155 mAh/g aprĂšs environ 650 cycles.Finally, the battery cell D (curve D) also has a very good electrochemical behavior with the measurement of a specific discharge capacity of about 155 mAh / g after about 650 cycles.

Il est en outre Ă  noter que les capacitĂ©s de dĂ©charge spĂ©cifique, concernant les cellules A et B, augmentent entre le 50eme et le 150eme cycle. Ce phĂ©nomĂšne est dĂ» au processus d’« activation » du matĂ©riau pour Ă©lectrode positive qui perdure.It is further noted that the specific discharge capacity for the cells A and B, increases between the 50 th and the 150 th cycle. This phenomenon is due to the process of "activation" of the positive electrode material which persists.

Au contraire, ce phĂ©nomĂšne n’est observĂ© que pour les 50 premiers cycles pour les cellules C et D. Au-delĂ  du 50eme cycle, la figure 1 montre que le comportement Ă©lectrochimique est stable pour les cellules C et D.On the contrary, this phenomenon is only observed for the first 50 cycles for cells C and D. In addition to the 50 th cycle, Figure 1 shows that the electrochemical behavior is stable for cells C and D.

Cette observation dans le comportement Ă©lectrochimique est trĂšs importante pour l’application pratique d’une cellule. En effet, les cellules capables de dĂ©livrer rapidement une performance stable, et donc un processus d’activation complĂ©tĂ© le plus tĂŽt possible, sont recherchĂ©es.This observation in the electrochemical behavior is very important for the practical application of a cell. Indeed, cells capable of rapidly delivering a stable performance, and therefore an activation process completed as soon as possible, are sought.

Il est clairement établi que la présence du LiDFOB dans un électrolyte a un effet bénéfique puisque les performances électrochimiques de la cellule B sont meilleures que celles de la cellule A de référence mais restent insuffisantes.It is clearly established that the presence of LiDFOB in an electrolyte has a beneficial effect since the electrochemical performances of cell B are better than those of reference cell A but remain insufficient.

Il convient de noter que le remplacement du LiDFOB par le Pyrl4 TFSI est encore plus bénéfique car la cellule C délivre une performance stable plus rapidement et une capacité de décharge spécifique plus élevée que celle de la cellule B. Ces résultats sont trÚs satisfaisants.It should be noted that the replacement of LiDFOB by Pyrl4 TFSI is even more beneficial because cell C delivers a faster stable performance and a higher specific discharge capacity than that of cell B. These results are very satisfactory.

La prĂ©sence additionnelle du LiDFOB en plus du Pyrl4 TFSI ne permet pas d’amĂ©liorer le rĂ©sultat concernant la dĂ©livrance d’une performance stable plus rapide. NĂ©anmoins, Ă  partir du 550eme cycle, la capacitĂ© de dĂ©charge spĂ©cifique de la cellule D est meilleure que celle de la cellule C.The additional presence of the LiDFOB in addition to the Pyrl4 TFSI does not improve the result concerning the delivery of a faster stable performance. Nevertheless, from the 550th cycle, the specific discharge capacity of cell D is better than that of cell C.

Evaluation des tensions de décharge moyennes en fonction du nombre de cyclesEvaluation of the average discharge voltages according to the number of cycles

La figure 2 représente un graphe comparant les tensions de décharge moyennes des quatre cellules de batteries Li-ion A, B, C et D en fonction du nombre de cycles de charge et de décharge.FIG. 2 represents a graph comparing the average discharge voltages of the four Li-ion battery cells A, B, C and D as a function of the number of charge and discharge cycles.

Le mĂȘme procĂ©dĂ© de cyclage que celui dĂ©crit pour la figure 1 est utilisĂ©.The same cycling method as that described for Figure 1 is used.

Un des problĂšmes majeurs rencontrĂ©s dans les matĂ©riaux pour Ă©lectrode positive Ă  base d’oxydes lamellaires est en effet la baisse de tension de dĂ©charge moyenne de la cellule avec les cycles de charge et de dĂ©charge.One of the major problems encountered in positive electrode materials based on lamellar oxides is the lowering of the average discharge voltage of the cell with the charging and discharging cycles.

La figure 2 montre une baisse de tension de dĂ©charge trĂšs importante concernant les cellules A et B avec la mesure d’une tension de dĂ©charge moyenne respectivement de 3,23 et de 3,18 V aprĂšs environ 650 cycles.Figure 2 shows a very large discharge voltage drop for cells A and B with the measurement of an average discharge voltage respectively of 3.23 and 3.18 V after about 650 cycles.

Les cellules C et D prĂ©sentent quant Ă  elle une baisse de tension de dĂ©charge moyenne nettement moins prononcĂ©e avec la mesure d’une tension de dĂ©charge moyenne d’environ 3,3 V aprĂšs environ 650 cycles pour les deux cellules.Cells C and D, meanwhile, have a significantly lower average discharge voltage drop with the measurement of an average discharge voltage of about 3.3 V after about 650 cycles for both cells.

L’effet bĂ©nĂ©fique de la prĂ©sence du Pyrl4 TFSI sur le comportement Ă©lectrochimique d’une cellule de batterie Li-ion est donc encore une fois clairement Ă©tabli.The beneficial effect of the presence of Pyrl4 TFSI on the electrochemical behavior of a Li-ion battery cell is thus once again clearly established.

Evaluation de l’impĂ©dance des cellules de batterie Li-ionEvaluation of the impedance of the Li-ion battery cells

La figure 3 est un graphe de Nyquist comparant les différentes impédances des cellules de batteries Li-ion A, B, C et D, mesurées à température ambiante et à une tension de 3,75V.FIG. 3 is a Nyquist graph comparing the different impedances of the Li-ion battery cells A, B, C and D, measured at ambient temperature and at a voltage of 3.75V.

Il est à noter que le diamÚtre des demi-cercles caractérisant les cellules A et B est nettement plus grand que celui des demi-cercles caractérisant les cellules C et D.It should be noted that the diameter of the semicircles characterizing cells A and B is significantly larger than that of the half-circles characterizing cells C and D.

Ainsi, une SEI suffisamment solide et stable pour supporter l’exposition d’une tension Ă©levĂ©e, semble s’ĂȘtre formĂ©e en ce qui concerne les cellules C et D au contraire des cellules A et B.Thus, an SEI sufficiently strong and stable to withstand the exposure of a high voltage, seems to have formed with respect to cells C and D in contrast to cells A and B.

Evaluation de propriĂ©tĂ©s thermiques de matĂ©riaux pour Ă©lectrode positive Ă  base d’oxydes lamellaires en prĂ©sence d’électrolyteEvaluation of thermal properties of positive electrode materials based on lamellar oxides in the presence of electrolyte

La figure 4 est un graphe comparant les flux de chaleur de matĂ©riaux pour Ă©lectrode positive Ă  base d’oxydes lamellaires surlithiĂ©s, dans un Ă©tat chargĂ© de 4,7 V, en prĂ©sence des Ă©lectrolytes A, C et D, en fonction de la tempĂ©rature.FIG. 4 is a graph comparing heat fluxes of positive electrode materials based on overlapped layered oxides, in a charged state of 4.7 V, in the presence of electrolytes A, C and D, as a function of temperature.

Les flux de chaleur sont mesurĂ©s par calorimĂ©trie diffĂ©rentielle Ă  balayage. L’appareil utilisĂ© est le DSC 404 Fl PegasusÂź commercialisĂ© par NETZSCH. La montĂ©e en tempĂ©rature de l’échantillon mesurĂ© est rĂ©alisĂ©e Ă  5K/min.The heat fluxes are measured by differential scanning calorimetry. The apparatus used is the DSC 404 Fl PegasusÂź marketed by NETZSCH. The rise in temperature of the measured sample is carried out at 5K / min.

La migration des ions lithium depuis le matĂ©riau pour Ă©lectrode positive pendant le fonctionnement d’une cellule provoque une gĂ©nĂ©ration de chaleur importante et reprĂ©sente la source principale de l’emballement thermique de la cellule.Migration of lithium ions from the positive electrode material during cell operation causes significant heat generation and is the primary source of thermal runaway of the cell.

La figure 4 montre que la chaleur dégagée concernant le matériau pour électrode positive :Figure 4 shows that the heat released for the positive electrode material:

- en prĂ©sence de l’électrolyte A de rĂ©fĂ©rence est de 1043 J/g,in the presence of the reference electrolyte A is 1043 J / g,

- en prĂ©sence de l’électrolyte C de rĂ©fĂ©rence est de 888 J/g,in the presence of the reference electrolyte C is 888 J / g,

- en prĂ©sence de l’électrolyte D de rĂ©fĂ©rence est de 747 J/gin the presence of the reference electrolyte D is 747 J / g

Ainsi, le taux de gĂ©nĂ©ration de chaleur entre 150 et 250°C est rĂ©duit d’environ 15% pour le matĂ©riau pour Ă©lectrode positive en prĂ©sence de l’électrolyte C par rapport au matĂ©riau pour Ă©lectrode positive en prĂ©sence de l’électrolyte A.Thus, the heat generation rate between 150 and 250 ° C is reduced by about 15% for the positive electrode material in the presence of the electrolyte C relative to the positive electrode material in the presence of the electrolyte A.

Le taux de gĂ©nĂ©ration de chaleur entre 150 et 250°C est rĂ©duit d’environ 28% pour le matĂ©riau pour Ă©lectrode positive en prĂ©sence de l’électrolyte D par rapport au matĂ©riau pour Ă©lectrode positive en prĂ©sence de l’électrolyte A.The heat generation rate between 150 and 250 ° C is reduced by about 28% for the positive electrode material in the presence of the electrolyte D relative to the positive electrode material in the presence of the electrolyte A.

L’effet bĂ©nĂ©fique de la prĂ©sence du Pyrl4 TFSI dans un Ă©lectrolyte concernant les propriĂ©tĂ©s thermiques d’une cellule de 5 batterie Li-ion est donc clairement Ă©tabli.The beneficial effect of the presence of Pyrl4 TFSI in an electrolyte on the thermal properties of a Li-ion battery cell is thus clearly established.

Claims (13)

REVENDICATIONS 1. Electrolyte comprenant :1. Electrolyte comprising: - de l’hexafluorophosphate de lithium,- lithium hexafluorophosphate, - un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle, du 1-butyl-1-mĂ©thyipyrrolidinium bis(trifluoromĂ©ihanesulfonyl)imide, et ~ du difluoro(oxolato)borate de lithium.a mixture of solvents comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate, 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide, and lithium difluoro (oxolato) borate . 2. Electrolyte selon la revendication 1, caractĂ©risĂ© en ce que ledit Ă©lectrolyte comprend de 0,1 Ă  50% en volume, de prĂ©fĂ©rence de 15 Ă  25% en volume, de 1-butyl-1-mĂ©thylpyrrolidinium ΒÎȘ8(ÎÏ€Î‘Ï…Îż^πÎčÏŒÎŻ1ΐηπ68η1Γοηγ1)ÎŻÎčη1ÎŹ6 par rapport au volume total dudit Ă©lectrolyte.2. Electrolyte according to claim 1, characterized in that said electrolyte comprises from 0.1 to 50% by volume, preferably from 15 to 25% by volume, of 1-butyl-1-methylpyrrolidinium ΒÎȘ8 (ÎÏ€Î‘Ï…Îż ^ πÎčÏŒÎŻ1ΐηπ68η1Γοηγ1) ÎŻÎčη1ÎŹ6 relative to the total volume of said electrolyte. 3. Electrolyte selon l’une des revendications 1 ou 2, caractĂ©risĂ© en ce que le mĂ©lange de solvants comprend du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle dans des proportions volumiques de 1/1/1.3. Electrolyte according to one of claims 1 or 2, characterized in that the solvent mixture comprises ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate in proportions by volume of 1/1 / 1. 4. Electrolyte selon l’une quelconque des revendications prĂ©cĂ©dentes, caractĂ©risĂ© en ce que le pourcentage massique du difluoro(oxolato)borate de lithium est compris entre 0,005 et 10% par rapport au poids total de l’électrolyte.4. Electrolyte according to any one of the preceding claims, characterized in that the weight percentage of lithium difluoro (oxolato) borate is between 0.005 and 10% relative to the total weight of the electrolyte. 5. ProcĂ©dĂ© de prĂ©paration d’un Ă©lectrolyte tel que dĂ©fini Ă  l’une quelconque des revendications prĂ©cĂ©dentes, pour batterie Li-ion comprenant un matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© et un matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite, caractĂ©risĂ© en ce que ledit hexafluorophosphate de lithium,5. A method for preparing an electrolyte as defined in any one of the preceding claims, for a Li-ion battery comprising a platy-oxide-surlithieed positive electrode material and a graphite-based negative electrode material, characterized in that said lithium hexafluorophosphate, 1 -butyl -1 -mĂ©thylpyrrolidinium bis(trifluoromĂ©thanesulfonyl)imide et ledit difluoro(oxolato)borate de lithium sont dissous dans un mĂ©lange de solvants comprenant du carbonate d’éthylĂšne, du carbonate de mĂ©thyle et d’éthyle et du carbonate de dimĂ©thyle.1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide and said lithium difluoro (oxolato) borate are dissolved in a solvent mixture comprising ethylene carbonate, methyl and ethyl carbonate and dimethyl carbonate. 6. Utilisation de l’électrolyte tel que dĂ©fini Ă  l’une quelconque des revendications 1 Ă  4 pour une batterie Li-ion.6. Use of the electrolyte as defined in any one of claims 1 to 4 for a Li-ion battery. 7. Batterie Li-ion comprenant un matĂ©riau pour Ă©lectrode positive Ă  base d'oxyde lamellaire surlithiĂ©, un matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite et un sĂ©parateur, caractĂ©risĂ©e en ce qu’elle comprend un Ă©lectrolyte tel que dĂ©fini Ă  l’une quelconque des revendications 1 Ă  4,7. A Li-ion battery comprising a platy-oxide-surlithiated oxide-based positive electrode material, a graphite-based negative electrode material, and a separator, characterized in that it comprises an electrolyte as defined in any one of: Claims 1 to 4, 8. Batterie selon la revendication 7, caractĂ©risĂ©e en ce que ledit matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ© comprend un matĂ©riau actif de formule LiJ+x(MaDb)1.xO2, dans laquelle :8. Battery according to claim 7, characterized in that said laminated oxide-based surlithie positive electrode material comprises an active material of formula Li J + x (M a D b ) 1 . x O 2 , in which: - M reprĂ©sente un mĂ©tal ou plusieurs mĂ©taux choisis parmi le nickel, le manganĂšse et le cobalt,M represents a metal or several metals chosen from nickel, manganese and cobalt, - x est compris entre 0,01 et 0,33,x is between 0.01 and 0.33, - lorsque b est compris entre 0 et 0,05 et a+b=l, alors D est un Ă©lĂ©ment choisi parmi Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al ou K ou un mĂ©lange de ces Ă©lĂ©ments.when b is between 0 and 0.05 and a + b = 1, then D is an element selected from Na, Zn, Cd, Mg, Ti, Ca, Zr, Sr, Ba, Al or K or a mixture of these elements. 9. ProcĂ©dĂ© de prĂ©paration de cellule de batteries Li-ion, caractĂ©risĂ© en ce que ledit procĂ©dĂ© comprend les Ă©tapes suivantes :9. A process for preparing a Li-ion battery cell, characterized in that said method comprises the following steps: - assemblage d’une cellule par empilement d’un matĂ©riau pour Ă©lectrode positive Ă  base d’oxyde lamellaire surlithiĂ©, d’un matĂ©riau pour Ă©lectrode nĂ©gative Ă  base de graphite et d’un sĂ©parateur situĂ© entre les deux Ă©lectrodes,- assembling a cell by stacking a positive-laminated oxide-based positive electrode material, a graphite-based negative electrode material and a separator located between the two electrodes, - imprĂ©gnation du sĂ©parateur par l’électrolyte tel que dĂ©fini Ă  l’une quelconque des revendications 1 Ă  4.impregnation of the separator with the electrolyte as defined in any one of claims 1 to 4. 10. ProcĂ©dĂ© de fabrication de batterie Li-ion, caractĂ©risĂ© en ce que ledit procĂ©dĂ© comprend une Ă©tape d’assemblage d’une ou plusieurs cellule(s) telle(s) que dĂ©finie(s) Ă  la revendication 9.10. A method of manufacturing Li-ion battery, characterized in that said method comprises a step of assembling one or more cell (s) as defined in claim 9. 11. ProcĂ©dĂ© de cyclage d’une batterie Li-ion telle que dĂ©finie Ă  l une des revendications 7 ou 8, caractĂ©risĂ© en ce que ledit procĂ©dĂ© comprend les Ă©tapes suivantes :11. A method of cycling a Li-ion battery as defined in one of claims 7 or 8, characterized in that said method comprises the following steps: deux premiers cycles d’activation entre une tension supĂ©rieure (Tsup) strictement supĂ©rieure Ă  4,40 V, de prĂ©fĂ©rence comprise entre 4,40 V borne exclue et 4,70 V, et une tension infĂ©rieure (Tinf) comprise entre 1,60 et 2,50 V, de prĂ©fĂ©rence Ă©gale Ă  2 V, les cycles de charge et de dĂ©charge suivants Ă  des tensions comprises entre une tension Tsup comprise entre 4,30 et 4,45 V, de prĂ©fĂ©rence Ă©gale Ă  4,40 V, et une tension Tjnf comprise entre 2 et 2,50 V, de prĂ©fĂ©rence Ă©gale Ă  2,30 V ;first two activation cycles between a higher voltage (T sup ) strictly greater than 4.40 V, preferably between 4.40 V excluded terminal and 4.70 V, and a lower voltage (T inf ) between 1, 60 and 2.50 V, preferably equal to 2 V, the following charging and discharging cycles at voltages between a voltage T sup of between 4.30 and 4.45 V, preferably equal to 4.40 V , and a voltage Tj n f of between 2 and 2.50 V, preferably equal to 2.30 V; les cycles s'effectuant Ă  un rĂ©gime de cyclage compris entre C/20 et 3C, C dĂ©signant le rĂ©gime de cyclage de la batterie Li-ion.the cycles being carried out at a cycling speed of between C / 20 and 3C, C designating the cycling regime of the Li-ion battery. 12. ProcĂ©dĂ© selon la revendication 11, caractĂ©risĂ© en ce que lesdits deux premiers cycles d’activation s’effectuent Ă  un rĂ©gime de cyclage de C/10.12. The method of claim 11, characterized in that said first two activation cycles are performed at a C / 10 cycling regime. 13. ProcĂ©dĂ© selon l’une des revendications 11 ou 12, caractĂ©risĂ© en ce que lesdits cycles de charge et de dĂ©charge suivants s’effectuent Ă  un rĂ©gime de cyclage de C/2.13. Method according to one of claims 11 or 12, characterized in that said subsequent charge and discharge cycles are performed at a C / 2 cycling regime.
FR1551033A 2015-02-10 2015-02-10 ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID Active FR3032560B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1551033A FR3032560B1 (en) 2015-02-10 2015-02-10 ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551033A FR3032560B1 (en) 2015-02-10 2015-02-10 ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID
FR1551033 2015-02-10

Publications (2)

Publication Number Publication Date
FR3032560A1 FR3032560A1 (en) 2016-08-12
FR3032560B1 true FR3032560B1 (en) 2019-11-22

Family

ID=52808039

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1551033A Active FR3032560B1 (en) 2015-02-10 2015-02-10 ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID

Country Status (1)

Country Link
FR (1) FR3032560B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058574A1 (en) * 2016-11-07 2018-05-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives NON-FLUORIN ELECTROLYTES BASED ON A SPECIFIC TYPE-LIQUID ADDITIVE FOR LITHIUM BATTERIES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305574A (en) * 2007-06-05 2008-12-18 Toyota Central R&D Labs Inc Lithium ion secondary battery
FR2917537B1 (en) * 2007-06-15 2009-09-25 Saft Groupe Sa LITHIUM-ION BATTERY CONTAINING ELECTROLYTE COMPRISING IONIC LIQUID
US20130157147A1 (en) * 2011-12-14 2013-06-20 Bing Li Low Temperature Electrolyte for High Capacity Lithium Based Batteries
KR20130079833A (en) * 2012-01-03 2013-07-11 솔람레읞 ìŁŒì‹íšŒì‚Ź Electrolyte and lithium secondary battery comprising same

Also Published As

Publication number Publication date
FR3032560A1 (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5536720B2 (en) Positive electrode and lithium battery including the same
KR100467696B1 (en) Organic electrolytic solution and lithium battery employing the same
EP3345234B1 (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
EP2729978B1 (en) Lithium/sulphur accumulator
EP3396771A1 (en) Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which same is used
JP5277225B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM BATTERY, LITHIUM BATTERY CONTAINING THE SAME, AND METHOD FOR OPERATING LITHIUM BATTERY
JP2006164759A (en) Nonaqueous electrolyte for electrochemical device
EP3103155A1 (en) Specific lithium batteries comprising non-aqueous electrolytes based on sulfone compounds
EP2751859A1 (en) Lithium-sulphur (li-s)-type electrochemical battery and production method thereof
WO2015121574A1 (en) Lithium-ion battery comprising a lithium-rich cathode and a graphite-based anode
JP2019121597A (en) Organic electrolyte solution and lithium battery including the same
EP3482442B1 (en) Battery cell having an electrolyte containing a metal salt
FR3032560B1 (en) ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A PARTICULAR IONIC LIQUID
FR3023069A1 (en) ELECTROLYTE FOR LITHIUM ION BATTERY COMPRISING A LITHIUM RICH CATHODE AND A GRAPHITE-BASED ANODE
EP3132489B1 (en) Method for forming a li-ion battery cell comprising an lnmo cathode material
EP3186846B1 (en) Battery including a negative electrode material which adheres to the anode current collector
KR102533156B1 (en) Lithium battery
FR3090213A1 (en) Active negative electrode material based on iron hydroxide and lithium
JP2010267518A (en) Nonaqueous electrolyte secondary battery
KR102473533B1 (en) Electrolyte for lithium battery and Lithium battery including the same
FR3023070A1 (en) LITHIUM ION BATTERY CYCLING PROCESS COMPRISING SURGRAIN OXIDE BASED CATHODE MATERIAL
CN117239241A (en) Electrolyte and lithium ion battery
JP5209875B2 (en) Lithium secondary battery
FR3095551A1 (en) Electrolyte for an electrochemical accumulator comprising a particular ionic liquid
FR2976735A1 (en) LIQUID ELECTROLYTE FOR LITHIUM ACCUMULATOR COMPRISING A TERNARY MIXTURE OF NONAQUEOUS ORGANIC SOLVENTS.

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160812

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

CA Change of address

Effective date: 20221014

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10