FR3029893A1 - Vehicule aerien leger sans equipage a decollage vertical. - Google Patents

Vehicule aerien leger sans equipage a decollage vertical. Download PDF

Info

Publication number
FR3029893A1
FR3029893A1 FR1462384A FR1462384A FR3029893A1 FR 3029893 A1 FR3029893 A1 FR 3029893A1 FR 1462384 A FR1462384 A FR 1462384A FR 1462384 A FR1462384 A FR 1462384A FR 3029893 A1 FR3029893 A1 FR 3029893A1
Authority
FR
France
Prior art keywords
wing
drone
vehicle
air vehicle
wings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1462384A
Other languages
English (en)
Other versions
FR3029893B1 (fr
Inventor
Pascal Morin
Olivier Gaste
Duc-Kien Phung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Pierre et Marie Curie Paris 6 filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1462384A priority Critical patent/FR3029893B1/fr
Priority to PCT/EP2015/079497 priority patent/WO2016092102A1/fr
Priority to EP15808600.9A priority patent/EP3230161A1/fr
Priority to US15/535,309 priority patent/US20170327218A1/en
Publication of FR3029893A1 publication Critical patent/FR3029893A1/fr
Application granted granted Critical
Publication of FR3029893B1 publication Critical patent/FR3029893B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/385Variable incidence wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • B64U30/14Variable or detachable wings, e.g. wings with adjustable sweep detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Automation & Control Theory (AREA)

Abstract

La divulgation se rapporte ainsi à un véhicule aérien léger sans équipage à décollage vertical qui comprend au moins deux dispositifs de propulsion coplanaires fixes et au moins une aile assurant la portance du drone. Les dispositifs de propulsion coplanaires et l'aile sont chacun agencés sur l'armature du drone de manière à ce que le plan de la corde de profil de l'aile soit sensiblement parallèle au plan défini par les deux dispositifs de propulsion coplanaires. L'aile est mobile en pivotement par rapport à l'armature, selon un axe parallèle à l'axe de tangage du drone. La divulgation se rapporte également à une méthode de contrôle d'un véhicule aérien léger sans équipage, tel que celui décrit ci-dessus, qui comprend une étape de contrôle de l'orientation de l'aile, qui met en œuvre au moins un paramètre de vol du drone.

Description

1. Véhicule aérien léger sans équipage à décollage vertical. 1. Domaine La divulgation concerne les véhicules aériens légers sans équipage, communément appelés drones, à décollage vertical. Plus précisément, la divulgation concerne les drones dits « convertibles » qui sont adaptés pour effectuer efficacement à la fois du vol stationnaire et du vol rapide entre deux destinations. La divulgation concerne notamment un drone convertible qui allie, de part sa structure non complexe, une autonomie énergétique et une maniabilité satisfaisantes. 2. Art antérieur Les drones à décollage et atterrissage verticaux, et notamment les quadrirotors, sont devenus omniprésents dans le monde des mini-drones. Leur principal intérêt réside dans la grande simplicité de leur conception, en comparaison avec la structure de type hélicoptère qui a longtemps prévalu dans ce domaine. Ces drones présentent cependant l'inconvénient de ne disposer que d'une faible autonomie énergétique, compte tenu notamment de leur faible portance en vol rapide, en comparaison avec les aéronefs à voilure fixe de type avion. Parallèlement, dans le domaine des véhicules aériens avec pilote, des recherches visent à rendre des véhicules à décollage vertical « convertibles », en augmentant leur portance en vol rapide par l'ajout d'une ou de plusieurs ailes. A ce titre, certains aéronefs dits de type « tail-sitter », décollent à la verticale, basculent à l'horizontale en phase de vol rapide, puis reprennent une position verticale pour atterrir. Le basculement de l'aéronef lors de la transition entre la phase de vol stationnaire et la phase de vol rapide (nommé « transition de phase » dans la suite du texte) tend cependant à déséquilibrer l'appareil et à le rendre plus difficile à manoeuvrer. D'autres véhicules convertibles dits de type « tilt-rotor » comprennent des ailes rigidement liées à leur armature, et équipées à leur extrémité d'un rotor apte à pivoter autour de l'axe de l'aile. Lors de la phase de décollage, le rotor est orienté à la verticale, vers le haut. Lors de la transition de phase, le rotor pivote de 90° afin de s'orienter vers l'avant de l'appareil, à la manière d'un avion. La portance alors exercée par les ailes en 3029893 2 vol rapide permet de réduire la consommation énergétique du véhicule de type « tiltrotor ». Ces véhicules de type « tilt-rotor » présentent cependant de nombreux inconvénients. En premier lieu, le système de propulsion d'un « tilt-rotor » est techniquement plus complexe à mettre en oeuvre que celui d'un drone à voilure 5 tournante traditionnel, compte tenu de l'ajout des ailes et surtout de la mise en oeuvre de mécanismes de rotation des rotors à l'extrémité de chacune d'elles. L'ajout de ces éléments contribue notamment à augmenter la masse totale du véhicule de type « tiltrotor », et donc sa consommation énergétique. En deuxième lieu, l'aile orientée à l'horizontale lors de la phase de décollage du véhicule de type « tilt-rotor » se trouve 10 dans le sillage du rotor. Une partie de l'effort de poussée exercé par le rotor est donc dissipée par interférence avec l'aile, aggravant plus encore le bilan énergétique du « tiltrotor ». En troisième lieu, les variations rapides et importantes des forces aérodynamiques agissant sur la structure du drone, lors de la transition de phase, rendent le véhicule de type « tilt-rotor » plus instable et par conséquent, plus difficile à 15 contrôler. Enfin, il convient de noter que les ailes du « tilt-rotor » sont rigidement liées à son armature. De ce fait, un changement de l'angle d'attaque des ailes n'est possible que par le biais d'une réorientation de l'ensemble du dispositif. Un tel agencement limite donc la maniabilité du véhicule de type « tilt-rotor » et plus précisément, sa capacité à adopter aisément, et indépendamment de l'orientation de son armature, une 20 configuration lui permettant de maximiser l'enveloppe de vol (portance) de ses ailes et ainsi, de minimiser sa consommation énergétique. Un autre type de véhicule convertible, dit « tilt-wing », met en oeuvre des ailes orientables par rapport à son armature. Les rotors de propulsion sont rigidement liés à chacune des ailes du tilt-wing et c'est donc l'ensemble rigide formé par ses ailes et ses 25 rotors qui pivote par rapport à son armature. Bien que le tilt-wing permette de répondre à certaines difficultés posées par les tilt-rotors, en limitant les articulations de type pivot à la jonction entre l'armature et les ailes, et en réduisant la surface apparente des ailes dans le sillage des rotors en phase de décollage, le tilt-wing présente néanmoins de nombreux inconvénients techniques majeurs. En premier lieu, l'angle d'attaque élevé 30 des ailes lors de la transition de phase peut engendrer le décrochage du véhicule de type 3029893 3 « tilt-wing », ce qui réduit significativement sa stabilité. En second lieu, le tilt-wing peut être particulièrement difficile à manoeuvrer en phase de décollage, compte tenu de la prise au vent importante de ses ailes. Enfin, la fixation rigide des rotors du tilt-wing sur ses ailes limite sa maniabilité et plus précisément, sa capacité à adopter aisément, et 5 indépendamment de l'orientation de ses rotors (et de l'orientation de l'effort de poussée qui en découle), une configuration lui permettant de maximiser l'enveloppe de vol de ses ailes et ainsi, de minimiser sa consommation énergétique. Compte tenu des nombreux inconvénients techniques inhérents à la mise en oeuvre des véhicules de types « tilt-rotor » et « tilt-wing » ; tels que leur importante 10 consommation énergétique, leur complexité technique, leur instabilité en vol stationnaire et/ou lors de leur transition de phase, et leur maniabilité limitée ; il s'impose à l'évidence qu'un homme du métier cherchant à accroître l'autonomie énergétique et la maniabilité d'un drone à voilure tournante, tout en palliant les inconvénients techniques mentionnés ci-dessus, n'aurait pas été incité à s'inspirer de 15 ces types particuliers de véhicules avec pilote convertibles, ces derniers présentant d'une part de nombreux préjugés techniques à dépasser et d'autres part des problématiques de mise en oeuvre globalement éloignées de celles des mini drones (dont le poids, l'envergure et la source d'énergie sont des caractéristiques éloignées du poids, de l'envergure et de la source d'énergie d'un véhicule avec pilote). 20 3. Résumé La technique proposée ne présente pas ces inconvénients de l'art antérieur. Plus particulièrement, dans au moins un mode de réalisation, la technique proposée se rapporte à un véhicule aérien léger sans équipage à décollage vertical comprenant au moins deux dispositifs de propulsion coplanaires fixes et au moins une aile assurant la 25 portance du véhicule aérien. Les dispositifs de propulsion coplanaires et l'aile sont chacun agencés sur l'armature du véhicule aérien tels que le plan de la corde de profil de l'aile est sensiblement parallèle au plan défini par les deux dispositifs de propulsion coplanaires. Ce véhicule est caractérisé en ce que l'aile est mobile en pivotement par rapport à l'armature, selon un axe parallèle à l'axe de tangage du véhicule aérien.
3029893 4 Le terme « fixe » tel qu'utilisé dans la description qualifie une liaison mécanique complète qui ne laisse aucun degré de liberté. Le terme « armature » désigne l'ensemble formé par les éléments de structure du véhicule aérien. L'expression « corde de profil » désigne la ligne séparant le centre de courbure du bord d'attaque de 5 l'aile du bord de fuite. La présence d'une ou plusieurs ailes pivotantes permet ainsi au véhicule aérien de réduire sa consommation énergétique tout en augmentant son autonomie, et ce sans nuire à ses capacités de décollage et d'atterrissage en mode vertical. En effet, un tel véhicule aérien peut adopter aisément, et indépendamment de l'orientation de ses 10 dispositifs de propulsion (et de l'orientation de l'effort de poussée qui en découle), une configuration permettant à son aile de bénéficier de la portance pouvant être offerte par un flux d'air présent au moment des différentes phases de décollage, de vol ou d'atterrissage du véhicule. Le pivotement indépendant de l'aile du véhicule a également pour avantage de 15 permettre à ce dernier d'adopter des configurations présentant une stabilité de vol satisfaisante, en minimisant par exemple la prise au vent de l'aile lors des phases de vol vertical. Les variations rapides de la portance de l'aile, engendrées par ses changements d'inclinaison, ont également une influence directe sur les mouvements effectués par le véhicule et permettent donc d'accroître la maniabilité de ce dernier.
20 Un tel véhicule a également pour avantage de présenter une complexité technique limitée, ce qui rend plus aisé sa production, son utilisation et sa maintenance. Selon une caractéristique particulière, au moins une aile du véhicule est agencée en dehors de la zone de refoulement de l'air par les dispositifs de propulsion. Cet agencement particulier de l'aile permet ainsi d'éviter de perturber le flux 25 d'air nécessaire à la mobilité du véhicule, et ainsi d'optimiser l'effort effectif de poussée des dispositifs de propulsion. Selon une caractéristique particulière, le véhicule aérien comprend quatre dispositifs de propulsion coplanaires. Un tel véhicule aérien a pour avantages de bénéficier d'une puissance de 30 propulsion, d'une stabilité et d'une maniabilité satisfaisantes.
3029893 5 Selon une caractéristique particulière, au moins un dispositif de propulsion coplanaire se présente sous la forme d'un rotor et d'une surface portante en rotation autour de l'axe du rotor. Un tel dispositif de propulsion présente une faible complexité technique tout en 5 permettant l'inversion du sens de rotation de la surface portante. Une telle inversion du sens de rotation est notamment mise en oeuvre dans le cadre du contrôle des quadrirotors. Selon une caractéristique particulière, au moins une aile est mobile entre au moins deux positions : 10 une position dans laquelle la portance de l'aile est sans influence sur la dynamique de vol du véhicule ; une position dans laquelle la portance de l'aile influe sur la dynamique de vol du véhicule. Cette caractéristique permet d'adapter l'orientation de l'aile de manière à 15 optimiser sa portance et/ou ses autres propriétés mécaniques (sa pénétration dans l'air par exemple). Selon une caractéristique particulière, l'orientation d'au moins une aile par rapport à l'armature est fonction d'au moins un paramètre de vol du véhicule aérien. L'orientation de l'aile est donc adaptable, de manière autonome (sans 20 intervention d'un utilisateur), aux conditions de vol et à la vitesse de vol du véhicule. Les paramètres de vol du véhicule comprennent la vitesse de vol du drone et l'inclinaison de l'aile. L'expression « inclinaison de l'aile » désigne l'écartement angulaire de la ligne de corde de l'aile par rapport à l'axe de roulis du véhicule aérien. Selon une caractéristique particulière, le véhicule aérien comprend un dispositif 25 de mesure de la vitesse de l'air au niveau du véhicule. Un tel dispositif de mesure de la vitesse de l'air peut par exemple comprendre un anémomètre et/ou un tube de pitot. Selon une caractéristique particulière, le véhicule aérien comprend un actionneur apte à appliquer sur l'aile un couple de contrôle de sens opposé au couple 30 engendré par les efforts aérodynamiques.
3029893 6 Un tel actionneur présente l'avantage de permettre de faire varier l'inclinaison de l'aile de manière passive ou en d'autres termes, sans nécessiter la mise en oeuvre d'un dispositif de mesure de la vitesse du véhicule. Selon une caractéristique particulière, le véhicule aérien comprend au moins 5 deux ailes. Selon une caractéristique particulière, les ailes sont agencées symétriquement sur l'armature, de part et d'autre d'un plan parallèle à l'axe de tangage, ledit plan comprenant le centre de gravité du véhicule aérien. Un tel agencement symétrique des ailes permet de générer des couples de 10 tangage importants et d'améliorer la stabilité du véhicule en vol stationnaire. De plus, l'ajout des ailes ne déplace pas le centre de gravité de l'armature du véhicule. Un repositionnement de sa charge utile n'est donc pas nécessaire. De telles ailes peuvent donc être aisément adaptées sur une structure de quadrirotor qui à l'origine ne comprend pas d'aile.
15 Selon une caractéristique particulière, le débattement des ailes autour de leur axe de pivot est symétrique par rapport à la verticale. Cette caractéristique permet permet au véhicule d'inverser directement son sens de déplacement, sans avoir à effectuer une rotation de lacet de 180°. Selon une caractéristique particulière, au moins une aile comprend une pluralité 20 de parties mobiles en pivotement les unes par rapport aux autres selon un axe parallèle à l'axe de tangage du véhicule aérien. Le découplage de ces différentes parties d'une même aile permet d'améliorer sensiblement la maniabilité du drone, et notamment son aptitude au roulis. Selon une caractéristique particulière, au moins une aile est agencée de manière 25 amovible sur l'armature. Cette caractéristique permet de rendre la structure aisément évolutive. Il est ainsi possible de remplacer les ailes initialement agencées sur l'armature par des ailes différentes (en terme de profil ou de corde par exemple), sans impacter le reste de la structure, sachant que différents types d'ailes seront plus ou moins adaptés en fonction 30 des conditions de vol, de la vitesse de vol, et de la charge utile embarquée.
3029893 7 La technique proposée se rapporte également à une méthode de contrôle de l'orientation d'une aile du véhicule aérien, caractérisée en ce qu'elle comprend au moins une étape de contrôle d'une orientation d'une aile en fonction d'au moins un paramètre de vol du véhicule aérien.
5 Selon une caractéristique particulière, cette méthode de contrôle comprend une étape de mesure de la vitesse de l'air au niveau du véhicule et/ou au sol. Selon une caractéristique particulière, cette méthode de contrôle comprend une étape de mise en oeuvre d'un contrôleur de type ressort-amortisseur à gains variables. Cette caractéristique a pour avantage de permettre de faire varier l'inclinaison 10 de l'aile de manière passive ou en d'autres termes, sans nécessiter la mise en oeuvre d'une étape de mesure de la vitesse du véhicule. 4. Figures D'autres caractéristiques et avantages apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation particulier de la divulgation, donné à 15 titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels : 20 la figure 1 illustre, selon une vue en perspective, un drone selon un mode de réalisation particulier de la divulgation ; 25 - la figure 2 illustre, selon une vue en coupe A-A, la portion avant selon une coupe B-B d'un drone selon un mode de réalisation particulier de la divulgation ; la figure 3 illustre, selon une vue de profil, une aile de drone selon un mode de réalisation particulier de la divulgation ; 30 la figure 4 illustre, selon une vue de profil, une aile de drone selon un mode de réalisation particulier de la divulgation ; la figure 5 est un diagramme qui illustre les étapes successives mises en oeuvre lors de la conduite d'une méthode de contrôle d'un drone selon un mode de réalisation particulier de la divulgation ; la figure 6 est un diagramme qui illustre les étapes successives mises en oeuvre lors de la conduite d'une méthode de contrôle d'un drone selon un mode de réalisation particulier de la divulgation ; 3029893 8 la figure 7 illustre, selon une vue de profil, une aile de drone selon un mode de réalisation particulier de la divulgation. Les différents éléments illustrés par les figures ne sont pas nécessairement représentés à l'échelle réelle, l'accent étant davantage porté sur la représentation du 5 fonctionnement général de la divulgation. 5. Description 5.1. Principe général La technique proposée se rapporte à un véhicule aérien léger sans équipage à décollage vertical et convertible qui comprend au moins deux dispositifs de propulsion 10 coplanaires liés rigidement à son armature. L'armature (ou corps) de ce véhicule, dit de type « tilt-body », est orientée selon un plan horizontal lorsque le véhicule est en vol stationnaire, et selon un plan plus ou moins incliné (variation de l'assiette du véhicule) lorsque le véhicule est en phase de vol rapide. C'est donc l'orientation de l'ensemble formé par l'armature du véhicule et ses dispositifs de propulsion, qui varie au cours de la 15 transition de phase du véhicule. Un tel véhicule comprend également au moins une aile assurant sa portance, et permettant par conséquent de réduire la consommation énergétique du véhicule en vol rapide. Cette aile est mobile en pivotement par rapport à l'armature, selon un axe parallèle à l'axe de tangage du drone. Un tel pivotement de l'aile, indépendamment de 20 l'armature et des dispositifs de propulsion, permet notamment au véhicule d'adopter aisément une configuration lui permettant d'optimiser la portance de ses ailes et ainsi, de minimiser sa consommation énergétique. Un tel véhicule présente donc une autonomie énergétique et une maniabilité satisfaisantes. D'une manière générale, la divulgation se rapporte ainsi à un véhicule aérien 25 léger sans équipage à décollage vertical qui comprend au moins deux dispositifs de propulsion coplanaires fixes et au moins une aile assurant la portance du drone. Les dispositifs de propulsion coplanaires et l'aile sont chacun agencés sur l'armature du drone de manière à ce que le plan de la corde de profil de l'aile soit sensiblement parallèle au plan défini par les deux dispositifs de propulsion coplanaires. L'aile est 3029893 9 mobile en pivotement par rapport à l'armature, selon un axe parallèle à l'axe de tangage du véhicule. La divulgation se rapporte également à une méthode de contrôle d'un tel véhicule qui comprend une étape de contrôle de l'orientation de l'aile, qui met en 5 oeuvre au moins un paramètre de vol du drone. Le véhicule se présente par exemple sous la forme d'un drone équipé de quatre rotors coplanaires (quadrirotor), qui comprend deux ailes amovibles agencées symétriquement l'une par rapport à l'autre à l'avant et à l'arrière du drone. L'orientation de ces ailes est fonction d'au moins un paramètre de vol du drone, et est mobile entre 10 au moins deux positions dans lesquelles les plans de corde de profil de ces ailes sont respectivement orientés selon des plans vertical et horizontal. Par ailleurs, une des ailes peut comprendre une pluralité de parties mobiles les unes par rapport aux autres, en pivotement autour d'un axe parallèle à l'axe de tangage du drone. Quels que soient les modes de réalisation, le véhicule proposé présente 15 l'avantage de réduire la consommation énergétique du véhicule tout en augmentant son autonomie, et ce sans nuire à ses capacités de décollage et d'atterrissage en mode vertical. En effet, la présence d'une ou plusieurs ailes pivotantes, situées au-delà de la zone de refoulement de l'air par les dispositifs de propulsion permet d'une part d'éviter de perturber le flux d'air nécessaire à la mobilité du véhicule et d'autre part de 20 bénéficier, le cas échéant, de la portance pouvant être offerte par un flux d'air ambiant, tel qu'un courant d'air naturellement présent au moment des différentes phases de décollage, de vol ou d'atterrissage du véhicule. On présente par la suite un mode de réalisation particulier du véhicule aérien léger sans équipage à décollage vertical et convertible. Il est bien entendu que la portée 25 de la présente n'est nullement limitée par ce mode de réalisation particulier et que d'autres modes de réalisation peuvent parfaitement être mis en oeuvre. 5.2. Description de la structure d'un drone selon un mode de réalisation particulier de la divulgation La figure 1 illustre selon une vue en perspective un véhicule aérien léger sans 30 équipage, ou drone (1). L'ensemble de la structure est agencé autour de la carène (2) du 3029893 10 drone, et plus précisément, du centre de gravité (G) du drone localisé au centre de cette carène (2). Pour des raisons de clarté, l'ensemble de la description suivante prend pour référence un repère direct (G ; X; Y; Z) lié à l'armature (10) du drone et ayant pour centre le centre de gravité (G). L'axe Z correspond à l'axe de lacet du drone (1). Cet axe Z 5 est sensiblement perpendiculaire au sol lorsque le drone (1) est en vol stationnaire. Z s'étend depuis la partie inférieure (basse) vers la partie supérieure (haute) du drone (1). L'axe X correspond à l'axe de roulis du drone (1) et s'étend depuis l'arrière vers l'avant du drone (1). L'axe Y correspond à l'axe de tangage du drone (1) et s'étend depuis la gauche vers la droite du drone (1). L'ensemble des constituants du drone (1), à 10 l'exception des ailes (3), obéit à une double symétrie, par rapport au deux plans formés respectivement par les axes X et Z, et par les axes Y et Z. Les notions de parties supérieure, inférieure, avant, arrière, gauche, droite sont ici choisies arbitrairement pour les besoins de la description. De manière similaire, les termes « distal » et « proximal » qualifient respectivement des éléments ou parties d'éléments localisées à 15 distance ou à proximité du centre (G). Tel qu'illustré par les figures 1 et 2, la carène (2) présente une forme parallélépipédique de centre (G). Cette carène (2) comprend à chacun de ses quatre coins un bras de support (4) qui s'étend selon une direction distale sensiblement coplanaire. Chacun de ces bras de support (4) comprend sur sa face supérieure et à 20 proximité de son extrémité distale un rotor (5) dont l'axe (5a) est orienté selon une direction parallèle à l'axe Z. Une surface portante (6) comprenant une pluralité d'hélices et agencée en pivotement autour de l'axe (5a) du rotor (5), selon un plan sensiblement perpendiculaire à l'axe Z. L'ensemble constitué du rotor (5) et de la surface portante (6) forme un dispositif de propulsion (7). Chaque dispositif de propulsion est actionné par le 25 biais d'une unité de traitement localisée dans la carène (2) du drone (1). Les variations du sens et de la vitesse de rotation des quatre rotors (5), les uns par rapport aux autres, permettent d'engendrer des mouvements de roulis, de lacet et de tangage du drone (1), selon un processus de contrôle connu de l'homme du métier. Chacune des extrémités distales des bras de support (4) est solidarisée à une barre de rattachement (8), qui 30 s'étend selon une direction sensiblement parallèle à l'axe X. Les quatre barres de 3029893 rattachement (8) sont solidarisées deux à deux, au niveau de leur extrémité proximale, par l'intermédiaire de deux barres de renfort (9). Une aile (3) et une aile (3) sont respectivement agencées à l'avant et à l'arrière du drone (1), de part et d'autre de la carène (2). Ces ailes (3) s'étendent selon des directions parallèles à l'axe de tangage Y 5 entre les extrémités distales des barres de rattachement (8). Une liaison pivot autour d'un axe de pivot est assurée entre chaque extrémité des ailes (3) et les barres de rattachement (8). Les ailes (3) sont orientées autour de l'axe de pivot de manière à ce que le plan de corde de profil de chacune de ces ailes soit sensiblement parallèle au plan défini par les dispositifs de propulsion (7). Le plan de corde de profil est formé par la 10 ligne de corde de profil (Lc) et l'axe de pivot de l'aile. Selon un mode de réalisation de la divulgation, le débattement des ailes (3) autour de leur axe de pivot est symétrique par rapport à la verticale, ce qui permet au drone (1) d'inverser directement son sens de déplacement, sans avoir à effectuer une rotation de lacet de 180°.
15 Un dispositif de contrôle d'orientation (tel qu'un servomoteur) monté entre l'extrémité distale de la barre de renfort (9) et l'axe de pivot d'une aile (3) permet l'asservissement de l'orientation de l'aile (3) à une valeur déterminée. Le dispositif de contrôle d'orientation est lui-même commandé par l'unité de traitement du drone. Selon un autre mode de réalisation de la divulgation, cet asservissement peut être 20 effectué via d'autres types d'actionnement, en montage direct ou déporté (par l'intermédiaire d'une transmission). L'armature (10) du drone correspond à l'ensemble formé par la carène (2), les bras de support (4), les barres de rattachement (8) et les barres de renfort (9) du drone (1). 25 5.3. Variations de l'orientation d'une aile d'un drone selon un mode de réalisation particulier de la divulgation La figure 3 illustre plus en détail les variations possibles de l'orientation d'une aile (3) d'un drone (1). Pour des raisons de clarté, l'aile (3) est représentée selon une vue de profil qui correspond à un plan parallèle au plan médian du drone (1), 30 perpendiculaire à l'axe de pivot de l'aile (3) en un point de pivot (P). L'aile (3) est 3029893 12 considérée dans le cadre d'un repère terrestre direct (P ; X' ; Y' ; Z') centré en (P). Les axes X' et Y' sont parallèles au sol. Les axes Y' et Y sont parallèles entre eux. L'axe Z' est perpendiculaire au sol. L'assiette du drone correspond alors à l'angle formé entre les axes X et X'. L'inclinaison de l'aile (3), correspond à l'écartement angulaire de la ligne de 5 corde (Lc) par rapport à l'axe X. L'angle d'attaque (a) de l'aile (3) correspond à l'angle formé entre la direction de l'air et la ligne de corde de profil (Lc). En faisant l'hypothèse selon laquelle la direction de l'air est parallèle à l'axe X', notamment en vol rapide, on en déduit que l'angle d'attaque (a) correspond à l'angle formé entre la ligne de corde (Lc) de l'aile (3) et l'axe X'.
10 Lorsqu'une aile (3) est placée dans un flux d'air, la résultante des forces aérodynamiques (Fa) s'applique en un point (Cp), dit « Centre de Pression » (voir la partie gauche de la Figure 3). Pour un profil symétrique, la localisation de ce point (Cp) varie peu en fonction de l'angle d'attaque (a). Il est situé le long de l'axe de symétrie à environ un quart de corde du bord d'attaque. Lorsque le point de pivot (P) de l'aile est 15 situé en avant de ce point (Cp), la force aérodynamique (Fa) engendre un couple qui a tendance à aligner l'aile (3) face au vent. C'est le principe de la girouette. En d'autres termes, l'angle d'attaque (a) de l'aile (3) tend vers une valeur nulle quelque soient les conditions de vent. Cette valeur n'est pas satisfaisante en elle-même car un angle d'attaque nul donne une portance nulle, mais il se situe proche des valeurs d'angles 20 d'attaque intéressants d'un point de vue énergétique (angles d'attaque (a) petits). Dans le cadre de la phase de vol stationnaire, ou vol vertical, le drone (1) se déplace selon une direction parallèle à l'axe Z'. La valeur d'angle d'attaque (a) optimale dépend alors de deux contraintes s'exerçant selon des directions perpendiculaires à savoir : 25 - La contrainte associée à la force de résistance de l'air (FrZ) à l'ascension du drone (1), dirigée du haut vers le bas selon l'axe Z'. La valeur de cette contrainte varie en fonction de la vitesse d'ascension du drone et de la surface apparente de la partie supérieure de l'aile (3). La valeur de cette surface diminue lorsque l'inclinaison de l'aile varie de 0° à 90°, et 30 inversement. 3029893 1.3 - La prise au vent de l'aile (3). Cette contrainte dont la force (Fv) correspondante est orientée selon un axe horizontal, est fonction de la vitesse du vent et de la surface de l'aile en prise au vent. La valeur de cette surface en prise au vent est fonction l'inclinaison de l'aile (3).
5 Les valeurs respectives des contraintes résultants de l'action des forces (FrZ) et (Fv) sur l'aile (3) varient donc de manière inversement proportionnelle. La valeur optimale de l'inclinaison de l'aile correspond par conséquent à une valeur d'inclinaison pour laquelle la contrainte correspondant à la résultante de la somme des forces (FrZ) et (Fv) a une valeur minimale.
10 En pratique, dans l'hypothèse où la vitesse du vent est importante lors de la phase d'ascension du drone, il est préférable d'adopter une valeur d'inclinaison proche de 0°, afin de limiter la prise au vent des ailes et donc les mouvements de déportation du drone en dehors de l'axe Z', qui nuisent à sa stabilité. Il convient de noter qu'une telle optimisation d'inclinaison du drone est impossible dans le cadre d'un véhicule de 15 type « tilt-wing ». En revanche, dans l'hypothèse où la vitesse du vent est négligeable lors de la phase d'ascension du drone, il est préférable d'adopter une valeur d'inclinaison proche de 90°, afin de limiter la résistance de l'air à l'ascension du drone, et par conséquent l'énergie nécessaire à la réalisation de ce travail. Il convient de noter qu'une telle 20 optimisation d'inclinaison del'aile du drone est impossible dans le cadre d'un véhicule de type « tilt-rotor ».Selon un mode de réalisation de la divulgation, les ailes (3) sont aptes à être débrayées par rapport à l'armature (10) du drone de manière à pouvoir adapter passivement leur orientation en fonction des contraintes s'exerçant sur elles. Dans le cadre de la phase de vol rapide, ou vol horizontal, le drone (1) se déplace 25 selon une direction parallèle à l'axe X'. La valeur d'angle d'attaque optimale ne dépend alors que d'une seule contrainte qui est associée à la force de résistance de l'air (FrX) au déplacement horizontal du drone (1), dirigée selon l'axe X'. Tel que mentionné dans le texte ci-dessus, les valeurs d'angles d'attaque permettant de maximiser l'autonomie énergétique du drone sont alors proches de 0°. Le pivotement des ailes (3) par rapport 30 au reste du drone (1) permet donc d'accroître la portance des ailes, et par conséquent 3029893 14 d'améliorer l'autonomie énergétique du drone, pendant toutes les phases de vol et indépendamment de l'assiette de ce dernier et de l'orientation de ses rotors. Il convient de noter que la problématique liée, en vol rapide, à l'indépendance entre l'orientation des ailes et l'assiette du drone ne se pose pas dans le cadre des tilt- 5 rotors et tilt-wing, l'orientation de l'armature étant constamment parallèle au sol dans les cas d'espèces. Les variations des angles d'attaque des ailes, confèrent également au drone (1) une meilleure maniabilité, les changements rapides de portance ayant une influence directe sur les mouvements effectués par le drone. A ce titre et selon un mode de 10 réalisation particulier de la divulgation, l'utilisateur a la possibilité de faire varier l'angle d'attaque des ailes à des fins de maniabilité, prenant alors le pas sur les méthodes de contrôle de l'inclinaison des ailes visant à réduire sa consommation énergétique. Selon un mode de réalisation particulier et tel qu'illustré par la figure 4, une même aile (3) comprend une pluralité de parties (4a, 4b) mobiles en pivotement les 15 unes par rapport aux autres selon un axe parallèle à l'axe de tangage Y du drone. Le découplage de ces différentes parties d'une même aile (3) permet alors d'améliorer sensiblement la maniabilité du drone (1), et notamment son aptitude au roulis. 5.4. Méthode de contrôle de l'orientation d'une aile de drone selon un mode de réalisation particulier de la divulgation 20 Les figures 5 et 6 illustrent différentes méthodes de contrôle de l'orientation d'une aile d'un drone, selon des modes de réalisations de la divulgation, permettant d'obtenir un vol efficace d'un point de vue énergétique, et qui offre de bonnes propriétés de tenue au vent. De telles méthodes sont par exemple obtenues en utilisant les méthodes 25 disponibles dans l'état de la technique sur les voilures tournantes pour le calcul de la consommation énergétique, ainsi que les méthodes classiques de portance et de traînée aérodynamiques propres aux hélices et aux ailes. A partir de cette connaissance de l'inclinaison "optimale" de l'aile, le problème consiste à définir des méthodes de contrôle permettant d'asservir l'inclinaison de l'aile à cette inclinaison optimale. 3029893 1.5 Ces méthodes de contrôles mettent en oeuvre au moins un paramètre de vol du drone. Les paramètres de vol du drone comprennent notamment la vitesse de vol du drone et l'inclinaison angulaire de l'aile par rapport à l'armature (10) du drone. Le choix d'adoption d'une méthode plutôt que d'une autre dépend notamment 5 des capteurs et actionneurs disponibles sur le drone (1) ou au sol. Selon un premier mode de réalisation de la divulgation, illustré par la figure 5, une méthode de contrôle permet de faire varier l'inclinaison de l'aile en fonction de la vitesse de l'air. Dans l'hypothèse selon laquelle le drone (1) est équipé de capteurs de type 10 anémomètre ou tube de pitot permettant de mesurer la vitesse air au niveau du drone (1), la mesure directe de la vitesse air (11) et le modèle d'inclinaison optimale des ailes en fonction de la vitesse air donnent directement l'inclinaison optimale à atteindre (12). Si cette inclinaison optimale est exprimée par rapport à l'armature (10) du drone (13) (e.g., inclinaison des ailes (3) par rapport au plan des hélices (6)), le dispositif de 15 contrôle d'orientation permet l'asservissement de l'inclinaison de l'aile à la valeur optimale. Si l'inclinaison optimale est exprimée par rapport à un repère terrestre (e.g. (P ; X' ; Y' ; Z')) (14), on peut la ré-exprimer par rapport à l'armature (10) du drone en utilisant l'estimation de l'assiette du drone (15), nécessaire par ailleurs pour le pilotage de l'engin.
20 Dans l'hypothèse selon laquelle la vitesse air est mesurée au sol, via un capteur GPS par exemple, on considère à des fins de simplification que le vent est négligeable. La vitesse sol est alors égale à la vitesse air et la méthode décrite précédemment s'applique. Dans la pratique, avec une telle méthode, on obtient de bons résultats lorsque le vent est effectivement négligeable, mais les performances se dégradent en 25 cas de vent significatif. Selon un deuxième mode de réalisation de la divulgation, illustré par la figure 6, une méthode de contrôle permet de contrôler l'inclinaison de l'aile en fonction du couple exercé par l'air sur l'aile. Une telle méthode ne requiert pas de mesure de vitesse. Cette approche est utilisable lorsqu'aucun capteur de vitesse n'est disponible, 30 ou lorsque les conditions aérologiques font que la vitesse air ne peut être estimée de 3029893 16 façon satisfaisante. Dans l'hypothèse d'un placement des points (P) et (Cp) tel que décrit dans la partie 5.3, le principe de cette méthode repose sur la mise en oeuvre d'un contrôleur de type ressort-amortisseur (ou Proportionnel Dérivé) à gains variables. On applique en premier lieu via un actionneur un couple de contrôle de sens 5 opposé au couple engendré par les efforts aérodynamiques (cf. partie gauche de la figure 7). Ce couple, nulle lorsque l'aile pointe vers le haut, augmente lorsque l'aile s'incline à l'horizontal. Pour une certaine valeur d'inclinaison de l'aile, les deux couples se compensent, pour donner l'inclinaison d'équilibre (16) (cf. partie droite de la figure 7). Afin que cet équilibre soit stable, il convient d'ajouter dans le correcteur un terme de 10 contrôle en vitesse d'inclinaison de l'aile (on obtient ainsi un contrôleur de type "Proportionnel-Dérivé", de type ressort amortisseur). Les gains du correcteur (gain du terme proportionnel) déterminent l'inclinaison d'équilibre. Ils sont donc choisis (17) de façon à ce que cette position soit la plus proche possible de l'inclinaison optimale donnée par le modèle. Les efforts aérodynamiques étant proportionnels au carré de la 15 vitesse, il est possible de faire varier la "raideur" du contrôleur en fonction de l'inclinaison de l'aile. Ainsi, sans connaissance de la vitesse air, l'aile prend naturellement (18) une inclinaison efficace d'un point de vue énergétique (avec un angle d'attaque d'autant plus faible que la vitesse air est importante).

Claims (10)

  1. REVENDICATIONS1. Véhicule aérien léger sans équipage à décollage vertical comprenant au moins deux dispositifs de propulsion coplanaires fixes et au moins une aile assurant la portance dudit véhicule aérien, lesdits dispositifs de propulsion coplanaires et ladite aile étant chacun agencés sur l'armature dudit véhicule aérien tels que le plan de la corde de profil de ladite aile est sensiblement parallèle au plan défini par lesdits au moins deux dispositifs de propulsion coplanaires, véhicule caractérisé en ce que ladite au moins une aile est mobile en pivotement par rapport à ladite armature, selon un axe parallèle à l'axe de tangage dudit véhicule aérien.
  2. 2. Véhicule aérien selon la revendication 1, caractérisé en ce qu'il comprend quatre dispositifs de propulsion coplanaires.
  3. 3. Véhicule aérien selon la revendication 1, caractérisé en ce qu'un dispositif de propulsion coplanaire se présente sous la forme d'un rotor et d'une surface portante en rotation autour de l'axe dudit rotor.
  4. 4. Véhicule aérien selon la revendication 1, caractérisé en ce que ladite au moins une aile est mobile entre au moins deux positions : une position dans laquelle la portance de ladite au moins une aile est sans influence sur la dynamique de vol dudit véhicule ; une position dans laquelle la portance de ladite au moins une aile influe sur la dynamique de vol dudit véhicule.
  5. 5. Véhicule aérien selon la revendication 1, caractérisé en ce que l'orientation de ladite au moins une aile par rapport à ladite armature est fonction d'au moins un paramètre de vol dudit véhicule aérien.
  6. 6. Véhicule aérien selon la revendication 1, caractérisé en ce qu'il comprend au moins deux ailes.
  7. 7. Véhicule aérien selon la revendication 6, caractérisé en ce que lesdites ailes sont agencées symétriquement sur ladite armature, de part et d'autre d'un plan 3029893 18 parallèle audit axe de tangage, ledit plan comprenant le centre de gravité dudit véhicule aérien.
  8. 8. Véhicule aérien selon la revendication 6, caractérisé en ce qu'au moins une desdites ailes comprend une pluralité de parties mobiles en pivotement les unes 5 par rapport aux autres selon un axe parallèle à l'axe de tangage dudit véhicule aérien.
  9. 9. Véhicule aérien selon la revendication 1, caractérisé en ce que ladite au moins une aile est agencée de manière amovible sur ladite armature.
  10. 10. Méthode de contrôle de l'orientation d'une aile d'un véhicule aérien selon la 10 revendication 1, caractérisée en ce qu'elle comprend au moins une étape de contrôle d'une orientation d'une aile en fonction d'au moins un paramètre de vol dudit véhicule aérien.
FR1462384A 2014-12-12 2014-12-12 Vehicule aerien leger sans equipage a decollage vertical. Expired - Fee Related FR3029893B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1462384A FR3029893B1 (fr) 2014-12-12 2014-12-12 Vehicule aerien leger sans equipage a decollage vertical.
PCT/EP2015/079497 WO2016092102A1 (fr) 2014-12-12 2015-12-11 Vehicule aerien leger sans equipage a decollage vertical
EP15808600.9A EP3230161A1 (fr) 2014-12-12 2015-12-11 Vehicule aerien leger sans equipage a decollage vertical
US15/535,309 US20170327218A1 (en) 2014-12-12 2015-12-11 Light unmanned vertical take-off aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1462384A FR3029893B1 (fr) 2014-12-12 2014-12-12 Vehicule aerien leger sans equipage a decollage vertical.

Publications (2)

Publication Number Publication Date
FR3029893A1 true FR3029893A1 (fr) 2016-06-17
FR3029893B1 FR3029893B1 (fr) 2018-03-23

Family

ID=52477934

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1462384A Expired - Fee Related FR3029893B1 (fr) 2014-12-12 2014-12-12 Vehicule aerien leger sans equipage a decollage vertical.

Country Status (4)

Country Link
US (1) US20170327218A1 (fr)
EP (1) EP3230161A1 (fr)
FR (1) FR3029893B1 (fr)
WO (1) WO2016092102A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254430B2 (en) * 2014-09-02 2022-02-22 Amit REGEV Tilt winged multi rotor
US20190135420A1 (en) * 2014-09-02 2019-05-09 Amit REGEV Tilt Winged Multi Rotor
US10640204B2 (en) * 2015-03-03 2020-05-05 Amazon Technologies, Inc. Unmanned aerial vehicle with a tri-wing configuration
US10351236B1 (en) * 2015-04-06 2019-07-16 Wing Aviation Llc Weight reduction in unmanned aerial vehicles
US10669023B2 (en) * 2016-02-19 2020-06-02 Raytheon Company Tactical aerial platform
US11591084B2 (en) * 2017-01-03 2023-02-28 The Texas A&M University System Cycloidal rotor micro-air vehicle
IL256941A (en) * 2018-01-15 2018-03-29 Colugo Systems Ltd A free-wing multi-blade that includes vertical and horizontal engines
GB2554977B (en) * 2017-07-21 2018-09-26 Av8Or Ip Ltd Hybrid multi-rotor unmanned aerial vehicle with adjustable wings
WO2019109306A1 (fr) * 2017-12-07 2019-06-13 深圳市大疆创新科技有限公司 Véhicule aérien sans pilote
US11453513B2 (en) * 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration
DE102018133096A1 (de) * 2018-12-20 2020-06-25 Volocopter Gmbh Fluggerät
US11427313B2 (en) 2019-10-15 2022-08-30 Helmuth G. Bachmann Universally attachable hinged wing and VLOS aid for mutirotor drones
US12043419B2 (en) * 2020-02-27 2024-07-23 Liviu Giurca Aircraft with vertical take-off and landing—VTOL
JP7044413B1 (ja) * 2020-11-10 2022-03-30 株式会社石川エナジーリサーチ 飛行装置
WO2022156854A1 (fr) * 2021-01-20 2022-07-28 Germanium Skies Gmbh Module de vol pour aéronef
FR3120227A1 (fr) * 2021-03-01 2022-09-02 Cedric Lefort Hovers
CN113682470B (zh) * 2021-10-08 2023-07-11 中国民航大学 一种基于前后对称翼型的矢量动力飞行器
DE102022000073A1 (de) 2022-01-12 2023-07-13 Gerd BERCHTOLD Einstellbarer Hilfsflügel als Auftriebsunterstützung für vertikal startendende Fluggeräte mit nicht schwenkbaren Auftriebsrotoren
US12030399B2 (en) * 2022-04-27 2024-07-09 Skydio, Inc. Base stations for unmanned aerial vehicles (UAVs)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3107882A (en) * 1962-08-10 1963-10-22 Electric Auto Lite Co Yaw control system for vtol tilt wing aircraft
US20140124613A1 (en) * 2011-06-21 2014-05-08 Zhaoxi Yang Vertical take-off and landing aircraft with tiltrotor power for use on land and in air
WO2014172719A2 (fr) * 2013-04-15 2014-10-23 Christian Emmanuel Norden Dispositif de transition pour un aéronef

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395988B2 (en) * 2005-11-02 2008-07-08 The Boeing Company Rotor wing aircraft having an adjustable tail nozzle
AT515456B1 (de) * 2014-02-18 2018-04-15 Iat 21 Innovative Aeronautics Tech Gmbh Fluggerät

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3107882A (en) * 1962-08-10 1963-10-22 Electric Auto Lite Co Yaw control system for vtol tilt wing aircraft
US20140124613A1 (en) * 2011-06-21 2014-05-08 Zhaoxi Yang Vertical take-off and landing aircraft with tiltrotor power for use on land and in air
WO2014172719A2 (fr) * 2013-04-15 2014-10-23 Christian Emmanuel Norden Dispositif de transition pour un aéronef

Also Published As

Publication number Publication date
FR3029893B1 (fr) 2018-03-23
WO2016092102A1 (fr) 2016-06-16
EP3230161A1 (fr) 2017-10-18
US20170327218A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
FR3029893A1 (fr) Vehicule aerien leger sans equipage a decollage vertical.
EP2691299B1 (fr) Micro/nano véhicule aérien commande à distance comportant un système de roulage au sol, de décollage vertical et d'atterrissage
EP3294624B1 (fr) Avion convertible a rotors découvrables
EP3259183B1 (fr) Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
US20200010182A1 (en) Pivoting wing system for vtol aircraft
EP2148814B1 (fr) Hélicoptère hybride rapide à grande distance franchissable et avec contrôle de l'assiette longitudinale
EP1212238B1 (fr) Perfectionnements aux aeronefs convertibles a rotors basculants
EP2146895B1 (fr) Helicoptere hybride rapide a grande distance franchissable et rotor de sustentation optimise
EP2146896B1 (fr) Helicoptere hybride rapide a grande distance franchissable
EP2279941B1 (fr) Amortissement variable de restitution haptique pour chaine cinématique de changement d'attitude de vol d'un aéronef
CA2895073C (fr) Systeme et procede de commande de vol en tenue de trajectoire pour un aeronef a voilure tournante
JP2002503170A (ja) 垂直離着陸を行う重航空機
FR3053133A1 (fr) Procede de conversion dynamique d'attitude d'un drone a voilure tournante
EP3260370A1 (fr) Drone comportant des ailes portantes
EP3560830B1 (fr) Giravion muni d'une voilure tournante et d'au moins deux helices, et procede applique par ce giravion
FR3052885A1 (fr) Drone comprenant des ailes portantes
CA2895080C (fr) Systeme et procede de commande de vol d'un aeronef a voilure tournante en tenue de trajectoire ou tenue de cap selon sa vitesse d'avancement
WO2019129971A1 (fr) Procede de controle de la direction d'un aeronef, ainsi qu'un aeronef adapte pour mettre en œuvre ledit procede
FR3036805A1 (fr) Procede de determination de la vitesse air longitudinale et de la vitesse sol longitudinale d'un aeronef a voiture tournante selon son exposition au vent
EP2799331A1 (fr) Système et procédé de commande d'un moyen de stabilisation en tangage d'un aéronef
FR3020622A1 (fr) Aerodyne sans pilote embarque
FR2990926A1 (fr) Moyen de stabilisation en tangage et aeronef a voilure tournante muni d'un tel moyen
FR3051440A1 (fr) Drone endurant a decollage et atterrissage verticaux optimise pour des missions en environnement complexe
EP4301658A1 (fr) Drone hybride à décollage et atterrissage vertical adapté au vol en conditions venteuses
FR2915174A1 (fr) Objet volant avec des rotors en tandem

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160617

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20200914