FR3030865A1 - Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage - Google Patents

Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage Download PDF

Info

Publication number
FR3030865A1
FR3030865A1 FR1463216A FR1463216A FR3030865A1 FR 3030865 A1 FR3030865 A1 FR 3030865A1 FR 1463216 A FR1463216 A FR 1463216A FR 1463216 A FR1463216 A FR 1463216A FR 3030865 A1 FR3030865 A1 FR 3030865A1
Authority
FR
France
Prior art keywords
atoms
use according
inorganic filler
hours
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1463216A
Other languages
English (en)
Inventor
Jean Felix Salas
Francois Garonne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR1463216A priority Critical patent/FR3030865A1/fr
Priority to EP15201763.8A priority patent/EP3038113B1/fr
Priority to ES15201763.8T priority patent/ES2659793T3/es
Publication of FR3030865A1 publication Critical patent/FR3030865A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention se rapporte à l'utilisation d'un matériau comprenant une matrice solide à base d'un polymère silicone, dans laquelle sont dispersées une charge inorganique hydrogénée et une charge inorganique borée, comme matériau neutrophage. Ce matériau présente, outre une aptitude à ralentir et à capturer très efficacement les neutrons, des propriétés remarquables de résistance aux températures élevées et, notamment de tenue au vieillissement thermique, et a, entre autres avantages supplémentaires, de pouvoir se présenter sous une forme souple ou rigide en fonction de l'usage auquel il est destiné. Applications : fabrication d'éléments de protection neutronique souples ou rigides, notamment pour centrales nucléaires et usines de traitement de combustibles nucléaires irradiés.

Description

UTILISATION D'UN MATÉRIAU COMPRENANT UNE MATRICE SOLIDE À BASE D'UN POLYMÈRE SILICONE ET DES CHARGES INORGANIQUES COMME MATÉRIAU NEUTROPHAGE DESCRIPTION DOMAINE TECHNIQUE L'invention se rapporte au domaine de la protection neutronique, aussi appelée blindage neutronique. Plus spécifiquement, elle se rapporte à l'utilisation d'un matériau comprenant une matrice solide à base d'un polymère (résine ou élastomère) silicone ainsi que des charges dispersées dans cette matrice comme matériau neutrophage. Ce matériau, outre d'être capable de ralentir et de capturer très efficacement les neutrons, présente des propriétés remarquables de résistance aux températures élevées et, notamment de tenue au vieillissement thermique, et a, entre autres avantages supplémentaires, de pouvoir se présenter sous une forme souple ou rigide en fonction de l'usage auquel il est destiné. De ce fait, il est particulièrement utile pour la fabrication d'éléments de protection contre les neutrons qui sont destinés à être utilisés dans des environnements où règnent en permanence ou de façon transitoire des températures élevées, tels que ceux que l'on peut trouver dans les centrales nucléaires et dans les usines de traitement de combustibles nucléaires irradiés. Ces éléments de protection neutronique peuvent être de toutes dimensions (que ce soit en termes de longueur, de largeur ou d'épaisseur) et de toutes configurations géométriques et peuvent être aussi bien des éléments flexibles tels que des joints (par exemple, d'étanchéité) ou des revêtements (par exemple, de type gaines ou manchons pour câbles, canalisations, cuves ou analogues) que des éléments rigides tels que des portes, des châssis, des parois, des cloisons, des paravents ou des armoires. ÉTAT DE LA TECHNIQUE ANTÉRIEURE Un matériau est dit neutrophage quand il est capable de ralentir et de capturer les neutrons. Pour qu'un matériau soit capable de ralentir et de capturer les neutrons, il convient qu'il renferme des noyaux légers, c'est-à-dire typiquement des atomes d'hydrogène, qui vont ralentir les neutrons par un mécanisme de diffusion élastique, et des noyaux « gourmands » en neutrons, comme des atomes de bore, de cadmium ou de lithium, qui vont capturer les neutrons ainsi ralentis. Il a ainsi été proposé : - un matériau neutrophage rigide, qui est obtenu par polymérisation/ réticulation d'une résine polyester insaturé dans laquelle ont été préalablement incorporées des particules de polyéthylène pour augmenter le taux d'hydrogène de la résine, ainsi qu'un composé boré, lithié ou cadmié (voir US-A-4,134,937, ci-après référence [1]) ; - un matériau neutrophage rigide, qui est obtenu par durcissement d'un mortier comprenant des granulats d'un composé boré inorganique tel que la colémanite, du ciment alumineux et de l'eau (voir EP-A-0 106 759, ci-après référence [2]) ; - un matériau neutrophage rigide, qui est obtenu par polymérisation/ réticulation d'une résine polyester insaturé ou d'une résine vinylester dans laquelle ont été préalablement incorporés un composé inorganique hydrogéné du type hydroxyde d'aluminium ou de magnésium, ainsi qu'un composé inorganique de bore du type acide borique, colémanite ou borate de zinc (voir WO-A-03/030183 et WO-A-03/050822, ci-après références [3] et [4]) ; et - un matériau neutrophage souple, qui est obtenu par vulcanisation d'un élastomère, typiquement un caoutchouc silicone bi-composant, dans lequel ont été préalablement incorporés un composé écran aux rayonnements y (par exemple, du carbure de tungstène), un composé absorbant les neutrons/bloquant les rayonnements y (par exemple, du carbure de bore), un composé thermoconducteur (par exemple, du diamant), un composé résistant à la chaleur (par exemple, de la silice), un composé absorbant les neutrons/électroconducteur (par exemple, du sulfate de baryum) et un composé absorbant l'hydrogène sous forme gazeuse (par exemple, du palladium spongieux) (voir WO-A-02/101756, ci-après référence [5]). Il se trouve que les matériaux neutrophages qui sont obtenus par polymérisation/ réticulation d'une résine thermodurcissable, tels que ceux proposés dans les références [1], [3] et [4], sont obligatoirement des matériaux rigides et ne peuvent donc être utilisés pour la fabrication d'éléments de protection neutronique flexibles. Il en est de même pour les matériaux obtenus par durcissement d'un mortier, tel que celui proposé dans la référence [2].
A l'inverse, les matériaux neutrophages qui sont obtenus à partir d'un élastomère silicone, tel que celui proposé dans la référence [5], sont obligatoirement des matériaux souples et ne peuvent donc être utilisés pour réaliser des éléments de protection neutronique rigides. De plus, le matériau décrit dans la référence [5] présente une faible teneur en hydrogène en raison de ce que, d'une part, les silicones sont des composés peu riches en hydrogène et, d'autre part, les autres composants de ce matériau sont exempts d'hydrogène. Or, une faible teneur en hydrogène est préjudiciable à la capacité du matériau à ralentir les neutrons et, donc, à jouer de manière satisfaisante le rôle d'écran neutronique. Les Inventeurs se sont donc fixés pour but de fournir un matériau neutrophage qui soit, d'une manière générale, dénué des différentes limites présentées par les matériaux neutrophages proposés à ce jour. Plus spécifiquement, ils se sont fixé pour but de fournir un matériau qui, outre de présenter de remarquables propriétés neutrophages, soit également capable de résister à des températures très élevées, c'est-à-dire des températures de 150 à 200°C en continu et de 250 à 300°C en pointe, et puisse de plus se présenter aussi bien sous une forme souple que rigide de manière à être utilisable dans le plus grand nombre d'applications possible. Ils se sont, de plus, fixés pour but que la fabrication de ce matériau soit simple à mettre en oeuvre et puisse être réalisée à des coûts compatibles avec une exploitation à une échelle industrielle.
EXPOSÉ DE L'INVENTION Ces buts et d'autres encore sont atteints par la présente invention qui propose l'utilisation d'un matériau comprenant une matrice solide à base d'un polymère silicone, dans laquelle sont dispersées une charge inorganique hydrogénée et une charge inorganique borée, comme matériau neutrophage. Les Inventeurs ont, en effet, constaté que la dispersion, au sein d'une matrice à base d'un polymère silicone, de charges inorganiques, respectivement hydrogénée et borée, permet d'obtenir un matériau qui cumule des propriétés neutrophages et de résistance aux températures élevées particulièrement intéressantes et ce, que ce polymère silicone soit une résine silicone ou un élastomère silicone. Il est donc possible, en jouant sur le fait que les résines silicones conduisent à des matériaux rigides alors que les élastomères silicones conduisent à des matériaux souples, de conférer à ce matériau une rigidité ou, au contraire, une souplesse parfaitement adaptée à l'usage auquel il est destiné.
Il est à noter qu'un matériau comprenant une matrice solide en une résine silicone ainsi que des charges endothermiques, hydrogénées et/ou borées, a déjà été décrit dans WO-A-2013/127902, ci-après référence [6]. Toutefois, dans cette référence, le matériau est proposé uniquement en tant que matériau de protection au feu, notamment pour des réservoirs de stockage haute pression, et il n'est nullement fait état de la possibilité de l'utiliser en tant que matériau neutrophage. De plus, rien n'est dit sur sa tenue au vieillissement thermique. Dans ce qui précède et ce qui suit, l'expression « à base d'un polymère silicone », telle qu'appliquée à la matrice solide, signifie que cette matrice a un polysiloxane pour composant majoritaire, c'est-à-dire que ce polysiloxane représente plus de 50% en masse de la masse de ladite matrice. Dans le cadre de l'invention, on préfère que la matrice solide ne comprenne, en tant que polymère, que ce polysiloxane mais il va de soi qu'elle peut parfaitement être constituée d'un mélange de plusieurs polysiloxanes différents ou d'un mélange d'un ou plusieurs polysiloxanes et d'un ou plusieurs autres polymères non polysiloxanes, propres à faciliter la mise en oeuvre du matériau ou à lui conférer des propriétés particulières en fonction de l'usage auquel il est destiné, pour autant, bien entendu, que ce ou ces polymères non polysiloxanes soient compatibles avec ledit ou lesdits polysiloxanes. Conformément à l'invention, la matrice solide comprend un polysiloxane qui est, de préférence, formé par un ou plusieurs motifs répétitifs siloxane dans lesquels l'atome de silicium est lié à un ou deux groupes aromatiques, de manière à ce que le matériau soit le plus résistant possible aux irradiations neutroniques et gamma. Plus encore, on préfère que ce polysiloxane soit formé d'un ou plusieurs motifs répétitifs siloxane qui répondent chacun à la formule (I) ci-après : RI- I 1R2 (I) dans laquelle : R1 représente un groupe aromatique, tandis que R2 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone, c'est-à- dire méthyle, éthyle, propyle, isopropyle, n-butyle, isobutyle ou tert-butyle, ou bien un groupe aromatique. Le ou les groupes aromatiques présents dans le polysiloxane sont typiquement des groupes phényle, benzyle, o-tolyle, m-tolyle, p-tolyle, o-xylyle ou mésityle, le groupe phényle étant particulièrement préféré. De manière préférée entre toutes, le polysiloxane est un homo- polymère, c'est-à-dire qu'il n'est constitué que d'un seul motif répétitif siloxane, lequel répond à la formule (I) ci-avant, dans laquelle R1 est un groupe phényle, tandis que R2 est un groupe méthyle ou phényle. En d'autres termes, le polysiloxane est un poly[méthyl(phényl)siloxane] ou un poly(diphénylsiloxane). La charge inorganique hydrogénée est avantageusement choisie parmi les hydroxydes métalliques, qui, outre de ralentir très efficacement les neutrons, présentent l'avantage de conférer en plus au matériau une excellente tenue au feu. 4si_0)_ A titre d'exemples d'hydroxydes métalliques susceptibles d'être utilisés, on peut notamment citer l'hydroxyde d'aluminium (Al(OH)3, encore appelé hydrate d'alumine), l'hydroxyde de magnésium (Mg(OH)2, encore appelé magnésie hydratée) et leurs mélanges.
Quant à la charge inorganique borée, elle est avantageusement choisie parmi les borates de zinc tels que Zn2014,5B6 H7, Zn408B2H2 OU Zn201136, le tétra borate disodique décahydraté (Na2B402.10H20 ou borax), le carbure de bore (B4C), l'oxyde de bore (B203), l'acide borique (H3B03), la colémanite (Ca2014B6H10) et leurs mélanges. De préférence, la charge inorganique hydrogénée est de l'hydroxyde d'aluminium, tandis que la charge inorganique borée est un borate de zinc en raison des propriétés ignifuges que présente ce type de composé et, plus spécialement, un borate de zinc contenant de l'hydrogène comme Zn2014,5H2B6 ou Zn408B21-12. Conformément à l'invention, la quantité de charge inorganique hydrogénée est, de préférence, choisie de sorte que, compte-tenu des quantités d'hydrogène également présentes dans le polysiloxane, le matériau présente une concentration atomique en hydrogène allant de 3,2.1028 atomes/m3 à 6,3.1028 atomes/m3 et, mieux encore, de 4,1.1028 atomes/m3 à 6.1028 atomes/m3. Par ailleurs, la quantité de charge inorganique borée est, de préférence, choisie de sorte que le matériau présente une concentration atomique en bore allant de 1,9.1027 atomes/m3 à 1,8.1028 atomes/m3 et, mieux encore, de 2,1.1027 atomes/m3 à 9.1027 atomes/m3. Outre la charge inorganique hydrogénée et la charge inorganique borée, la matrice solide peut renfermer d'autres adjuvants en vue de modifier le comportement du matériau lors de sa mise en oeuvre ou ses propriétés d'usage, tels que des charges (inorganiques ou organiques), des stabilisants, des plastifiants, des colorants, des pigments, des antistatiques, etc. En particulier, la matrice solide peut renfermer des charges inorganiques du type silice, naturelle ou synthétique, ou noir de carbone pour augmenter la dureté du matériau.
Conformément à l'invention, le matériau est, de préférence, utilisé pour la fabrication d'éléments de protection contre les neutrons et, mieux encore, d'éléments de protection neutronique destinés à des centrales nucléaires ou à des usines de retraitement de retraitement de combustibles nucléaires irradiés.
Un matériau tel que précédemment défini peut être préparé par un procédé comprenant : - le mélange d'une résine silicone ou d'un élastomère silicone avec une charge inorganique hydrogénée, une charge inorganique borée ; - le dégazage, par exemple sous vide, du mélange ainsi obtenu ; - la mise en forme du mélange ainsi dégazé ; puis - la réticulation de la résine silicone ou de l'élastomère silicone présent dans le mélange ainsi mis en forme. Si besoin est, un accélérateur ou un catalyseur de réticulation, choisi parmi les composés classiquement utilisés pour accélérer ou catalyser la réticulation de silicones (sels métalliques, par exemple de platine ou d'étain, composés organostanneux, peroxydes, etc) peut être ajouté au mélange résine ou élastomère silicone/charge inorganique hydrogénée/charge inorganique borée. Conformément à l'invention, la mise en forme du mélange peut-être réalisée par toutes les techniques classiquement utilisées pour la mise en forme de matériaux à base de résines silicones ou d'élastomères silicones, telles que le moulage par coulée, le moulage par compression ou le moulage par injection. Pour la réalisation par moulage d'éléments de protection neutronique de forte épaisseur, on préfère utiliser une résine silicone ou un élastomère silicone sans solvant. Typiquement, les résines et élastomères sans solvant se présentent sous la forme de liquides visqueux dont la masse de volatils est inférieure à 10%, voire à 5%, de la masse totale de ces résines ou élastomères. En effet, l'utilisation de ce type de silicones limite fortement la quantité de volatils devant être évacués pendant la mise en oeuvre du matériau et, par là même, la création au sein de ce matériau de pores propres à constituer des poches pour l'hydrogène gazeux susceptible d'être produit par radiolyse du matériau sous l'effet de rayonnements ionisants.
Il va de soi que l'utilisation d'une résine silicone ou d'un élastomère silicone sans solvant peut aussi être envisagée pour réaliser des éléments de protection neutronique qui ne sont ni réalisés par moulage, ni épais. Dans le cas où le matériau est réalisé à partir d'une résine silicone ou d'un élastomère silicone réticulable à chaud (encore appelé élastomère silicone HTV pour « High Temperature Vulcanization »), la réticulation de cette résine ou de cet élastomère est, de préférence, effectuée en deux étapes : une première étape d'une durée typiquement de 10 à 16 heures, pendant laquelle le mélange résine ou élastomère silicone/charge inorganique hydrogénée/charge inorganique borée est soumis à une température qui ne dépasse pas 150°C et qui est idéalement comprise entre 100 et 150°C, de manière à obtenir une densification déjà importante de la résine ou de l'élastomère par réticulation partielle mais tout en limitant les risques de déshydratation des charges inorganiques hydrogénée et borée ; et - une deuxième étape d'une durée typiquement de 1 à 5 heures, pendant laquelle le mélange résine ou élastomère silicone/charge inorganique hydrogénée/charge inorganique borée est soumis à une température supérieure à 150°C et qui est idéalement comprise entre 150 et 200°C, de manière à achever la réticulation de la résine ou de l'élastomère et à conférer au matériau des propriétés optimales de résistance thermique. Dans le cas où le matériau est réalisé à partir d'un élastomère silicone réticulable à froid (encore appelé élastomère silicone RTV pour « Room Temperature Vulcanization »), la réticulation de cet élastomère est, de préférence, effectuée en maintenant le mélange élastomère silicone/charge inorganique hydrogénée/charge inorganique borée à température ambiante (23-25°C) pendant une durée typiquement de 24 heures. Un traitement thermique complémentaire, par exemple de quelques heures à une température comprise entre 100 et 150°C, peut être alors appliqué au matériau pour augmenter sa dureté et lui conférer ainsi des propriétés mécaniques optimales, par exemple en vue d'un usinage ultérieur.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à des exemples de préparation de matériaux utiles selon l'invention et de démonstration de leurs propriétés. Bien entendu, ces exemples ne sont donnés qu'a titre d'illustration de l'objet de l'invention et ne constituent en aucun cas une limitation de cet objet. BRÈVE DESCRIPTION DES FIGURES La figure 1 illustre l'évolution de la concentration atomique en hydrogène, notée [H]at et exprimée en nombre d'atomes/cm3, d'un matériau rigide utile selon l'invention au cours du temps, exprimé en heures, telle que déterminée par des analyses élémentaires (dosage chimique) d'échantillons de ce matériau ayant été maintenus 24 heures, 96 heures et 500 heures à 150°C (courbe) et par des calculs effectués à partir d'un test de vieillissement accéléré (symbole -). La figure 2 illustre l'évolution du module d'Young en flexion, noté E et exprimé en MPa, d'un matériau rigide utile selon l'invention au cours du temps, exprimé en heures, lorsque ce matériau est maintenu pendant 90 heures à 150°C (courbe A) ou pendant 170 heures à 250°C (courbe B). La figure 3 illustre l'évolution de la contrainte maximale en flexion, notée cymax et exprimée en MPa, d'un matériau rigide utile selon l'invention au cours du temps, exprimé en heures, lorsque ce matériau est maintenu pendant 90 heures à 150°C (courbe A) ou pendant 170 heures à 250°C (courbe B). La figure 4 illustre l'évolution de la concentration atomique en hydrogène, notée [H]at et exprimée en nombre d'atomes/cm3, d'un matériau souple utile selon l'invention au cours du temps, exprimé en heures, telle que déterminée par dosage chimique d'échantillons de ce matériau ayant été maintenus 24 heures, 96 heures et 500 heures à 150°C (courbe) et par des calculs effectués à partir d'un test de vieillissement accéléré (symbole -). La figure 5 illustre l'évolution de l'allongement à la rupture, noté A et exprimé en %, d'un matériau souple utile selon l'invention au cours du temps, exprimé en heures, lorsque ce matériau est maintenu pendant 500 heures à 150°C (courbe A) et pendant 200 heures à 250°C (courbe B). La figure 6 illustre l'évolution du module d'Young en traction, noté E et exprimé en MPa, d'un matériau souple utile selon l'invention au cours du temps, exprimé en heures, lorsque ce matériau est maintenu pendant 500 heures à 150°C (courbe A) et pendant 200 heures à 250°C (courbe B). EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS EXEMPLE 1 : Préparation d'un matériau rigide utile selon l'invention On prépare, dans un mélangeur à turbine, un mélange comprenant : - 40% en masse d'une résine silicone à motif répétitif méthyl(phényI)- siloxane sans solvant (référence SilresTM H62 C - société Wacker Chemie AG) ; - 17% en masse de borate de zinc de formule Zn2014,5H7B6 (référence FirebrakeTM ZB - société Borax) ; - 43% en masse d'hydroxyde d'aluminium (référence SH150 - société Rio Tinto Alcan). Ce mélange est dégazé sous vide à 50°C, puis coulé dans des moules de forme carrée, de 10 cm de côté et de 1 cm d'épaisseur. Les moules ainsi remplis sont placés dans une étuve chauffée à 120°C pendant 16 heures, puis à 200°C pendant 2 heures, pour induire la réticulation de la résine silicone. Après démoulage, la densité des plaques du matériau ainsi obtenu est mesurée selon la technique classique de pesée dans l'air/pesée dans l'eau. Cette densité est égale à 1,7 et est conforme à la densité théorique. Le matériau ne contient donc aucune porosité.
Par ailleurs, les plaques sont soumises à des tests en vue d'apprécier l'aptitude du matériau à conserver dans le temps, d'une part, ses propriétés neutrophages, et, d'autre part, ses propriétés mécaniques, lorsqu'il est maintenu à des températures élevées.
L'aptitude du matériau à conserver ses propriétés neutrophages est appréciée par un test de vieillissement accéléré permettant de simuler le comportement que présenterait le matériau s'il était maintenu pendant 100 000 heures (soit plus de 11 ans) à 150°C. Succinctement, ce test consiste à maintenir les plaques du matériau pendant plusieurs centaines d'heures dans une étuve chauffée à 120°C, 150°C, 180°C ou 205°C, à mesurer à intervalles de temps la masse des plaques et à établir, pour chacune de ces températures, une courbe représentant la perte de masse du matériau en fonction du temps de séjour dans l'étuve. Une courbe maîtresse correspondant à la perte de masse subie par le matériau pour un chauffage de 100 000 heures à la température de 150°C est alors construite par translation des trois autres courbes par rapport à celle obtenue pour un chauffage à 150°C de sorte à ne former qu'une seule courbe continue, ce qui revient, en échelle de temps logarithmique, à multiplier les temps de vieillissement par un coefficient d'accélération, respectivement de 0,1 pour la température de 120°C, de 1 pour la température de 150°C, de 45 pour la température de 180°C et de 90 pour la température de 205°C. Par ailleurs, des analyses élémentaires sont réalisées sur des plaques du matériau pour déterminer la concentration atomique en hydrogène de ce matériau avant sa mise en étuve et après un séjour de 24 heures, 96 heures et 500 heures en étuve chauffée à 150°C.
En considérant le cas le plus sévère, à savoir que la perte de masse subie par le matériau correspondrait à une perte d'eau, on peut estimer la quantité d'hydrogène restant dans le matériau après plusieurs années de vieillissement à la température de 150°C. L'aptitude du matériau à conserver ses propriétés mécaniques est, quant à elle, appréciée par un test de vieillissement thermique qui consiste à maintenir les plaques du matériau pendant 90 heures dans une étuve chauffée à 150°C ou pendant 170 heures dans une étuve chauffée à 250°C et à suivre l'évolution dans le temps l'évolution du module d'Young en flexion et de la contrainte maximale en flexion du matériau que l'on mesure selon la norme NF EN ISO 178.
Les résultats de ces tests sont illustrés sur les figures 1, 2 et 3.
Comme le montre la figure 1, qui représente l'évolution de la concentration atomique en hydrogène [H]at (en nombre d'atomes/cm3) du matériau au cours du temps (en heures), telle que déterminée par les analyses élémentaires (courbe) et par des calculs effectués à partir du test de vieillissement accéléré (symbole -), la concentration atomique en hydrogène du matériau diminue peu lorsque celui-ci est soumis à une température de 150°C pendant une période de temps très prolongée. Il en résulte que ses propriétés neutrophages sont remarquablement bien conservées. Par ailleurs, comme le montrent les figures 2 et 3, qui représentent respectivement l'évolution du module d'Young en flexion E (en MPa) et celle de la contrainte maximale en flexion cyrnax (en MPa) du matériau au cours du temps (en heures), telles qu'obtenues lorsque ce matériau est maintenu pendant 90 heures à 150°C (courbes A) ou pendant 170 heures à 250°C (courbes B), le maintien du matériau pendant plusieurs dizaines d'heures à une température de 150°C ou de 250°C n'entraîne pas de dégradation notable de ses propriétés mécaniques.
EXEMPLE 2 : Préparation d'un matériau souple utile selon l'invention On procède comme dans l'exemple 1 ci-avant à ceci près que : - d'une part, on remplace la résine silicone, qui est utilisée dans cet exemple, par un élastomère silicone liquide à motif méthyl(phényl)siloxane, également sans solvant (référence ElastosilTM RT 601 - société Wacker Chemie AG) ; et - d'autre part, la réticulation (ou vulcanisation) de l'élastomère silicone est réalisée en laissant les moules pendant 24 heures à température ambiante et en les plaçant ensuite dans une étuve que l'on chauffe d'abord pendant 1 heure à 100°C, puis pendant 1 heure à 150°C. Après démoulage, les plaques du matériau ainsi obtenu sont soumises à des tests de vieillissement thermique en vue d'apprécier l'aptitude du matériau à conserver dans le temps, d'une part, ses propriétés neutrophages, et, d'autre part, ses propriétés mécaniques, lorsqu'il est maintenu à des températures élevées. L'aptitude du matériau à conserver ses propriétés neutrophages est appréciée par un test de vieillissement accéléré identique à celui décrit dans l'exemple 1 ci-avant.
L'aptitude du matériau à conserver ses propriétés mécaniques est, quant à elle, appréciée par un test de vieillissement thermique qui consiste à maintenir les plaques du matériau pendant 500 heures dans une étuve chauffée à 150°C ou pendant 200 heures dans une étuve chauffée à 250°C et à suivre l'évolution dans le temps de l'allongement à la rupture A et du module E en traction du matériau que l'on mesure selon la norme NF EN ISO 527-1. Les résultats de ces tests sont illustrés sur les figures 4, 5 et 6. Comme le montre la figure 4, qui représente l'évolution de la concentration atomique en hydrogène [H]at (en nombre d'atomes/cm3) du matériau au cours du temps (en heures), telle que déterminée par les analyses élémentaires (courbe) et par des calculs effectués à partir du test de vieillissement accéléré (symbole -), la quantité d'atomes d'hydrogène perdus par ce matériau est très faible (inférieure à 5%) lorsque celui-ci est soumis à une température de 150°C pendant une période de temps très prolongée. Il en résulte que les propriétés neutrophages du matériau sont remarquablement bien conservées. Par ailleurs, comme le montrent les figures 5 et 6, qui représentent respectivement l'évolution de l'allongement à la rupture A (en %) et celle du module d'Young en traction E (en MPa) du matériau au cours du temps (en heures), telles qu'obtenues lorsque ce matériau est maintenu pendant 500 heures à 150°C (courbes A) et pendant 200 heures à 250°C (courbes B), les propriétés mécaniques du matériau se stabilisent après une centaine d'heures de vieillissement à 150°C. Ces figures montrent également que l'allongement à la rupture d'un matériau à base d'un élastomère silicone reste élevé par rapport à celui de matériaux à base d'une résine thermodurcissable et ce, qu'il s'agisse d'une résine polyester insaturé, vinylester, époxyde ou même silicone. Ceci permet de réduire les risques de fissuration du matériau par dilatation thermique lorsque celui-ci est exposé à des variations importantes de température. RÉFÉRENCES CITÉES [1] US-A-4,134,937 [2] EP-A-0 106 759 [3] WO-A-03/030183 [4] WO-A-03/050822 [5] WO-A-02/101756 [6] WO-A-2013/127902

Claims (11)

  1. REVENDICATIONS1. Utilisation d'un matériau comprenant une matrice solide à base d'un polymère silicone, dans laquelle sont dispersées une charge inorganique hydrogénée et une charge inorganique borée, comme matériau neutrophage.
  2. 2. Utilisation selon la revendication 1, dans laquelle la matrice polymère comprend un polysiloxane qui est formé par un ou plusieurs motifs répétitifs siloxane dans lesquels l'atome de silicium est lié à un ou deux groupes aromatiques.
  3. 3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le polysiloxane est formé par un ou plusieurs motifs répétitifs siloxane répondant chacun à la formule (I) ci-après : (I) dans laquelle : Rl représente un groupe aromatique, tandis que R2 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone ou un groupe aromatique.
  4. 4. Utilisation selon l'une quelconque des revendications 1 à 3, dans laquelle le polysiloxane est un homopolymère, de préférence un poly[méthyl(phényI)- siloxane] ou un poly(diphénylsiloxane).
  5. 5. Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle la charge inorganique hydrogénée est choisi parmi les hydroxydes métalliques.
  6. 6. Utilisation selon la revendication 5, dans laquelle la charge inorganique hydrogénée est choisie parmi l'hydroxyde d'aluminium, l'hydroxyde demagnésium et leurs mélanges, cette charge étant, de préférence, de l'hydroxyde d'aluminium.
  7. 7. Utilisation selon l'une quelconque des revendications 1 à 6, dans laquelle la charge inorganique borée est choisie parmi les borates de zinc, le carbure de bore, l'oxyde de bore, l'acide borique, la colémanite et leurs mélanges, cette charge étant, de préférence, un borate de zinc.
  8. 8. Utilisation selon l'une quelconque des revendications 1 à 7, dans laquelle le matériau présente une concentration atomique en hydrogène allant de 3,2.1028 atomes/m3 à 6,3.1028 atomes/m3 et, de préférence, de 4,1.1028 atomes/m3 à 6.1028 atomes/m3.
  9. 9. Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle le matériau présente une concentration atomique en bore allant de 1,9.1027 atomes/m3 à 1,8.1028 atomes/m3 et, de préférence, de 2,1.1027 atomes/m3 à 9.1027 atomes/m3.
  10. 10. Utilisation selon l'une quelconque des revendications 1 à 9, dans laquelle le matériau est utilisé dans la fabrication d'un élément de protection neutronique souple ou rigide.
  11. 11. Utilisation selon la revendication 10, dans laquelle l'élément de protection neutronique est destiné à une centrale nucléaire ou à une usine de traitement de combustibles nucléaires irradiés.
FR1463216A 2014-12-23 2014-12-23 Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage Withdrawn FR3030865A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1463216A FR3030865A1 (fr) 2014-12-23 2014-12-23 Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage
EP15201763.8A EP3038113B1 (fr) 2014-12-23 2015-12-21 Utilisation d'un matériau comprenant une matrice solide à base d'un polymère silicone et des charges inorganiques comme matériau neutrophage
ES15201763.8T ES2659793T3 (es) 2014-12-23 2015-12-21 Utilización de un material que comprende una matriz sólida a base de un polímero de silicona y cargas inorgánicas como material de un material neutrófago

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1463216A FR3030865A1 (fr) 2014-12-23 2014-12-23 Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage

Publications (1)

Publication Number Publication Date
FR3030865A1 true FR3030865A1 (fr) 2016-06-24

Family

ID=53298445

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1463216A Withdrawn FR3030865A1 (fr) 2014-12-23 2014-12-23 Utilisation d'un materiau comprenant une matrice solide a base d'un polymere silicone et des charges inorganiques comme materiau neutrophage

Country Status (3)

Country Link
EP (1) EP3038113B1 (fr)
ES (1) ES2659793T3 (fr)
FR (1) FR3030865A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298036B1 (ko) * 1997-04-25 2001-11-14 장인순 실리콘고무계중성자차폐재조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134937A (en) 1974-06-12 1979-01-16 Monsanto Research Corporation Polyester resin composition
FR2534733A1 (fr) 1982-10-15 1984-04-20 Commissariat Energie Atomique Materiau neutrophage contenant du bore et son procede de fabrication
US6608319B2 (en) 2001-06-08 2003-08-19 Adrian Joseph Flexible amorphous composition for high level radiation and environmental protection
FR2830367B1 (fr) 2001-10-01 2003-12-19 Transnucleaire Materiau de blindage neutronique et de maintien de la sous-criticite a base de polyester insature
FR2833402B1 (fr) 2001-12-12 2004-03-12 Transnucleaire Materiau de blindage neutronique et de maintien de la sous- criticite a base de resine vinylester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298036B1 (ko) * 1997-04-25 2001-11-14 장인순 실리콘고무계중성자차폐재조성물

Also Published As

Publication number Publication date
EP3038113B1 (fr) 2017-11-29
EP3038113A1 (fr) 2016-06-29
ES2659793T3 (es) 2018-03-19

Similar Documents

Publication Publication Date Title
EP0118325B2 (fr) Compositions organopolysiloxaniques contenant des polyacyloxysilanes et durcissant très rapidement en élastomères en présence d'accélérateur du type hydroxyde métallique
Xia et al. Superior Low‐Temperature Reversible Adhesion Based on Bio‐Inspired Microfibrillar Adhesives Fabricated by Phenyl Containing Polydimethylsiloxane Elastomers
JPH03227365A (ja) 放射線硬化性オルガノシロキサンゲル組成物及びその使用方法
MY144041A (en) Thermally stable transparent silicone resin compositions and methods for their preparation and use
Li et al. Study of flame‐retarded silicone rubber with ceramifiable property
EP3277758B1 (fr) Matériau de revêtement
FR2500842A1 (fr) Composition de caoutchouc de silicone pour l'enrobage d'elements photovoltaiques
WO2014207323A1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
US10870757B2 (en) Insulation, insulation precursors, and rocket motors, and related methods
CN111234781A (zh) 一种导热蓄热相变板及其制备方法
KR20170045487A (ko) 자기치유 코팅액 및 이를 이용한 자기치유 코팅재
EP0189720B1 (fr) Nouveau matériau isolant thermique, du type syntactique, à base d'élastomères notamment, partiellement ou totalement ininflammable
RU2451704C1 (ru) Композиция для нейтронной защиты на основе полидиметилсилоксана
EP3038113B1 (fr) Utilisation d'un matériau comprenant une matrice solide à base d'un polymère silicone et des charges inorganiques comme matériau neutrophage
KR20110001884A (ko) 광소자 봉지용 광경화성 수지 조성물
Alekseeva et al. Silicone compounds and sealants and their application in various branches of industry
CN104710798B (zh) 氟硅橡胶组合物
FR2846467A1 (fr) Materiau de blindage neutronique et de maintien de la sous-criticite, son procede de preparation et ses applications
CA2047344A1 (fr) Compositions organopolysiloxanes vulcanisables a chaud, utilisables notamment pour le revetement de cables electriques
KR20180076337A (ko) 유기 전자 소자 봉지재용 조성물 및 이를 이용하여 형성된 봉지재
Ueta et al. Experimental additive manufacturing of green body of SiC/Graphite functionally graded materials by stereolithography
WO2006095068A1 (fr) Utilisation d'un compose particulier du platine pour ameliorer la resistance des elastomeres silicones contre la degradation sous l'effet des tres hautes temperatures
CN112646543A (zh) 一种有机硅液态光学胶及其制备方法
KR960008854B1 (ko) 원자로내에서 사용하기 위한 연료 소자
FR2665706A1 (fr) Materiau compressible, injectable en couche mince pour joint de calage et son procede de fabrication.

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160624

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

ST Notification of lapse

Effective date: 20190906