FR3027597A1 - PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION - Google Patents

PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION Download PDF

Info

Publication number
FR3027597A1
FR3027597A1 FR1402431A FR1402431A FR3027597A1 FR 3027597 A1 FR3027597 A1 FR 3027597A1 FR 1402431 A FR1402431 A FR 1402431A FR 1402431 A FR1402431 A FR 1402431A FR 3027597 A1 FR3027597 A1 FR 3027597A1
Authority
FR
France
Prior art keywords
composite pyrotechnic
pyrotechnic product
crosslinked
charges
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1402431A
Other languages
French (fr)
Other versions
FR3027597B1 (en
Inventor
Fabienne Morin
Martine Golfier
Caroline Carayon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup SAS
Original Assignee
Herakles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1402431A priority Critical patent/FR3027597B1/en
Application filed by Herakles SA filed Critical Herakles SA
Priority to PL15808698T priority patent/PL3212594T3/en
Priority to EP15808698.3A priority patent/EP3212594B1/en
Priority to PCT/FR2015/052888 priority patent/WO2016066945A1/en
Priority to US15/522,608 priority patent/US20180290945A1/en
Priority to JP2017522927A priority patent/JP6510640B2/en
Priority to KR1020177014380A priority patent/KR102621576B1/en
Publication of FR3027597A1 publication Critical patent/FR3027597A1/en
Application granted granted Critical
Publication of FR3027597B1 publication Critical patent/FR3027597B1/en
Priority to IL251766A priority patent/IL251766B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • C06B45/105The resin being a polymer bearing energetic groups or containing a soluble organic explosive
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention a pour principal objet un produit pyrotechnique composite, performant, sans plomb dans sa composition, dont l'obtention à l'échelle industrielle ne se heurte pas à un problème de vie de pot de la pâte intermédiaire. Ledit produit renferme, dans un liant plastifié, comprenant un polymère énergétique réticulé et au moins un plastifiant énergétique, des charges énergétiques organiques et un catalyseur de combustion. De façon caractéristique, ledit polymère énergétique réticulé consiste en un polyazoture de glycidyle (PAG), ayant une masse moléculaire moyenne en nombre (Mn) comprise entre 700 et 3000 g/mol, réticulé, via ses fonctions terminales hydroxyles, avec au moins un agent de réticulation de type polyisocyanate, et ledit catalyseur de combustion consiste en le citrate de bismuth.The main subject of the present invention is a composite, high performance, lead-free pyrotechnic product in its composition, the production of which on an industrial scale does not come up against a pot life problem of the intermediate dough. Said product contains, in a plasticized binder, comprising a crosslinked energy polymer and at least one energetic plasticizer, organic energy charges and a combustion catalyst. Typically, said crosslinked energy polymer consists of a glycidyl polyazide (PAG), having a number-average molecular weight (Mn) of between 700 and 3000 g / mol, crosslinked, via its hydroxyl terminal functions, with at least one agent polyisocyanate crosslinking agent, and said combustion catalyst is bismuth citrate.

Description

La présente invention concerne des produits pyrotechniques composites, convenant notamment comme propergols solides pour chargements propulsifs de moteurs de fusée. Il s'agit plus précisément de produits pyrotechniques composites, renfermant un fort taux de charges énergétiques organiques dans un liant énergétique. Lesdits produits sont particulièrement intéressants en ce que leur composition ne renferme pas de plomb, en ce qu'ils sont performants, notamment en termes de vitesse de combustion, et en ce que la vie de pot (voir définition ci-dessous) de leur mélange précurseur (avant réticulation) est élevée (leur obtention à l'échelle industrielle s'en trouve grandement facilitée). Un propergol solide de type composite comprend des charges solides pulvérulentes (charges oxydantes, avec, éventuellement en sus, des charges réductrices) ainsi que divers additifs, notamment des additifs de faisabilité et des additifs de performance, dans un liant généralement plastifié (une matrice polymère solide - un polymère réticulé -, énergétique ou non, généralement plastifiée). Le liant est obtenu à partir d'un polymère liquide (« réticulable »), présentant des terminaisons chimiquement réactives, aptes à être réticulées par au moins un agent de réticulation (au moins bi- fonctionnel) lui aussi liquide. On introduit en fait généralement dans un tel polymère liquide, suivant un ordre approprié, au moins un plastifiant et les autres ingrédients du propergol, à l'exception dudit au moins un agent de réticulation (et d'au moins un catalyseur de réticulation, si un tel au moins un catalyseur de réticulation (généralement très sensible à l'humidité) est utilisé), puis finalement ledit au moins un agent de réticulation (et ledit éventuel au moins un catalyseur de réticulation utilisé). Le polymère chargé est alors traité thermiquement (« cuit ») à une température compatible avec les matériaux énergétiques (charges a minima) présents. Le polymère réticulé constitue, avec le(s) plastifiant(s) présent(s), le liant plastifié, qui enrobe tous les ingrédients et notamment les charges pulvérulentes, pour former finalement un corps solide. Le procédé actuellement mis en oeuvre pour fabriquer de tels produits pyrotechniques composites sous la forme de blocs est un procédé discontinu, dit par "batch", consistant à préparer une certaine quantité de pâte, à couler ladite quantité (au moins une partie de celle-ci) dans un certain nombre de structures (au moins une) et à traiter thermiquement le(s) chargement(s) ainsi obtenu(s) (pour réticuler le polymère). Dans une première étape, les différents ingrédients sont donc introduits selon un ordre approprié puis soigneusement et longuement malaxés, dans des conditions de pression (en général, sous un vide partiel) et de température bien précises. Pour l'étape suivante, le mélange, qui se présente donc sous la forme d'une pâte, est coulé dans au moins une structure (ladite structure étant éventuellement utilisée avec des outillages de mise en forme en son sein). L'ensemble subit alors un traitement thermique (une cuisson) pour assurer la réticulation (le durcissement) du polymère. La structure constitue dans la plupart des cas l'enveloppe même du chargement. L'introduction du au moins un agent de réticulation (et de l'éventuel au moins un catalyseur de réticulation) dans le mélange se fait vers la fin de l'étape de malaxage. En effet, dès ladite introduction, la pâte - déjà per se plus ou moins visqueuse, selon la nature du polymère, selon le taux de charges ... - commence à réticuler (à « durcir »). Ainsi, la coulée ne peut se faire que durant un temps limité, dit « vie de pot », pendant lequel le mélange reste assez fluide pour être coulé. Il est impératif, pour une mise en oeuvre industrielle, que la vie de pot de la pâte soit suffisamment élevée (afin de disposer du temps nécessaire aux différentes opérations de coulée).The present invention relates to composite pyrotechnic products, particularly suitable as solid propellants for rocket engine propellant charges. It is more precisely composite pyrotechnic products, containing a high rate of organic energy charges in an energy binder. Said products are particularly interesting in that their composition does not contain lead, in that they are efficient, particularly in terms of the rate of combustion, and in that the pot life (see definition below) of their mixture precursor (before crosslinking) is high (their obtaining on an industrial scale is greatly facilitated). A composite type solid propellant comprises pulverulent solid charges (oxidizing charges, with, optionally, reducing charges) and various additives, including feasibility additives and performance additives, in a generally plasticized binder (a polymer matrix). solid - a crosslinked polymer - energetic or not, usually plasticized). The binder is obtained from a liquid polymer ("crosslinkable"), having chemically reactive terminations, capable of being crosslinked by at least one crosslinking agent (at least bifunctional) also liquid. At least one plasticizer and the other ingredients of the propellant, with the exception of the at least one crosslinking agent (and at least one crosslinking catalyst, if there is at least one plasticizer), are generally introduced into such a liquid polymer in an appropriate order. such at least one crosslinking catalyst (generally very sensitive to moisture) is used), then finally said at least one crosslinking agent (and said optional at least one crosslinking catalyst used). The charged polymer is then heat-treated ("fired") at a temperature compatible with the energetic materials (at least fillers) present. The crosslinked polymer constitutes, with the plasticizer (s) present (s), the plasticized binder, which coats all the ingredients and in particular the pulverulent fillers, to finally form a solid body. The process currently used to manufacture such composite pyrotechnic products in the form of blocks is a batch process, called "batch", consisting in preparing a certain quantity of paste, casting said quantity (at least a part of it). ci) in a number of structures (at least one) and heat treatment the (s) load (s) thus obtained (to crosslink the polymer). In a first step, the various ingredients are therefore introduced in a proper order and carefully and long kneaded, under pressure conditions (usually under a partial vacuum) and temperature very precise. For the next step, the mixture, which is therefore in the form of a paste, is poured into at least one structure (said structure possibly being used with forming tools within it). The assembly then undergoes a heat treatment (baking) to ensure the crosslinking (hardening) of the polymer. The structure is in most cases the very envelope of the load. The introduction of the at least one crosslinking agent (and optionally at least one crosslinking catalyst) into the mixture is carried out towards the end of the kneading step. Indeed, as soon as said introduction, the dough - already per more or less viscous, depending on the nature of the polymer, depending on the rate of charge ... - begins to crosslink (to "harden"). Thus, the casting can be done for a limited time, called "pot life", during which the mixture remains fluid enough to be poured. It is imperative, for an industrial implementation, that the pot life of the dough is sufficiently high (in order to have the necessary time for the various casting operations).

La vie de pot d'une pâte de propergol est évaluée par la mesure de l'évolution de la viscosité de ladite pâte au cours du temps. On considère qu'à partir d'une viscosité supérieure à 1,5 kPa.s = 15 kPo (15 kP), une pâte de propergol n'est plus « coulable », et qu'un temps 5 inférieur à 15 h pour atteindre cette viscosité empêche toute industrialisation du procédé. Une viscosité de pâte inférieure ou égale à 1,5 kPa.s = 15 kPo au bout de 15 h est donc la condition (nécessaire et suffisante) qui assure la coulabilité de ladite pâte dans des conditions industrielles. L'homme du métier comprend bien évidemment que la vie de 10 pot d'une pâte dépend des conditions exactes (de température et de pression) de coulée de ladite pâte. Afin d'augmenter la vitesse de combustion d'un propergol solide, il est connu d'ajouter dans la composition dudit propergol solide des agents faisant fonction de catalyseur de combustion (on parle aussi de 15 catalyseurs balistiques). Des sels organométalliques de plomb et des oxydes de plomb ont été utilisés à cette fin dans le passé. Le plomb, en raison de sa toxicité, a depuis été remplacé par le bismuth ; d'où l'utilisation de sels et d'oxydes de bismuth à titre de catalyseur de combustion de propergols solides. 20 La demande de brevet FR 2 727 401 décrit ainsi l'utilisation de sels de bismuth, tels les p-résorcylates de bismuth, le Y-résorcylate de bismuth, le salicylate de bismuth, le citrate de bismuth, le stéarate de bismuth, et celle de l'oxyde de bismuth, comme catalyseur de combustion pour des propergols solides double base (nitrocellulose et au moins un 25 ester nitrique tel la nitroglycérine) ou double base composite (charges dans un liant énergétique à base d'un ester nitrique). L'utilisation de ces nouveaux catalyseurs de combustion présente toutefois un inconvénient dans la mesure où ceux-ci se révèlent aussi des catalyseurs de la réticulation et où donc leur utilisation réduit la vie de pot (voir ci-dessus). Le brevet US 6 168 574 confirme que la présence de sels de bismuth, tout particulièrement celle du salicylate de bismuth et celle d'un 13-résorcylate de bismuth, dans la composition d'un propergol composite (à liant énergétique (de type nitramine : ORP-2 (voir ci-après)) ou non énergétique (polyglycol adipate (PGA), caprolactones), réticulé par un polyisocyanate) induit une diminution importante de la vie de pot ; le sel de bismuth (catalyseur de combustion) jouant aussi le rôle de catalyseur de réticulation. Ledit brevet propose « un artifice de procédé » pour limiter cette diminution de la vie de pot. Il propose l'introduction du sel de bismuth dans une pâte de propergol (constituée en amont) refroidie à environ 16°C (60°F), au lieu de environ 32-38°C (90-100°F) selon le procédé conventionnel. On conçoit que l'augmentation plus conséquente de la viscosité de la pâte, inhérente à ce refroidissement de plus grande amplitude, complique inéluctablement la suite de la mise en oeuvre du procédé. En fait, la mise en oeuvre d'un procédé, comprenant une mise en température de la pâte à une température aussi basse, limite le choix quant à la nature des polymères convenant comme précurseurs de liant.The pot life of a propellant paste is evaluated by measuring the evolution of the viscosity of said paste over time. It is considered that from a viscosity greater than 1.5 kPa.s = 15 kPo (15 kP), a propellant paste is no longer "flowable", and that a time of less than 15 hours to reach this viscosity prevents any industrialization of the process. A paste viscosity less than or equal to 1.5 kPa.s = 15 kPo after 15 hours is therefore the (necessary and sufficient) condition which ensures the flowability of said paste under industrial conditions. Those skilled in the art understand of course that the pot life of a dough depends on the exact conditions (temperature and pressure) of casting said dough. In order to increase the burning rate of a solid propellant, it is known to add in the composition of said solid propellant agents which act as a combustion catalyst (also known as ballistic catalysts). Organometallic lead salts and lead oxides have been used for this purpose in the past. Lead, because of its toxicity, has since been replaced by bismuth; hence the use of salts and oxides of bismuth as a catalyst for burning solid propellants. Patent application FR 2 727 401 thus describes the use of bismuth salts, such as bismuth p-resorcylates, bismuth Y-resorylate, bismuth salicylate, bismuth citrate, bismuth stearate, and the like. that of bismuth oxide, as a combustion catalyst for double base solid propellants (nitrocellulose and at least one nitric ester such as nitroglycerine) or double composite base (fillers in an energetic binder based on a nitric ester). The use of these novel combustion catalysts, however, has a disadvantage insofar as these are also found to be catalysts for crosslinking and where therefore their use reduces the pot life (see above). US Pat. No. 6,168,574 confirms that the presence of bismuth salts, in particular that of bismuth salicylate and that of a bismuth-13-resorylate, in the composition of a composite propellant (with an energetic binder (of the nitramine type: ORP-2 (see below)) or non-energetic (polyglycol adipate (PGA), caprolactones), cross-linked by a polyisocyanate) induces a significant decrease in pot life; the bismuth salt (combustion catalyst) also acting as a crosslinking catalyst. Said patent proposes "a process device" to limit this decrease in pot life. He proposes introducing the bismuth salt into a propellant paste (upstream) cooled to about 16 ° C (60 ° F), instead of about 32-38 ° C (90-100 ° F) according to the method. conventional. It is conceivable that the more substantial increase in the viscosity of the paste, inherent in this cooling of greater amplitude, inevitably complicates the subsequent implementation of the process. In fact, the implementation of a method, including a temperature rise of the dough at such a low temperature, limits the choice as to the nature of the polymers suitable as binder precursors.

Lesdits polymères doivent pouvoir être coulés à cette température aussi basse. Le brevet US 6 168 677 confirme l'enseignement du brevet US 6 168 574. Il décrit et évalue des propergols composites à liant énergétique réticulé avec un polyisocyanate et renfermant dans leur composition du salicylate de bismuth et/ou du citrate de bismuth, comme catalyseur balistique. Les liants énergétiques décrits sont des liants de type nitramine, obtenus à partir de polymères (acides) de type ORP-2 (poly(diéthylèneg lycol-4,8-d i n itraza u ndéca noate) et 9DT-NIDA (terpolymère de diéthylèneglycol-triéthylèneglycol- nitraminodiacétique). De tels polymères peuvent être coulés à basse température, à 60°F 16°C (voir le tableau 10 du brevet US 6 168 677). A ce jour, l'homme du métier est toujours à la recherche d'un propergol performant, fortement énergétique, incorporant, dans sa composition, un catalyseur balistique non toxique (sans plomb), pouvant être obtenu, à l'échelle industrielle, avec une pâte présentant une vie de pot suffisamment longue et ce, dans des conditions de mise en oeuvre avantageuses, simples, notamment de gestion de la température. Dans un tel contexte, la Demanderesse propose un nouveau propergol composite à liant énergétique spécifique (comprenant un polymère énergétique spécifique (PAG) réticulé avec au moins un polyisocyanate), renfermant un catalyseur de combustion spécifique (du citrate de bismuth) dans sa composition. Ce nouveau propergol composite, dont la composition ne renferme pas de plomb, est performant sur le plan énergétique (il présente notamment une haute vitesse de combustion) et son procédé de préparation est particulièrement intéressant. Il est du mérite de la Demanderesse d'avoir sélectionné un couple, polymère précurseur de liant énergétique/catalyseur de combustion, qui, utilisé conventionnellement avec polyisocyanate(s), plastifiant(s) et charges énergétiques organiques, conduit à un propergol dont la pâte, avant réticulation, présente une vie de pot proche de celle d'un propergol similaire ne renfermant pas, dans sa composition, de catalyseur de combustion ou renfermant, dans sa composition, du citrate de plomb en tant que catalyseur de combustion ; et ce, à une température de 35-55°C (température, supérieure à la température ambiante, convenant parfaitement à une mise en oeuvre « simple » du procédé de préparation dudit propergol (voir ci-après)). Selon son premier objet, la présente invention concerne donc de nouveaux produits pyrotechniques composites, fortement énergétiques et ne renfermant pas de plomb dans leur composition. Ils sont du type à liant énergétique réticulé renfermant des charges énergétiques organiques. Ils renferment, plus précisément, dans un liant plastifié, comprenant un polymère énergétique réticulé et au moins un plastifiant énergétique, des charges énergétiques organiques et un catalyseur de combustion. De façon caractéristique : - ledit polymère énergétique réticulé consiste en un polyazoture de glycidyle (PAG), ayant une masse moléculaire moyenne en nombre (Mn) comprise entre 700 et 3000 g/mol, réticulé, via ses fonctions terminales hydroxyles, avec au moins un agent de réticulation de type polyisocyanate ; et - le catalyseur de combustion consiste en le citrate de bismuth. La structure des produits pyrotechniques composites de l'invention associe donc, de façon caractéristique, un liant spécifique et un 15 catalyseur de combustion spécifique. Cette association s'est révélée particulièrement avantageuse en référence au cahier des charges qui comporte deux stipulations a priori contradictoires (les catalyseurs de combustion se révélant généralement aussi des catalyseurs de réticulation (voir ci-dessus)) : hautes performances énergétiques (hautes vitesses de 20 combustion) du produit (requérant la présence d'un catalyseur de combustion en quantité efficace) et gestion aisée de son procédé d'obtention (tout particulièrement en référence au problème de la durée de vie de la pâte à réticuler). La nature du liant (celle de son polymère précurseur) constitue 25 donc l'un des éléments clés (de la composition) des produits pyrotechniques composites de l'invention. Notons incidemment ici que le « un » polyazoture de glycidyle (= polymère précurseur du liant) doit se lire « au moins un » polyazoture de glycidyle dans tout le présent texte. En effet, il est nullement exclu du 302 759 7 7 cadre de l'invention qu'un mélange d'au moins deux polyazotures de glycidyle (présentant des masses moléculaires (entre 700 et 3000 g/mol) et/ou des taux de ramification différents) soit utilisé comme polymère précurseur du liant des produits de l'invention. 5 Le polymère énergétique sélectionné comme précurseur du liant des produits de l'invention est donc un polyazoture, un polyazoture de glycidyle (PAG) qui présente des fonctions terminales hydroxy (un PAG hydroxytéléchélique) ; d'où 1) ses propriétés énergétiques et 2) sa capacité à être réticulé avec les agents de réticulation de type 10 polyisocyanate. Ledit polymère a une masse moléculaire adéquate (notamment, en référence à sa consistance (liquide) et à la consistance de son mélange avec essentiellement les charges (énergétiques organiques) et en référence à la teneur relative du liant réticulé en agent(s) de réticulation), masse moléculaire moyenne en nombre (Mn) comprise entre 700 et 3000 g/mol, avantageusement entre 1700 et 2300 g/mol. Il est du mérite des inventeurs d'avoir identifié (sélectionné) ce type (de polymère précurseur) de liant, convenant parfaitement pour utilisation avec du citrate de bismuth comme catalyseur de combustion.Said polymers must be able to be cast at this low temperature. US Pat. No. 6,168,677 confirms the teachings of US Pat. No. 6,168,574. It describes and evaluates polyisocyanate-crosslinked energetic composite propellants containing, in their composition, bismuth salicylate and / or bismuth citrate, as a catalyst. ballistic. The energetic binders described are nitramine-type binders, obtained from (acid) polymers of the ORP-2 type (poly (diethyleneg lycol-4,8-din-itraza and nececanate) and 9DT-NIDA (terpolymer of diethylene glycol-triethylene glycol). Such polymers can be cast at a low temperature at 60 ° F 16 ° C (see Table 10 of US Patent 6,168,677), and to date a person skilled in the art is still in search of a powerful, highly energetic propellant incorporating, in its composition, a non-toxic (lead-free) ballistic catalyst that can be obtained on an industrial scale with a paste having a sufficiently long pot life and under conditions of In such a context, the Applicant proposes a new composite propellant with a specific energetic binder (comprising a specific energy polymer (PAG) crosslinked with c at least one polyisocyanate), containing a specific combustion catalyst (bismuth citrate) in its composition. This new composite propellant, whose composition does not contain lead, is energy efficient (it has a particular high speed of combustion) and its preparation process is particularly interesting. It is the merit of the Applicant to have selected a pair, precursor polymer energy binder / combustion catalyst, which, conventionally used with polyisocyanate (s), plasticizer (s) and organic energy charges, leads to a propellant whose dough , before crosslinking, has a pot life close to that of a similar propellant does not contain, in its composition, combustion catalyst or containing, in its composition, lead citrate as a combustion catalyst; and this, at a temperature of 35-55 ° C (temperature, higher than room temperature, perfectly suitable for a "simple" implementation of the process for preparing said propellant (see below)). According to its first object, the present invention therefore relates to new composite pyrotechnic products, highly energetic and not containing lead in their composition. They are of the crosslinked energy binder type containing organic energy charges. They contain, more specifically, in a plasticized binder, comprising a crosslinked energy polymer and at least one energetic plasticizer, organic energy charges and a combustion catalyst. Typically: said crosslinked energy polymer consists of a glycidyl polyazide (PAG) having a number-average molecular weight (Mn) of between 700 and 3000 g / mol, crosslinked, via its hydroxyl terminal functions, with at least one polyisocyanate crosslinking agent; and the combustion catalyst consists of bismuth citrate. The structure of the composite pyrotechnic products of the invention therefore typically associates a specific binder and a specific combustion catalyst. This combination has proved particularly advantageous with reference to the specification, which contains two stipulations which are a priori contradictory (combustion catalysts are generally also found as crosslinking catalysts (see above)): high energy performances (high speeds of 20%). combustion) of the product (requiring the presence of a combustion catalyst in an effective amount) and easy management of its production process (especially with reference to the problem of the life of the dough to be crosslinked). The nature of the binder (that of its precursor polymer) is therefore one of the key elements (of the composition) of the composite pyrotechnic products of the invention. Incidentally note here that the "a" glycidyl polyazide (= binder precursor polymer) should read "at least one" glycidyl polyazide throughout the present text. Indeed, it is not excluded from the scope of the invention that a mixture of at least two glycidyl polyazides (having molecular weights (between 700 and 3000 g / mol) and / or branching ratios different) is used as precursor polymer binder products of the invention. The energetic polymer selected as the precursor of the binder of the products of the invention is therefore a polyazide, a glycidyl polyazide (PAG) which has terminal hydroxy functions (a hydroxytelechelic PAG); hence 1) its energetic properties and 2) its ability to be crosslinked with the polyisocyanate crosslinking agents. Said polymer has an adequate molecular weight (in particular, with reference to its consistency (liquid) and the consistency of its mixture with essentially the charges (organic energy) and with reference to the relative content of the crosslinked binder in crosslinking agent (s) ), a number-average molecular weight (Mn) of between 700 and 3000 g / mol, advantageously between 1700 and 2300 g / mol. It is the merit of the inventors to have identified (selected) this type (precursor polymer) binder, suitable for use with bismuth citrate as a combustion catalyst.

Les agents de réticulation, de type polyisocyanate (au moins bifonctionnels), convenant à la réticulation d'un tel polyazoture de glycidyle (PAG) hydroxytéléchélique sont connus per se. Il peut notamment s'agir de di- ou triisocyanates. Il s'agit avantageusement de polyisocyanates, liquides, choisis parmi le toluène diisocyanate (TDI), l'isophorone diisocyanate (IPDI), le dicyclohexylméthylène diisocyanate (MDCI), l'hexaméthylène diisocyanate (HDI), le trimère dudit hexaméthylène diisocyanate (notamment commercialisé par la société Bayer sous la dénomination commerciale Desmodur® N 3300), le biuret trihexane isocyanate (BTHI), le 3,5,5-triméthy1-1,6-hexaméthylène 302 759 7 8 diisocyanate et leurs mélanges. De façon particulièrement préférée, on utilise le trimère de l'hexaméthylène diisocyanate. Lesdits agents de réticulation sont conventionnellement utilisés en quantité nécessaire et suffisante, pour assurer la réticulation du 5 polymère (non excessive pour ne pas polluer le produit réticulé obtenu). Ils sont conventionnellement utilisés en une quantité telle que le rapport de pontage (NCO (de l'agent de réticulation) /OH (du polymère)) soit compris entre 0,8 et 1,4, soit avantageusement de 1. Le polymère énergétique réticulé représente généralement de 10 10 à 14 °h en masse de la composition totale des produits pyrotechniques composites de l'invention. Le polymère énergétique per se est généralement intervenu pour 8 à 12 % en masse, le au moins un agent de réticulation pour environ 2 % en masse. On a bien compris que la nature du liant (de son polymère 15 précurseur) n'est pas per se originale mais que l'intérêt de l'invention repose sur l'association d'un tel (polymère précurseur de) liant avec un catalyseur de combustion spécifique. De façon conventionnelle, au liant énergétique, est associé au moins un plastifiant énergétique. Le(s) plastifiant(s) énergétique(s) en 20 cause est(sont) avantageusement de type nitrate et/ou nitramine. Le(s) plastifiant(s) énergétique(s) en cause est(sont) très avantageusement choisi(s) parmi le dinitrate de diéthylène glycol (DEGDN), le dinitrate de triéthylène glycol (TEGDN), le trinitrate de butanetriol (BTTN), le trinitrate de triméthyloléthane (TMETN), un mélange de 2,4-dinitro-2,4-diaza- 25 pentane, de 2,4-dinitro-2,4-diaza-hexane et de 3,5-dinitro-3,5-diazaheptane (et tout particulièrement le DNDA 5,7), les nitrato éthyl nitramines (notamment le méthy1-2-nitratoéthyl nitramine (méthylNENA) et l'éthy1-2-nitratoéthyl nitramine (éthylNENA)) et leurs mélanges. 302 759 7 9 Le(s) plastifiant(s) des produits pyrotechniques de l'invention représente(nt) généralement de 10 à 30 % en masse, plus généralement de 15 à 25 % en masse, de la composition totale desdits produits. Les charges énergétiques présentes sont des charges 5 organiques. Les charges énergétiques organiques en cause ne sont pas per se originales. Il s'agit de charges énergétiques organiques connues per se et, pour la plupart, déjà conditionnées selon l'art antérieur dans des liants polymériques énergétiques réticulés (notamment de type PAG). Il s'agit 10 avantageusement de charges d'hexogène (RDX), d'octogène (HMX), d'hexanitrohexaazaisowurtzitane (CL20), de nitroguanidine (NGU), d'éthylène dinitramine (EDNA), de dinitramide de N-guanylurée (FOX 12 (GUDN)), de 1,1-diamino-2,2-dinitro éthylène (FOX 7 (DADE)), de 5,5'- azotétrazolate de bis(triaminoguanidinium) (TAGZT), de 5,5'- 15 azotétrazolate de dihydrazinium (DFIDZT), de 5,5'-bis(tétrazolyl)hydrazine (HBT), de bis(2,2-dinitropropyl) nitramine (BDNPN), d'un nitropyrazole ou d'un mélange de ces charges (énergétiques organiques). Au sein des produits pyrotechniques composites de l'invention, on trouve donc un type de charge énergétique, avantageusement choisi 20 parmi la liste ci-dessus, ou un mélange d'au moins deux types de charge énergétique, avantageusement choisis parmi la liste ci-dessus. De façon préférée, on y trouve des charges énergétiques de RDX. Les charges énergétiques organiques se présentent conventionnellement sous la forme de grains solides, répartis de façon 25 homogène au sein du liant réticulé plastifié. Ces grains solides présentent opportunément, de façon connue per se, plusieurs distributions granulométriques. Les charges énergétiques organiques des produits pyrotechniques de l'invention représentent généralement de 50 à 70 °h en masse, plus généralement de 55 à 65 % en masse, de la composition totale desdits produits. On a compris que lesdits produits sont à fort taux de charge. La présence de charges énergétiques inorganiques, au sein du liant plastifié des produits pyrotechniques de l'invention, ne saurait être totalement exclue. En tout état de cause, de telles charges énergétiques inorganiques, présentes, le sont en faible quantité (< 4 % en masse). Elles peuvent être considérées comme des additifs (voir ci-après). Leur présence peut être opportune, en référence aux propriétés balistiques du produit ; elle ne doit toutefois pas être responsable de la formation conséquente de fumées ou lueurs de combustion. La présence de charges métalliques, au sein du liant plastifié des produits pyrotechniques de l'invention, est, quant à elle, généralement exclue. De telles charges métalliques sont en effet susceptibles de générer des particules lors de leur combustion. La nature du catalyseur de combustion présent constitue donc l'autre des éléments clés (de la composition) des produits pyrotechniques composites de l'invention. Ledit catalyseur de combustion consiste en le citrate de bismuth. Ledit citrate de bismuth, en raison de sa moindre toxicité, se substitue avantageusement aux sels et oxydes de plomb de l'art antérieur. De surcroit, de façon surprenante, ledit citrate de bismuth, catalyseur de combustion spécifique, au sein du liant plastifié spécifique des produits pyrotechniques de l'invention, exerce un effet positif sur la combustion (tout particulièrement sur la vitesse de combustion) sans poser de problème en amont lors de la préparation du produit (le procédé de préparation étant d'une mise en oeuvre « aisée », généralement « à température constante » jusqu'à la réticulation du polymère, en tout état de cause qui inclut aucun refroidissement substantiel (du type de celui décrit dans les brevets US 6 168 574 et 6 168 677)), sans problème de gestion de la vie de pot). A ce propos, le lecteur est invité à considérer les résultats du tableau 2 ci-après. Le citrate de bismuth (le catalyseur de combustion) est généralement présent dans la composition des produits pyrotechniques de 5 l'invention à un taux massique de 1 à 6 %, très généralement à un taux massique de 3 à 5 %. Les produits pyrotechniques composites de l'invention sont par ailleurs susceptibles de renfermer, et renferment généralement, dans leur liant (polymère précurseur réticulé), outre les plastifiant(s), charges 10 énergétiques organiques et catalyseur de combustion (spécifique), au moins un additif. On peut plus justement parler d'au moins un autre additif, les catalyseurs de combustion constituant en général des additifs. Les catalyseurs de combustion ont été présentement isolés des autres additifs, dans la mesure où ils sont à la base du problème technique 15 présentement considéré et où le catalyseur de combustion (spécifique) retenu constitue un élément clé des produits de l'invention. Parmi les additifs opportunément présents, on privilégie les additifs conventionnels ci-après : les catalyseurs de réticulation et les agents de stabilisation du(des) plastifiant(s) énergétique(s) présent(s). 20 Ainsi, selon une variante avantageuse, les produits pyrotechniques composites de l'invention renferment donc dans leur composition, outre le polymère (PAG) réticulé, les plastifiant(s), charges énergétiques organiques et catalyseur de combustion (citrate de bismuth), au moins un additif ; ledit au moins un additif comprenant au moins un catalyseur de 25 réticulation et/ou au moins un agent de stabilisation du(des) plastifiant(s) présent(s). Ledit au moins un catalyseur de polymérisation peut notamment être choisi parmi le triphénylbismuth et le dibutyldilaurate d'étain (DBTL). Présent, il l'est généralement à une teneur ne dépassant pas 100 ppm. Ledit au moins un agent de stabilisation du(des) plastifiant(s) présent(s) peut notamment consister en au moins une amine aromatique, telle la 2-nitrodiphénylamine (2-NDPA) et la Nméthylparanitroaniline (MNA). Présent, il l'est généralement à une teneur d'environ 1 % en masse.Crosslinking agents, of the polyisocyanate type (at least bifunctional), which are suitable for the crosslinking of such a hydroxytelechelic glycidyl polyazide (PAG), are known per se. It may especially be di- or triisocyanates. Advantageously, these are liquid polyisocyanates chosen from toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), dicyclohexylmethylene diisocyanate (MDCI), hexamethylene diisocyanate (HDI), trimer of said hexamethylene diisocyanate (especially commercialized by Bayer under the trade name Desmodur® N 3300), biuret trihexane isocyanate (BTHI), 3,5,5-trimethyl-1,6-hexamethylene diisocyanate and mixtures thereof. In a particularly preferred manner, the trimer of hexamethylene diisocyanate is used. Said crosslinking agents are conventionally used in an amount necessary and sufficient to ensure crosslinking of the polymer (not excessive so as not to pollute the crosslinked product obtained). They are conventionally used in an amount such that the bridging ratio (NCO (of the crosslinking agent) / OH (of the polymer)) is between 0.8 and 1.4, or advantageously of 1. The crosslinked energy polymer is generally from 10 to 14% by weight of the total composition of the composite pyrotechnic products of the invention. The energy polymer per is generally involved for 8 to 12% by weight, the at least one crosslinking agent for about 2% by weight. It is understood that the nature of the binder (of its precursor polymer) is not per se original but that the interest of the invention lies in the combination of such a (precursor polymer) binder with a catalyst specific combustion. Conventionally, the energy binder is associated with at least one energetic plasticizer. The energy plasticizer (s) in question is (are) advantageously of the nitrate and / or nitramine type. The energy plasticizer (s) in question is (are) very advantageously selected from diethylene glycol dinitrate (DEGDN), triethylene glycol dinitrate (TEGDN), butanetriol trinitrate (BTTN) trimethylolethane trinitrate (TMETN), a mixture of 2,4-dinitro-2,4-diaza-pentane, 2,4-dinitro-2,4-diaza-hexane and 3,5-dinitro-3 5-diazaheptane (and especially DNDA 5.7), nitrato ethyl nitramines (especially methyl-2-nitratoethyl nitramine (methylNENA) and ethyl-2-nitratoethyl nitramine (ethylNENA)) and mixtures thereof. The plasticizer (s) of the pyrotechnic products of the invention generally represent from 10 to 30% by weight, more generally from 15 to 25% by weight, of the total composition of said products. The energy charges present are organic fillers. The organic energy charges involved are not per se original. These are organic energy charges known per se and, for the most part, already packaged according to the prior art in crosslinked energy polymer binders (in particular of the PAG type). These are advantageously hexogen (RDX), octogen (HMX), hexanitrohexaazaisowurtzitane (CL20), nitroguanidine (NGU), ethylene dinitramine (EDNA), N-guanylurea dinitramide ( FOX 12 (GUDN)), 1,1-diamino-2,2-dinitro ethylene (FOX 7 (DADE)), 5,5'-azotetrazolate bis (triaminoguanidinium) (TAGZT), 5,5'- Dihydrazinium azotetrazolate (DFIDZT), 5,5'-bis (tetrazolyl) hydrazine (HBT), bis (2,2-dinitropropyl) nitramine (BDNPN), a nitropyrazole or a mixture of these fillers ( organic energy). Within the composite pyrotechnic products of the invention, there is therefore a type of energy charge, advantageously chosen from the above list, or a mixture of at least two types of energy charge, advantageously chosen from the list below. above. Preferably, there are energetic charges of RDX. Organic energy charges are conventionally in the form of solid grains, distributed homogeneously within the plasticized crosslinked binder. These solid grains suitably have, in a known manner per se, several particle size distributions. The organic energy charges of the pyrotechnic products of the invention generally represent from 50 to 70% by weight, more generally from 55 to 65% by weight, of the total composition of said products. It is understood that said products are high load. The presence of inorganic energy charges within the plasticized binder of the pyrotechnic products of the invention can not be totally excluded. In any case, such inorganic energy charges, present, are in small quantities (<4% by weight). They can be considered as additives (see below). Their presence may be appropriate, with reference to the ballistic properties of the product; however, it must not be responsible for the consequent formation of flue gases or flares. The presence of metal fillers, within the plasticized binder of the pyrotechnic products of the invention, is, in turn, generally excluded. Such metal charges are indeed likely to generate particles during their combustion. The nature of the present combustion catalyst therefore constitutes the other of the key elements (of the composition) of the composite pyrotechnic products of the invention. Said combustion catalyst consists of bismuth citrate. Said bismuth citrate, because of its lower toxicity, advantageously replaces the salts and lead oxides of the prior art. Moreover, surprisingly, said bismuth citrate, a specific combustion catalyst, within the plasticised binder specific for the pyrotechnic products of the invention, has a positive effect on the combustion (especially on the rate of combustion) without posing a problem. problem upstream during the preparation of the product (the preparation process being of an "easy" implementation, generally "at constant temperature" until the crosslinking of the polymer, in any case which includes no substantial cooling ( of the type described in US Pat. Nos. 6,168,574 and 6,168,677)), with no pot life management problem). In this connection, the reader is invited to consider the results in Table 2 below. Bismuth citrate (the combustion catalyst) is generally present in the composition of the pyrotechnic products of the invention at a mass ratio of 1 to 6%, very generally at a mass ratio of 3 to 5%. The composite pyrotechnic products of the invention are also likely to contain, and generally contain, in their binder (crosslinked precursor polymer), besides the plasticizers (s), organic energy charges and combustion catalyst (specific), at least one additive. It is more apt to speak of at least one other additive, combustion catalysts generally constituting additives. The combustion catalysts have now been isolated from the other additives insofar as they are at the root of the present technical problem and where the (specific) combustion catalyst selected is a key element of the products of the invention. Among the additives that are suitably present, the following conventional additives are preferred: the crosslinking catalysts and the stabilizing agents of the plasticizer (s) energy (s) present (s). Thus, according to an advantageous variant, the composite pyrotechnic products of the invention therefore contain in their composition, in addition to the crosslinked polymer (PAG), the plasticizers (s), organic energy charges and combustion catalyst (bismuth citrate), with minus an additive; said at least one additive comprising at least one crosslinking catalyst and / or at least one stabilizing agent of the plasticizer (s) present. Said at least one polymerization catalyst may especially be chosen from triphenylbismuth and tin dibutyldilaurate (DBTL). Present, it is generally at a content not exceeding 100 ppm. Said at least one stabilizing agent for the plasticizer (s) present may, in particular, consist of at least one aromatic amine, such as 2-nitrodiphenylamine (2-NDPA) and N-methylparanitroaniline (MNA). Present, it is generally at a content of about 1% by weight.

D'autres additifs susceptibles d'être présents dans la composition des produits pyrotechniques composites de l'invention peuvent notamment consister en des charges énergétiques inorganiques (voir ci-dessus) et en un ou plusieurs agents de mise en oeuvre (auxiliaire(s) de fabrication). Le(s)dit(s) agent(s) est(sont) généralement présent(s) à une teneur de 1 à 2 % en masse. Les additifs éventuellement présents (au vu des propos ci-dessus, on a compris que généralement plusieurs types d'additif sont présents) représentent généralement au maximum 4 % en masse de la composition des produits pyrotechniques composites de l'invention. Ils représentent très généralement de 0,1 à 4 % en masse de la composition desdits produits pyrotechniques composites de l'invention. Au vu des propos ci-dessus, on comprend que les produits pyrotechniques composites de l'invention ne sont pas d'un type nouveau mais qu'ils sont nouveaux de par l'association, dans leur composition, d'un liant spécifique (PAG réticulé par au moins un polyisocyanate) et d'un catalyseur de combustion spécifique (le citrate de bismuth). Dans le cadre d'une variante avantageuse, la composition des produits pyrotechniques composites de l'invention, exprimée en pourcentages massiques, renferme donc : - de 50 à 70 %, avantageusement de 55 à 65 °AD, de charges énergétiques organiques, et - de 10 à 14 % du polymère énergétique (de type PAG hydroxytéléchélique) réticulé ( via ses fonctions terminales hydroxy par au moins un polyisocyanate), - de 10 à 30 %, avantageusement de 15 à 25 %, d'au moins un plastifiant énergétique, - de 1 à 6 %, avantageusement 3 à 5%, de citrate de bismuth, et - de 0 à 4 %, avantageusement de 0,1 à 4 %, d'au moins un additif. Dans le cadre de cette variante avantageuse, ladite composition est généralement exempte de tout autre ingrédient (notamment de toute charge métallique) et consiste donc en les ingrédients listés ci-dessus, présents en les quantités indiquées ci-dessus. Le grand intérêt des produits de l'invention ressort à l'évidence des propos ci-dessus. Les produits sont intéressants per se (en termes de performances balistiques, de par aussi leurs propriétés mécaniques, la faible signature du panache généré (discrétion) lors de leur combustion en propulseur) et dans la mesure où la vie de pot de la pâte (précurseur) contenant les ingrédients est proche de celle de la pâte d'un propergol similaire ne renfermant pas de citrate de bismuth. Plus généralement, la mise en oeuvre de la préparation des produits de l'invention ne pose pas de difficulté et se révèle « optimisée » en terme de gestion de température. Selon son second objet, la présente invention concerne donc un procédé de préparation d'un produit pyrotechnique composite, tel que décrit ci-dessus. Ce procédé comprend : - la constitution d'une pâte homogène par a) incorporation, avec agitation, à une température comprise entre 35 et 55°C, dans un polyazoture de glycidyle adéquat (PAG hydroxytéléchélique présentant une masse moléculaire en nombre telle que précisée ci-dessus), d'au moins un plastifiant énergétique, des charges énergétiques organiques et des autres ingrédients constitutifs du 302 759 7 14 produit pyrotechnique composite recherché (incluant le catalyseur de combustion spécifique : le citrate de bismuth) à l'exception d'un quelconque agent de réticulation et d'un quelconque catalyseur de réticulation, et 5 b) agitation du mélange résultant, sous vide partiel, à une (avantageusement ladite) température comprise entre 35 et 55°C; - sous vide partiel, à une (avantageusement ladite) température comprise entre 35 et 55°C, l'incorporation, dans ladite pâte homogène constituée, dudit au moins un agent de réticulation et éventuellement d'au 10 moins un catalyseur de réticulation, suivie d'une agitation du mélange constitué ; - la coulée dudit mélange constitué (ayant été) agité (= du mélange obtenu) dans au moins une structure ; et - le traitement thermique dudit mélange constitué (ayant été) 15 agité coulé dans ladite au moins une structure. Le vide partiel mentionné est destiné au dégazage du milieu au-dessus duquel il est appliqué. Il est généralement de 10 mm Hg. On note incidemment qu'il n'est pas forcément d'intensité constante. Le traitement thermique (de réticulation (du PAG 20 hydroxytéléchélique)) est généralement mis en oeuvre à une température comprise entre 30 et 60°C (30°C T 60°C), pendant plusieurs jours. Ce procédé peut être considéré comme un procédé par analogie, mais, de façon caractéristique, de par la nature spécifique du (polymère précurseur du) liant et la nature spécifique du catalyseur de 25 combustion, ses premières étapes sont mises en oeuvre à des températures (avantageusement une température) entre 35 et 55°C (35°C T(s) 55°C), (sans refroidissement), sans problème de vie de pot (dudit polymère).Other additives that may be present in the composition of the composite pyrotechnic products of the invention may especially consist of inorganic energetic charges (see above) and one or more processing agents (auxiliaries). manufacturing). The said agent (s) is (are) generally present at a content of 1 to 2% by weight. The additives that may be present (in view of the above remarks, it has been understood that generally several types of additive are present) generally represent a maximum of 4% by weight of the composition of the composite pyrotechnic products of the invention. They represent very generally 0.1 to 4% by weight of the composition of said composite pyrotechnic products of the invention. In view of the above remarks, it is understood that the composite pyrotechnic products of the invention are not of a new type but that they are new by the combination, in their composition, of a specific binder (PAG cross-linked by at least one polyisocyanate) and a specific combustion catalyst (bismuth citrate). In the context of an advantageous variant, the composition of the composite pyrotechnic products of the invention, expressed in percentages by weight, thus contains: from 50 to 70%, advantageously from 55 to 65 ° AD, of organic energy charges, and from 10 to 14% of the energy polymer (of the hydroxytelechelic PAG type) crosslinked (via its terminal hydroxy functions with at least one polyisocyanate), from 10 to 30%, advantageously from 15 to 25%, of at least one energetic plasticizer, from 1 to 6%, advantageously 3 to 5%, of bismuth citrate, and from 0 to 4%, advantageously from 0.1 to 4%, of at least one additive. In the context of this advantageous variant, said composition is generally free of any other ingredient (especially any metallic filler) and therefore consists of the ingredients listed above, present in the amounts indicated above. The great interest of the products of the invention is evident from the above remarks. The products are interesting per se (in terms of ballistic performance, also because of their mechanical properties, the weak signature of the generated plume (discretion) during their propellant combustion) and to the extent that the pot life of the dough (precursor ) containing the ingredients is similar to that of the paste of a similar propellant containing no bismuth citrate. More generally, the implementation of the preparation of the products of the invention is not difficult and is "optimized" in terms of temperature management. According to its second object, the present invention therefore relates to a method for preparing a composite pyrotechnic product, as described above. This process comprises: the constitution of a homogeneous paste by a) incorporation, with stirring, at a temperature of between 35 and 55 ° C. into a suitable glycidyl polyazide (hydroxytelechelic PAG having a number-specific molecular mass as specified herein above), at least one energetic plasticizer, organic energetic charges and other constitutive ingredients of the desired composite pyrotechnic product (including the specific combustion catalyst: bismuth citrate) with the exception of one any crosslinking agent and any crosslinking catalyst, and b) agitating the resulting mixture, under partial vacuum, at a (preferably said) temperature of between 35 and 55 ° C; under partial vacuum, at a temperature advantageously between 35 ° and 55 ° C., the incorporation into said homogeneous paste constituted by said at least one crosslinking agent and optionally at least one crosslinking catalyst, followed by agitation of the mixture formed; pouring said mixture constituted (having been) stirred (= of the mixture obtained) into at least one structure; and - the heat treatment of said stirred (stirred) mixture in said at least one structure. The partial vacuum mentioned is intended for degassing of the medium above which it is applied. It is usually 10 mm Hg. Incidentally, it is not necessarily constant intensity. The heat treatment (crosslinking (of the hydroxytelechelic PAG)) is generally carried out at a temperature of between 30 ° and 60 ° C. (30 ° C. at 60 ° C.) for several days. This process can be considered as a method by analogy, but, characteristically, by the specific nature of the binder precursor polymer and the specific nature of the combustion catalyst, its first steps are carried out at temperatures ( preferably a temperature) between 35 and 55 ° C (35 ° C (s) 55 ° C), (without cooling), without pot life problem (said polymer).

On se propose maintenant d'illustrer l'invention par les exemples ci-après. On propose plus précisément ci-après les exemples A, B1 et B2, illustrant l'art antérieur, les exemples 1 et 2 illustrant l'invention et les exemples comparatifs Cl et C2.It is now proposed to illustrate the invention by the examples below. Examples A, B1 and B2, which illustrate the prior art, are more specifically described below, examples 1 and 2 illustrating the invention and comparative examples C1 and C2.

Les exemples 1 et 2 sont relatifs à des propergols selon l'invention comprenant, dans leur composition, des charges d'hexogène (RDX), un liant à base d'un polymère énergétique de type PAG hydroxytéléchélique (commercialisé par la société EURENCO (Mn (masse moléculaire moyenne en nombre) = 1900 g/mol) réticulé (par le trimère de l'hexaméthylène diisocyanate commercialisé par la société Bayer sous la dénomination commerciale Desmodur® N 3300), plastifié (par un mélange de deux plastifiants énergétiques (BTTN/TMETN ; 30/70 (°/0 massiques))), des agents de stabilisation desdits plastifiants (MNA/2- NDPA ; 75/25 (% massiques)) et du citrate de bismuth en tant que catalyseur balistique (à un taux massique de 1% pour l'exemple 1 et à un taux massique de 4 °h pour l'exemple 2). Lesdits propergols des exemples 1 et 2 ont été comparés à des propergols de référence, pour l'un (Réf. 1) sans catalyseur balistique dans sa composition (exemple A) et pour l'autre (Réf. 2) avec du citrate de plomb en tant que catalyseur balistique, dans sa composition, à un taux massique de 1 % (exemple B1) et de 3,5 % (exemple B2). Deux exemples comparatifs sont aussi présentés avec des propergols similaires à celui de l'exemple 2 selon l'invention mais comprenant, en tant que catalyseur balistique, du sous salicylate de bismuth (C1) et du carbonate de bismuth (C2), en lieu et place du citrate de bismuth. Les compositions de ces propergols (plus précisément celle de leur pâte avant réticulation) sont présentées dans le tableau 1 ci-après.Examples 1 and 2 relate to propellants according to the invention comprising, in their composition, hexogen (RDX) charges, a binder based on a hydroxytelechelic PAG type energy polymer (sold by the company EURENCO (Mn)). (number average molecular weight) = 1900 g / mol) crosslinked (by the trimer of hexamethylene diisocyanate marketed by Bayer under the trade name Desmodur® N 3300), plasticized (by a mixture of two energetic plasticizers (BTTN / TMETN; 30/70 (° / 0 mass))), stabilizers for said plasticizers (MNA / 2-NDPA, 75/25 (% by mass)) and bismuth citrate as a ballistic catalyst (at a specific mass ratio). of 1% for Example 1 and at a mass rate of 4 ° h for Example 2), said propellants of Examples 1 and 2 were compared with reference propellants, for one (Ref.1) without ballistic catalyst in its composition (example A) and for the other (Ref.2) with lead citrate as a ballistic catalyst, in its composition, at a mass ratio of 1% (Example B1) and 3.5% (Example B2). Two comparative examples are also presented with propellants similar to that of Example 2 according to the invention but comprising, as a ballistic catalyst, bismuth sub-salicylate (C1) and bismuth carbonate (C2), in place and place bismuth citrate. The compositions of these propellants (more precisely that of their pulp before crosslinking) are presented in Table 1 below.

Les mêmes produits ont évidemment été utilisés pour tous les exemples. Pour ce qui concerne les charges de RDX, elles étaient constituées à 68 °A) en masse d'un RDX d'une classe granulométrique 0 - 100 pm et à 32 °A) en masse d'un RDX d'une classe granulométrique 2,5 - 5 pm. 17 Tableau 1 Propergols (°/0 en masse) Réf.1 Réf.2 Exemples Exemples comparatifs Ingrédients (°/0 en masse) A B1 B2 Ex.1 Ex.2 C1 C2 Liant plastifié Polymère énergétique PAG 10,63 10,63 9,63 10,63 9,63 9,63 9,63 Agent de réticulation Desmodur® N 3300 2,01 2,01 2,01 2,01 2,01 2,01 2,01 Plastifiants BTTN/TMETN 20,7 20,7 19,7 20,7 19,7 19,7 19,7 Agents de stabilisation du MNA/2-NDPA 0,8 0,8 0,8 0,8 0,8 0,8 0,8 plastifiant (additif) Charges Charges énergétiques organiques RDX 64 63 62,5 63 62 62 62 « Additif » de Catalyseur de combustion Citrate de Pb 1 3,5 combustion Citrate de Bi 1 4 Sous salicylate de Bi 4 Carbonate de Bi 4 Autre additif Auxiliaires de fabrication 1,86 1,86 1,86 1,86 1,86 1,86 1,86 On a donc préparé des produits pyrotechniques composites (propergols) présentant les compositions massiques données dans le tableau 1 ci-dessus. A cette fin, le procédé précisé ci-dessous (voir le paragraphe ci-après intitulé « préparation ») a été mis en oeuvre. On s'est intéressé à la vie de pot des pâtes de propergol (intermédiaires) préparées. Ladite vie de pot a été déterminée en mettant en oeuvre les mesures de viscosité comme indiqué ci-dessous (voir le paragraphe ci-après intitulé « détermination de la vie de pot »). Les résultats figurent dans la première partie du tableau 2 ci-après. Ledit Tableau 2 renferme également, dans sa seconde partie, des résultats de vitesse de combustion mesurées à différentes pressions, sur les propergols finalement obtenus.The same products were obviously used for all the examples. As regards RDX charges, they consisted of 68 ° A) by mass of an RDX of a particle size class 0 - 100 μm and at 32 ° A) by mass of an RDX of a particle size class 2 , 5 - 5 pm. Table 1 Propellants (° / 0 by mass) Ref.1 Ref.2 Examples Comparative examples Ingredients (° / 0 by mass) A B1 B2 Ex.1 Ex.2 C1 C2 Plasticized binder Energy polymer PAG 10,63 10,63 9.63 10.63 9.63 9.63 9.63 Desmodur® N 3300 Crosslinking Agent 2.01 2.01 2.01 2.01 2.01 2.01 2.01 BTTN / TMETN 20.7 Plasticizers 20.7 19.7 20.7 19.7 19.7 19.7 MNA / 2-NDPA stabilizers 0.8 0.8 0.8 0.8 0.8 0.8 0.8 plasticizer ( additive) Charges RDX organic energy charges 64 63 62.5 63 62 62 62 Combustion catalyst additive Pb Citrate 1 3.5 combustion Bi citrate 4 Bi 4 Bi 4-salicylate Bi 4 -carbonate Other additive Auxiliaries of manufacture 1.86 1.86 1.86 1.86 1.86 1.86 1.86 Composite pyrotechnic products (propellants) having the mass compositions given in Table 1 above were therefore prepared. For this purpose, the process specified below (see the paragraph below entitled "preparation") has been implemented. There was interest in the pot life of propellant pastes (middlings) prepared. Said pot life was determined by carrying out the viscosity measurements as indicated below (see the paragraph below titled "determining the pot life"). The results appear in the first part of Table 2 below. Said Table 2 also contains, in its second part, combustion rate results measured at different pressures, on the finally obtained propellants.

Préparation Dans un malaxeur, on a introduit le (polymère précurseur du liant = le) polyazoture de glycidyl (PAG) puis les plastifiants (BTTN/TMETN) et les agents de stabilisation (MNA/2-NDPA) desdits plastifiants. Le mélange a été malaxé durant 15 min à une température de 40°C. On a ensuite ajouté audit mélange, sous agitation, les charges énergétiques organiques (RDX), par portion, puis les additifs (autres que les agent et catalyseur de réticulation (Desmodur® N 3300 et DBTL)) et le catalyseur de combustion. L'agitation a alors été poursuivie pendant 2 h 30, toujours à la température de 40°C et sous un vide de 10 mm de Hg (qui a permis le dégazage du milieu), pour l'obtention d'une pâte homogène. Le catalyseur de réticulation (DBTL (55 ppm)) a alors été ajouté à ladite pâte homogène et le milieu a encore été agité 30 min avant l'addition de l'agent de réticulation du liant. Ledit agent de réticulation (Desmodur® N 3300) a enfin été ajouté et le milieu a encore été agité 15 min (toujours à 40°C et sous vide). On a ainsi préparé des lots de 2 kg de pâte de propergol.Preparation In a kneader, the (precursor polymer of the binder = the) glycidyl polyazide (PAG) was introduced then the plasticizers (BTTN / TMETN) and the stabilizing agents (MNA / 2-NDPA) of said plasticizers. The mixture was kneaded for 15 minutes at a temperature of 40 ° C. The organic energy charges (RDX), per portion, were then added to the mixture while stirring, followed by the additives (other than the crosslinking agent and catalyst (Desmodur® N 3300 and DBTL)) and the combustion catalyst. Stirring was then continued for 2 h 30, still at the temperature of 40 ° C and under a vacuum of 10 mm Hg (which allowed the degassing of the medium), to obtain a homogeneous paste. The crosslinking catalyst (DBTL (55 ppm)) was then added to said homogeneous paste and the medium was further stirred 30 min before addition of the binder crosslinking agent. Said crosslinking agent (Desmodur® N 3300) was finally added and the medium was stirred for 15 minutes (still at 40 ° C. and under vacuum). Thus, batches of 2 kg of propellant paste were prepared.

On a prélevé un échantillon de chacune des pâtes de propergol ainsi préparées pour la détermination de la vie de pot. Le reste de chacune des pâtes de propergol préparées a alors été coulé dans une structure adaptée puis soumis au traitement thermique ci-après : cuisson pendant 75 heures à une température de 50°C.A sample of each of the propellant pastes thus prepared was taken for pot life determination. The remainder of each of the prepared propellant pastes was then poured into a suitable structure and then subjected to the following heat treatment: baking for 75 hours at a temperature of 50 ° C.

Détermination de la vie de pot des pâtes La vie de pot a été déterminée par la mesure de la viscosité de la pâte de propergol en cause (renfermant l'agent de réticulation et le catalyseur de réticulation) au cours du temps, au moyen d'un viscosimètre Brookfield (avec le corps n°3 (mobile C) mis en rotation à 1 tour/min), à une température de 40°C. On a relevé le temps pour lequel la viscosité a atteint 15 kPo, afin de déterminer si le propergol répondait au critère d'industrialisation, c'est-à-dire si ledit temps relevé était supérieur à 15 h. 20 Tableau 2 Réf.1 Réf.2 Invention Exemples comparatifs A B1 B2 Ex.1 Ex.2 Cl C2 Catalyseur de / Citrate de plomb Citrate de bismuth Sous salicylate de Carbonate de combustion bismuth bismuth °h en masse 0 1 3,5 1 4 4 4 Durée pour atteindre une viscosité de pâte k 15 kPo à 40°C > 24 h > 24 h > 24 h > 24 h > 16 h < 1 h < 1 h Propriétés balistiques Pression (MPa) Vitesse de combustion (mm/s) 7 6,6 9,5 15,6 8,9 12,7 10 8,8 11,7 16,4 11,3 14,8 13 11,1 14,0 17,9 13,6 16,2 18 15,3 17,6 20,4 17,5 18,4 302 759 7 21 On propose les commentaires ci-après au sujet des résultats du tableau 2. Vie de pot 5 Comme attendu, les pâtes des propergols de référence, sans catalyseur balistique (exemple A) ou contenant du citrate de plomb comme catalyseur balistique (exemples B1 et B2) ont atteint la valeur (de viscosité) de 15 kPo au-delà de 24 h, répondant donc au critère de coulabilité industrielle. 10 La pâte de propergol de l'exemple 1 (selon l'invention) incorporant du citrate de bismuth à un taux massique de 1% a présenté des propriétés de coulabilité équivalentes à celles des propergols de référence A (sans catalyseur balistique) et B1 (renfermant 1% massique de citrate de Pb). 15 L'exemple 2 (selon l'invention) montre que, même à un taux massique élevé (4 °/0) de citrate de bismuth, la pâte de propergol a conservé une viscosité inférieure ou égale à 15 kPo au moins pendant 16 h, ce qui est au-delà du temps minimal de 15 h (requis pour assurer industriellement les opérations de coulée de la pâte). 20 La viscosité des pâtes des propergols des exemples comparatifs Cl et C2 a dépassé la valeur maximale de viscosité acceptable (15 kPo) en moins d'une heure (ce qui est bien en deçà des 15 h requises). Ceci démontre la sélection particulièrement pertinente du couple PAG/citrate de bismuth, selon l'invention.Determination of Pot Life of Pasta The pot life was determined by measuring the viscosity of the propellant paste in question (containing the crosslinking agent and the crosslinking catalyst) over time, by means of a Brookfield viscometer (with body No. 3 (mobile C) rotated at 1 rpm) at a temperature of 40 ° C. The time for which the viscosity reached 15 kPo was recorded to determine if the propellant met the industrialization criterion, i.e., if the said time was greater than 15 hours. Table 2 Ref.1 Ref.2 Invention Comparative Examples A B1 B2 Ex.1 Ex.2 Cl C2 Catalyst of / Lead citrate Bismuth citrate With bismuth bismuth combustion carbonate salicylate ° h en masse 0 1 3.5 1 4 4 4 Time to reach a paste viscosity k 15 kPo at 40 ° C> 24 h> 24 h> 24 h> 24 h> 16 h <1 h <1 h Ballistic properties Pressure (MPa) Burning rate (mm / s) 7 6.6 9.5 15.6 8.9 12.7 10 8.8 11.7 16.4 11.3 14.8 13 11.1 14.0 17.9 13.6 16.2 18 15.3 17.6 20.4 17.5 18.4 302 759 7 21 The following comments are proposed with respect to the results in Table 2. Pot Life 5 As expected, reference propellant pastes without Ballistic catalyst (Example A) or containing lead citrate as a ballistic catalyst (Examples B1 and B2) reached the (viscosity) value of 15 kPo beyond 24 hours, thus meeting the industrial flowability criterion. The propellant paste of Example 1 (according to the invention) incorporating bismuth citrate at a mass ratio of 1% showed flowability properties equivalent to those of the reference propellants A (without ballistic catalyst) and B1 ( containing 1% by weight of Pb citrate). Example 2 (according to the invention) shows that, even at a high mass (4%) of bismuth citrate, the propellant paste maintained a viscosity of at least 15 kPo for at least 16 hours. , which is beyond the minimum time of 15 hours (required to ensure industrially the operations of casting the dough). The viscosity of the propellant pastes of Comparative Examples C1 and C2 exceeded the maximum acceptable viscosity value (15 kPo) in less than one hour (which is well below the required 15 hours). This demonstrates the particularly relevant selection of the pair PAG / bismuth citrate, according to the invention.

Vitesses de combustion Le tableau 2 montre aussi que le catalyseur balistique (catalyseur de combustion), citrate de bismuth, confère aux propergols selon l'invention des vitesses de combustion, en fonction de la pression, très supérieures à celles du propergol A de référence (sans catalyseur balistique dans sa composition), et proches de celles des propergols Bl. et B2 comprenant, dans leur composition, du citrate de plomb (produit toxique) en tant que catalyseur de combustion.Combustion Speeds Table 2 also shows that the ballistic catalyst (combustion catalyst), bismuth citrate, gives the propellants according to the invention combustion rates, as a function of pressure, much higher than those of the reference propellant A ( without a ballistic catalyst in its composition), and close to those of propellants B1 and B2 comprising, in their composition, lead citrate (toxic product) as a combustion catalyst.

Claims (9)

REVENDICATIONS1. Produit pyrotechnique composite renfermant, dans un liant plastifié, comprenant un polymère énergétique réticulé et au moins un 5 plastifiant énergétique, des charges énergétiques organiques et un catalyseur de combustion, caractérisé en ce que : - ledit polymère énergétique réticulé consiste en un polyazoture de glycidyle (PAG), ayant une masse moléculaire moyenne en nombre (Mn) comprise entre 700 et 3000 g/mol, réticulé, via ses fonctions 10 terminales hydroxyles, avec au moins un agent de réticulation de type polyisocyanate ; et - ledit catalyseur de combustion consiste en le citrate de bismuth. 15REVENDICATIONS1. Composite pyrotechnic product comprising, in a plasticized binder, comprising a crosslinked energy polymer and at least one energetic plasticizer, organic energy charges and a combustion catalyst, characterized in that: said crosslinked energy polymer consists of a glycidyl polyazide ( PAG), having a number-average molecular weight (Mn) of between 700 and 3000 g / mol, crosslinked, via its hydroxyl terminal functions, with at least one polyisocyanate crosslinking agent; and said combustion catalyst consists of bismuth citrate. 15 2. Produit pyrotechnique composite selon la revendication 1, caractérisé en ce que ledit polyazoture de glycidyle (PAG) a une masse moléculaire en nombre (Mn) comprise entre 1700 et 2300 g/mol.2. Composite pyrotechnic product according to claim 1, characterized in that said glycidyl polyazide (PAG) has a number-average molecular weight (Mn) of between 1700 and 2300 g / mol. 3. Produit pyrotechnique composite selon la revendication 1 ou 2, 20 caractérisé en ce que ledit au moins un plastifiant énergétique est de type nitrate et/ou nitrarnine.3. Composite pyrotechnic product according to claim 1 or 2, characterized in that said at least one energetic plasticizer is of the nitrate and / or nitramine type. 4. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdites charges énergétiques 25 organiques sont choisies parmi les charges d'hexogène, d'octogène, d'hexanitrohexaazaisowurtzitane, de nitroguanidine, d'éthylène dinitramine, de dinitramide de N-guanylurée, de 1,1-diamino-2,2-dinitro éthylène, de 5,5'-azotétrazolate de bis(triaminoguanidinium), de 5,5'- azotétrazolate de dihydrazinium, de 5,5'-bis(tétrazolyphydrazine, de 302 759 7 24 bis(2,2-dinitropropyl) nitramine, d'un nitropyrazole et les mélanges de telles charges.4. Composite pyrotechnic product according to any one of claims 1 to 3, characterized in that said organic energy charges are chosen from charges of hexogen, octogen, hexanitrohexaazaisowurtzitane, nitroguanidine, ethylene dinitramine, N-guanylurea dinitramide, 1,1-diamino-2,2-dinitro ethylene, bis (triaminoguanidinium) 5,5'-azotetrazolate, 5,5'-dihydrazinium 5,5'-azotetrazolate, bis (tetrazolyphydrazine, bis (2,2-dinitropropyl) nitramine, a nitropyrazole and mixtures of such fillers. 5. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il renferme de 1 à 6 °A) en masse, avantageusement de 3 à 5 % en masse, dudit citrate de bismuth.5. composite pyrotechnic product according to any one of claims 1 to 4, characterized in that it contains 1 to 6 ° A) by weight, preferably 3 to 5% by weight, said citrate bismuth. 6. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il renferme en outre au moins un additif.6. composite pyrotechnic product according to any one of claims 1 to 5, characterized in that it further contains at least one additive. 7. Produit pyrotechnique composite selon la revendication 6, caractérisé en ce ledit au moins un additif comprend au moins un catalyseur de réticulation et/ou au moins un agent de stabilisation du au moins un plastifiant énergétique.7. Composite pyrotechnic product according to claim 6, characterized in that said at least one additive comprises at least one crosslinking catalyst and / or at least one stabilizing agent of the at least one energetic plasticizer. 8. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 7, caractérisé en ce que sa composition, exprimée en pourcentages massiques, renferme : - de 50 à 70 °/0, avantageusement de 55 à 65 °A), desdites charges énergétique organiques, - de 10 à 14 % dudit polymère énergétique réticulé, - de 10 à 30 °A), avantageusement de 15 à 25 °A), dudit au moins un plastifiant énergétique, - de 1 à 6 °/0, avantageusement de 3 à 5 °/0, dudit citrate de bismuth, et - de 0 à 4 °/0, avantageusement de 0,1 à 4 Vo, d'au moins un additif.8. composite pyrotechnic product according to any one of claims 1 to 7, characterized in that its composition, expressed in percentages by weight, contains: - from 50 to 70 ° / 0, preferably from 55 to 65 ° A), said charges 10 to 14% of said crosslinked energy polymer, from 10 to 30 ° A, advantageously from 15 to 25 ° A), of said at least one energetic plasticizer, from 1 to 6 ° / 0, advantageously from 3 to 5%, of said bismuth citrate, and 0 to 4%, advantageously 0.1 to 4%, of at least one additive. 9. Procédé de préparation d'un produit pyrotechnique composite selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend : - la constitution d'une pâte homogène par a) incorporation, à une température comprise entre 35 et 55°C, dans ledit polyazoture de glycidyle, dudit au moins un plastifiant énergétique, des charges énergétiques organiques et des autres ingrédients constitutifs du produit pyrotechnique composite recherché à l'exception d'un quelconque agent de réticulation et d'un quelconque catalyseur de réticulation, et b) agitation du mélange résultant, sous vide partiel, à une température comprise entre 35 et 55°C; - sous vide partiel, à une température comprise entre 35 et 55°C, l'incorporation, dans ladite pâte homogène constituée, dudit au moins un agent de réticulation et éventuellement d'au moins un catalyseur de réticulation, suivie d'une agitation du mélange constitué ; - la coulée dudit mélange constitué agité dans au moins une structure ; et - le traitement thermique dudit mélange constitué agité coulé 20 dans ladite au moins une structure.9. A process for preparing a composite pyrotechnic product according to any one of claims 1 to 8, characterized in that it comprises: - the constitution of a homogeneous paste by a) incorporation, at a temperature between 35 and 55 ° C, in said glycidyl polyazide, of said at least one energetic plasticizer, organic energy charges and other ingredients constituting the desired composite pyrotechnic product with the exception of any crosslinking agent and any crosslinking catalyst and b) stirring the resulting mixture, under partial vacuum, at a temperature between 35 and 55 ° C; under partial vacuum, at a temperature of between 35 ° and 55 ° C., the incorporation, in said homogeneous paste constituted by said at least one crosslinking agent and optionally of at least one crosslinking catalyst, followed by stirring of the compound mixture; pouring said stirred mixture into at least one structure; and - heat treating said stirred formed blend mixture in said at least one structure.
FR1402431A 2014-10-28 2014-10-28 PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION Active FR3027597B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FR1402431A FR3027597B1 (en) 2014-10-28 2014-10-28 PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION
EP15808698.3A EP3212594B1 (en) 2014-10-28 2015-10-27 Efficient composite pyrotechnic product with no lead in the composition thereof and preparation of same
PCT/FR2015/052888 WO2016066945A1 (en) 2014-10-28 2015-10-27 Efficient composite pyrotechnic product with no pb in the composition thereof and preparation of same
US15/522,608 US20180290945A1 (en) 2014-10-28 2015-10-27 HIGH PERFORMANCE COMPOSITE PYROTECHNIC PRODUCT WITHOUT Pb IN ITS COMPOSITION, AND PREPARATION THEREOF
PL15808698T PL3212594T3 (en) 2014-10-28 2015-10-27 Efficient composite pyrotechnic product with no lead in the composition thereof and preparation of same
JP2017522927A JP6510640B2 (en) 2014-10-28 2015-10-27 High performance composite pyrotechnic product containing no lead in its composition and method for producing the same
KR1020177014380A KR102621576B1 (en) 2014-10-28 2015-10-27 A HIGH PERFORMANCE COMPOSITE PYROTECHNIC PRODUCT WITHOUT Pb IN ITS COMPOSITION, AND PREPARATION THEREOF
IL251766A IL251766B (en) 2014-10-28 2017-04-18 A high performance composite pyrotechnic product without pb in its composition, and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1402431A FR3027597B1 (en) 2014-10-28 2014-10-28 PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION

Publications (2)

Publication Number Publication Date
FR3027597A1 true FR3027597A1 (en) 2016-04-29
FR3027597B1 FR3027597B1 (en) 2016-12-09

Family

ID=52684268

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1402431A Active FR3027597B1 (en) 2014-10-28 2014-10-28 PERFORMANT COMPOSITE PYROTECHNIC PRODUCT WITHOUT PB IN ITS COMPOSITION AND PREPARATION

Country Status (8)

Country Link
US (1) US20180290945A1 (en)
EP (1) EP3212594B1 (en)
JP (1) JP6510640B2 (en)
KR (1) KR102621576B1 (en)
FR (1) FR3027597B1 (en)
IL (1) IL251766B (en)
PL (1) PL3212594T3 (en)
WO (1) WO2016066945A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055312A1 (en) * 2016-09-26 2018-03-29 Arianegroup Sas Composite pyrotechnic product containing an anti-gleam agent of potassium salt type
FR3090629A1 (en) * 2018-12-20 2020-06-26 Arianegroup Sas Process for the preparation of composite pyrotechnic products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096680B1 (en) 2019-06-03 2021-09-24 Arianegroup Sas composite pyrotechnic product
CN112500253B (en) * 2020-12-02 2022-04-12 湖北航天化学技术研究所 Temperature-sensitive time-varying high-energy solid propellant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268450A (en) * 1977-08-08 1981-05-19 Rockwell International Corporation Energetic hydroxy-terminated azido polymer
EP0404651A1 (en) * 1989-06-21 1990-12-27 S.N.C. Livbag Solid gas-generating composition and its application in gas generators for inflatable safety bags in motor vehicles
FR2727401A1 (en) * 1994-11-29 1996-05-31 Poudres & Explosifs Ste Nale COMPOSITIONS MODIFYING BALLISTIC PROPERTIES AND PROPERGOLS CONTAINING SUCH COMPOSITIONS
US6168677B1 (en) * 1999-09-02 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers
US6183574B1 (en) * 1999-09-02 2001-02-06 The United States Of America As Represented By The Secretary Of The Army Processing procedure for isocyanate cured propellants containing some bismuth compounds
EP1186582A1 (en) * 2000-09-08 2002-03-13 Her Majesty in Right of Canada, as represented by the Minister of National Defence Insensitive propellant formulations containing energetic copolyurethane thermoplastic elastomers
US8795451B2 (en) * 2010-05-18 2014-08-05 Diehl Bgt Defence Gmbh & Co. Kg Propellant and process for producing a propellant
GB2512346A (en) * 2013-03-27 2014-10-01 Bae Systems Plc Non-phthalate propellants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248791A (en) * 1987-04-06 1988-10-17 日本油脂株式会社 High energy binder type composite solid propellant
JPH075425B2 (en) * 1989-10-06 1995-01-25 防衛庁技術研究本部長 Gas generating composition
JPH07165483A (en) * 1993-12-13 1995-06-27 Daicel Chem Ind Ltd Gas generating composition
CA2351002C (en) * 2000-06-27 2009-04-07 The Minister Of National Defence Insensitive melt cast explosive compositions containing energetic thermoplastic elastomers
DE202004009449U1 (en) * 2004-06-15 2004-10-28 Trw Airbag Systems Gmbh Gas generating composition
US8172965B2 (en) * 2009-10-14 2012-05-08 Raytheon Company Explosive compositions and methods for fabricating explosive compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268450A (en) * 1977-08-08 1981-05-19 Rockwell International Corporation Energetic hydroxy-terminated azido polymer
EP0404651A1 (en) * 1989-06-21 1990-12-27 S.N.C. Livbag Solid gas-generating composition and its application in gas generators for inflatable safety bags in motor vehicles
FR2727401A1 (en) * 1994-11-29 1996-05-31 Poudres & Explosifs Ste Nale COMPOSITIONS MODIFYING BALLISTIC PROPERTIES AND PROPERGOLS CONTAINING SUCH COMPOSITIONS
US6168677B1 (en) * 1999-09-02 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers
US6183574B1 (en) * 1999-09-02 2001-02-06 The United States Of America As Represented By The Secretary Of The Army Processing procedure for isocyanate cured propellants containing some bismuth compounds
EP1186582A1 (en) * 2000-09-08 2002-03-13 Her Majesty in Right of Canada, as represented by the Minister of National Defence Insensitive propellant formulations containing energetic copolyurethane thermoplastic elastomers
US8795451B2 (en) * 2010-05-18 2014-08-05 Diehl Bgt Defence Gmbh & Co. Kg Propellant and process for producing a propellant
GB2512346A (en) * 2013-03-27 2014-10-01 Bae Systems Plc Non-phthalate propellants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055312A1 (en) * 2016-09-26 2018-03-29 Arianegroup Sas Composite pyrotechnic product containing an anti-gleam agent of potassium salt type
FR3056583A1 (en) * 2016-09-26 2018-03-30 Airbus Safran Launchers Sas COMPOSITE PYROTECHNIC PRODUCT COMPRISING A POTASSIUM SALT-TYPE ANTI-LIGHT AGENT
FR3090629A1 (en) * 2018-12-20 2020-06-26 Arianegroup Sas Process for the preparation of composite pyrotechnic products

Also Published As

Publication number Publication date
JP6510640B2 (en) 2019-05-08
KR20170101897A (en) 2017-09-06
KR102621576B1 (en) 2024-01-05
IL251766A0 (en) 2017-06-29
FR3027597B1 (en) 2016-12-09
JP2017538648A (en) 2017-12-28
WO2016066945A1 (en) 2016-05-06
PL3212594T3 (en) 2019-01-31
IL251766B (en) 2020-04-30
EP3212594B1 (en) 2018-07-18
EP3212594A1 (en) 2017-09-06
US20180290945A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
EP3212594B1 (en) Efficient composite pyrotechnic product with no lead in the composition thereof and preparation of same
EP1790626B1 (en) Semicontiunuous process for making an explosive composite charge having a polyurethane matrix by using two components
CA2418319C (en) Semi-continuous bicomposite process for obtaining a composite explosive charge with a polyurethane matrix
EP3212593B1 (en) Composite pyrotechnic product with adn and rdx charges in a gpa binder and preparation of same
EP3812356A1 (en) Composite solid propellant
EP3515881B1 (en) Composite pyrotechnic product containing an anti-gleam agent of potassium salt type
EP3753916B1 (en) Composite pyrotechnical product
EP3071537B1 (en) Composite pyrotechnical product with non-crosslinked binder and method for preparing same
EP3071536B1 (en) Composite pyrotechnical product with crosslinked binder and method for preparing same
FR3090629A1 (en) Process for the preparation of composite pyrotechnic products
FR3088929A1 (en) Process for the preparation of composite pyrotechnic products
EP1364931B1 (en) Gun propellant powders of high power and reduced erosive action
WO2024062190A1 (en) Composite propellant with reduced combustion rate
EP0124398B1 (en) Compressed propellant charge for munition and process for its manufacture
FR2501194A1 (en) Solid explosive desensitised with phlegmatising agent - contg. functional gps. which are reactive to binder ingredients
FR3005657A1 (en) NON-SMOKE PROPELLANT COMPOSITION CONTAINING A BISMUTH COMPOUND AND PROCESS FOR PREPARING THE SAME
FR3051188A1 (en) EXPLOSIVE COMPOSITE WITH SLOW DETONATION SPEED AND PLANE OR LINEAR WAVE GENERATOR INCLUDING
JP2002284595A (en) High-performance bursting charge composition
FR2751323A1 (en) MOLDING PROCESS FOR MAKING A DOUBLE BASE PROPERGOL BLOCK WITH A HIGH RATE OF NITRAMINE AND PROPERGOL BLOCK OBTAINED BY THIS PROCESS

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160429

CL Concession to grant licences

Name of requester: L'ETAT FRANCAIS, MINISTERE DE LA DEFENSE, FR

Effective date: 20160708

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

CD Change of name or company name

Owner name: ARIANEGROUP SAS, FR

Effective date: 20180724

TP Transmission of property

Owner name: ARIANEGROUP SAS, FR

Effective date: 20180724

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10