FR3027341A1 - ROTARY ASSEMBLY FOR TURBOMACHINE COMPRISING A SELF-RACKED ROTOR VIROLE - Google Patents

ROTARY ASSEMBLY FOR TURBOMACHINE COMPRISING A SELF-RACKED ROTOR VIROLE Download PDF

Info

Publication number
FR3027341A1
FR3027341A1 FR1459889A FR1459889A FR3027341A1 FR 3027341 A1 FR3027341 A1 FR 3027341A1 FR 1459889 A FR1459889 A FR 1459889A FR 1459889 A FR1459889 A FR 1459889A FR 3027341 A1 FR3027341 A1 FR 3027341A1
Authority
FR
France
Prior art keywords
rotor
rotary assembly
shell
stage
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1459889A
Other languages
French (fr)
Other versions
FR3027341B1 (en
Inventor
Gael Frederic Claude Cyrille Evain
Pierre-Louis Alexandre Carlos
Claire Charlotte Groleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1459889A priority Critical patent/FR3027341B1/en
Application filed by SNECMA SAS filed Critical SNECMA SAS
Priority to CA2966126A priority patent/CA2966126C/en
Priority to US15/519,351 priority patent/US20170226861A1/en
Priority to CN201580062098.6A priority patent/CN107002690B/en
Priority to RU2017115405A priority patent/RU2712560C2/en
Priority to BR112017007761-2A priority patent/BR112017007761B1/en
Priority to PCT/FR2015/052776 priority patent/WO2016059348A1/en
Priority to EP15804160.8A priority patent/EP3207221B1/en
Publication of FR3027341A1 publication Critical patent/FR3027341A1/en
Application granted granted Critical
Publication of FR3027341B1 publication Critical patent/FR3027341B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Le présent exposé concerne un ensemble rotatif pour turbomachine permettant un meilleur contrôle du jeu radial entre deux pièces coaxiales. Il comprend un rotor comportant au moins deux étages rotoriques consécutifs (10a, 10b) munis d'une pluralité d'aubes mobiles (20), et une virole de rotor (50), annulaire, reliant lesdits deux étages rotoriques consécutifs (10a, 10b); un stator comportant au moins un étage statorique (11), muni d'une pluralité d'aubes fixes (30), prévu entre lesdits deux étages rotoriques consécutifs (10a, 10b), et un anneau de stator (60), annulaire, monté sur lesdites aubes fixes (30) ; l'un (50) des éléments parmi la virole de rotor et l'anneau de stator porte au moins une léchette (51) configurée pour coopérer avec une piste abradable (62) portée par l'autre (60) desdits éléments ; la virole de rotor (50) comporte, à chacune de ses extrémités amont et aval, soit une portion de contact du type axial (52, 53) s'étendant au-dessous d'une butée (71, 72) de l'étage rotorique correspondant, soit une portion de contact du type oblique reposant sur une surface d'appui oblique de l'étage rotorique correspondant.The present disclosure relates to a rotary assembly for a turbomachine allowing better control of the radial clearance between two coaxial parts. It comprises a rotor comprising at least two consecutive rotor stages (10a, 10b) provided with a plurality of moving blades (20), and an annular rotor shell (50) connecting said two consecutive rotor stages (10a, 10b). ); a stator comprising at least one stator stage (11), provided with a plurality of fixed blades (30), provided between said two consecutive rotor stages (10a, 10b), and an annular stator ring (60) mounted on said vanes (30); one (50) of the rotor ferrule and the stator ring carries at least one wiper (51) configured to cooperate with an abradable track (62) carried by the other (60) of said elements; the rotor shell (50) has, at each of its upstream and downstream ends, either an axial-type contact portion (52, 53) extending below a stop (71, 72) of the stage corresponding rotor, or an oblique type of contact portion resting on an oblique bearing surface of the corresponding rotor stage.

Description

DOMAINE DE L'INVENTION Le présent exposé concerne un ensemble rotatif pour turbomachine, de préférence du type turbine, permettant un meilleur contrôle du jeu radial entre deux pièces coaxiales. Le présent exposé s'intéresse principalement au domaine des turboréacteurs d'avion mais peut s'appliquer de manière générale à tout type de turbomachine, dans le domaine aéronautique ou non. ETAT DE LA TECHNIQUE ANTERIEURE Dans une turbine de turbomachine, le rotor est entrainé par l'air de la veine qui se détend au niveau des aubes rotoriques, cédant à cette occasion une partie de son énergie à ces dernières. Toutefois, on constate fréquemment qu'une part de l'air de veine, généralement appelée « bypass », contourne les plates-formes internes et externes des aubages 15 et ne se détend donc pas au niveau des aubages, ce qui réduit les performances de la turbine. Afin de limiter cette circulation d'air inefficace qui contourne les aubes, les têtes des aubes mobiles du rotor sont généralement équipées de léchettes adaptées pour entailler une piste de matériau abradable 20 portée par le stator, assurant ainsi l'étanchéité de la veine en tête des aubes mobiles. Un dispositif analogue est prévu pour les aubes fixes (ou distributeurs) : une virole dite « labyrinthe » est en effet prévue entre deux roues d'aubes mobiles et porte des léchettes adaptées pour entailler une piste de matériau abradable portée par le pied des aubes fixes, 25 assurant ainsi l'étanchéité de la veine au pied des aubes fixes. Toutefois, pour que ce système soit efficace, il est important de minimiser les jeux radiaux séparant les léchettes des pistes abradables. Or, une température élevée et hétérogène régnant dans la turbine, des phénomènes de dilatation différentielle de certains éléments peuvent 30 survenir et modifier les jeux entre certaines pièces, en particulier entre certaines pièces réalisées dans des matériaux différents ou situées plus ou moins à proximité de la veine d'air et donc soumises à des températures plus ou moins élevées. Par exemple, le déplacement radial de la virole labyrinthe est inférieur à celui des aubes fixes : dès lors, on observe une 35 augmentation du jeu séparant les léchettes portées par la virole labyrinthe de la piste abradable portée par les aubes fixes, et donc une augmentation de la circulation de contournement et une réduction des performances de la turbine. Pour résoudre ce problème et rectifier ces jeux en fonctionnement, un système de vannes permet aujourd'hui de faire circuler de l'air froid le long de la paroi extérieure du carter de turbine afin de refroidir ce dernier et donc de contrôler sa dilatation, ce qui influe sur les jeux radiaux, les aubes fixes étant fixées sur ce carter. Toutefois, un tel système a l'inconvénient de prélever un débit important d'air frais qui ne peut alors servir à d'autres équipements de la turbomachine.FIELD OF THE INVENTION The present disclosure relates to a rotary assembly for a turbomachine, preferably of the turbine type, allowing better control of the radial clearance between two coaxial parts. This presentation is mainly concerned with the field of aircraft turbojet engines but can generally be applied to any type of turbomachine, in the aeronautical field or not. STATE OF THE PRIOR ART In a turbomachine turbine, the rotor is driven by the air of the vein which relaxes at the rotor blades, yielding on this occasion a portion of its energy to the latter. However, it is frequently observed that a part of the air of vein, generally called "bypass", bypasses the internal and external platforms of the blades 15 and does not therefore relax at the level of the blades, which reduces the performance of the turbine. In order to limit this inefficient air circulation which bypasses the blades, the heads of the rotor blades are generally equipped with wipers adapted to cut a track of abradable material carried by the stator, thereby sealing the vein at the head. moving blades. A similar device is provided for the blades (or distributors): a ferrule called "labyrinth" is indeed provided between two wheels of blades and carries wipers adapted to cut a track of abradable material carried by the base of the blades blades , 25 thus ensuring the tightness of the vein at the base of the blades. However, for this system to be effective, it is important to minimize the radial clearances between licks and abradable tracks. However, a high and heterogeneous temperature prevailing in the turbine, differential expansion phenomena of certain elements can occur and change the clearances between certain parts, in particular between certain parts made in different materials or located more or less close to the vein of air and therefore subjected to higher or lower temperatures. For example, the radial displacement of the labyrinth ferrule is less than that of the vanes: therefore, there is an increase in the clearance between the wipers carried by the labyrinth ferrule of the abradable track carried by the vanes, and therefore an increase bypass circulation and reduced turbine performance. To solve this problem and rectify these games in operation, a valve system now allows to circulate cold air along the outer wall of the turbine housing to cool the latter and thus control its expansion, this which affects the radial clearances, the vanes being fixed on this housing. However, such a system has the drawback of taking a large flow of fresh air that can not then be used for other equipment of the turbomachine.

Un autre inconvénient des turbines actuelles réside dans le fait que la dilatation différentielle apparaissant entre la virole labyrinthe, ou l'anneau portant la piste abradable, et les organes sur lesquels ils sont montés engendre des contraintes mécaniques importantes à l'interface entre ces pièces, entraînant leur endommagement précoce et donc une réduction de leur durée de vie. Il existe donc un réel besoin pour un ensemble rotatif pour turbomachine qui soit dépourvu, au moins en partie, des inconvénients inhérents aux configurations connues précitées.Another disadvantage of current turbines lies in the fact that the differential expansion occurring between the labyrinth shell, or the ring carrying the abradable track, and the bodies on which they are mounted generates significant mechanical stresses at the interface between these parts, causing their early damage and therefore a reduction in their life. There is therefore a real need for a rotary assembly for a turbomachine which is devoid, at least in part, of the drawbacks inherent in the aforementioned known configurations.

PRESENTATION DE L'INVENTION Le présent exposé concerne un ensemble rotatif pour turbomachine, du type turbine ou compresseur, comprenant un rotor comportant au moins deux étages rotoriques consécutifs munis d'une pluralité d'aubes mobiles, et une virole de rotor, annulaire, reliant lesdits deux étages rotoriques consécutifs ; un stator comportant au moins un étage statorique, muni d'une pluralité d'aubes fixes, prévu entre lesdits deux étages rotoriques consécutifs, et un anneau de stator, annulaire, monté sur lesdites aubes fixes ; dans lequel l'un des éléments parmi la virole de rotor et l'anneau de stator porte au moins une léchette configurée pour coopérer avec une piste abradable portée par l'autre desdits éléments ; la virole de rotor comporte, à chacune de ses extrémités amont et aval, soit une portion de contact du type axial s'étendant au-dessous d'une butée de l'étage rotorique correspondant, soit une portion de contact du type oblique reposant sur une surface d'appui oblique de l'étage rotorique correspondant.PRESENTATION OF THE INVENTION The present disclosure relates to a rotary assembly for a turbomachine, of the turbine or compressor type, comprising a rotor comprising at least two consecutive rotor stages provided with a plurality of moving blades, and a rotor shell, annular, connecting said two consecutive rotor stages; a stator comprising at least one stator stage, provided with a plurality of fixed vanes, provided between said two consecutive rotor stages, and an annular stator ring mounted on said fixed vanes; wherein one of the rotor ferrule and the stator ring carries at least one wiper configured to cooperate with an abradable track carried by the other of said elements; the rotor shell comprises, at each of its upstream and downstream ends, either an axial-type contact portion extending below an abutment of the corresponding rotor stage, or an oblique-type contact portion resting on an oblique bearing surface of the corresponding rotor stage.

Dans le présent exposé, les termes « longitudinal », « transversal », « inférieur », « supérieur », « sous », « sur », et leurs dérivés sont définis par rapport à la direction principale des aubes ; les termes « axial », « radial », « tangentiel », « intérieur », « extérieur » et leurs dérivés sont quant à eux définis par rapport à l'axe principal de la turbomachine ; on entend par « plan axial » un plan passant par l'axe principal de la turbomachine et par « plan radial » un plan perpendiculaire à cet axe principal ; enfin, les termes « amont » et « aval » sont définis par rapport à la circulation de l'air dans la turbomachine.In this disclosure, the terms "longitudinal", "transversal", "lower", "superior", "under", "on", and their derivatives are defined relative to the main direction of the blades; the terms "axial", "radial", "tangential", "interior", "outside" and their derivatives are themselves defined with respect to the main axis of the turbomachine; the term "axial plane" a plane passing through the main axis of the turbomachine and "radial plane" a plane perpendicular to this main axis; finally, the terms "upstream" and "downstream" are defined with respect to the flow of air in the turbomachine.

Dans un tel ensemble rotatif, grâce à ces portions de contact de la virole de rotor, traditionnellement appelée « virole labyrinthe », la virole de rotor est montée entre les étages rotoriques mais les mouvements de dilatation radiale des étages rotoriques n'influent pas ou très peu sur la position de la virole de rotor.In such a rotating assembly, thanks to these contact portions of the rotor shell, traditionally called "labyrinth shell", the rotor shell is mounted between the rotor stages but the radial expansion movements of the rotor stages do not influence or very little on the position of the rotor shell.

En effet, dans le cas d'une portion de contact du type axial, la butée de l'étage rotorique permet, à l'arrêt, de retenir la virole de rotor à l'encontre de la gravité mais, en fonctionnement, lorsque l'étage rotorique dans son ensemble se dilate sous l'effet de la chaleur apportée par l'air de la veine, la butée se déplace vers l'extérieur en s'éloignant de la portion de contact de la virole de rotor : le mouvement de dilatation de l'étage rotorique n'est donc pas communiqué à la virole de rotor. Dans le cas d'une portion de contact du type oblique, cette dernière repose cette fois sur la surface d'appui oblique de l'étage rotorique : ainsi, lorsque l'étage rotorique se dilate sous l'effet de la chaleur, la surface d'appui de déplace vers l'extérieur et entraîne avec elle la virole de rotor. Toutefois, simultanément, l'ensemble rotatif dans son ensemble se dilate également axialement, ce qui augmente la distance séparant les deux étages rotoriques consécutifs : dès lors, la portion de contact du type oblique de la virole de rotor glisse le long de la surface oblique de l'étage rotorique et redescend donc vers l'intérieur. On peut alors régler l'inclinaison de la surface d'appui et de la portion de contact afin de contrôler le déplacement radial total de la virole de rotor qui est la somme de ces deux contributions ; on peut notamment chercher à annuler sensiblement ce déplacement radial.Indeed, in the case of a contact portion of the axial type, the stop of the rotor stage allows, on stopping, to retain the rotor shell against the gravity but, in operation, when the rotor stage as a whole expands under the effect of the heat supplied by the air of the vein, the stop moves outwards away from the contact portion of the rotor shell: the movement of Expansion of the rotor stage is therefore not communicated to the rotor shell. In the case of a contact portion of the oblique type, the latter this time rests on the oblique bearing surface of the rotor stage: thus, when the rotor stage expands under the effect of heat, the surface support moves outward and carries with it the rotor ferrule. However, simultaneously, the rotating assembly as a whole also expands axially, which increases the distance separating the two consecutive rotor stages: therefore, the contact portion of the oblique type of the rotor shell slides along the oblique surface of the rotor stage and then goes down inwards. We can then adjust the inclination of the bearing surface and the contact portion to control the total radial displacement of the rotor shell which is the sum of these two contributions; one can notably seek to cancel substantially this radial displacement.

Ainsi, la dilatation des étages rotoriques, généralement importante, n'influe plus ou presque plus sur la position radiale de la virole de rotor : cette position est désormais régie uniquement par les propriétés propres à la virole de rotor (notamment son coefficient de dilatation thermique) et sa température et. Ainsi, il est facile de contrôler la position de la virole de rotor et de limiter le jeu séparant les léchettes et la bande abradable coïncidente en agissant sur ces paramètres, notamment en choisissant un matériau à faible coefficient de dilatation thermique. En outre, grâce à une telle configuration, la virole de rotor et les étages rotoriques peuvent se dilater de manière différente sans que des contraintes mécaniques radiales n'apparaissent à l'interface entre ces pièces, ce qui prolonge la durée de vie de l'ensemble rotatif. On note de plus que la butée, dans le cas du contact du type axial, ou la surface de contact, dans le cas du contact du type oblique, permettent d'éviter que de l'air de la veine ne contourne la virole de rotor et ne pénètre dans l'espace inter-disques.Thus, the generally large expansion of the rotor stages no longer influences the radial position of the rotor shell: this position is now governed solely by the properties specific to the rotor shell (in particular its coefficient of thermal expansion). ) and its temperature and. Thus, it is easy to control the position of the rotor shell and to limit the clearance between the wipers and the coinciding abradable band by acting on these parameters, in particular by choosing a material with a low coefficient of thermal expansion. In addition, thanks to such a configuration, the rotor shell and the rotor stages can expand in a different manner without radial mechanical stresses appearing at the interface between these parts, which prolongs the service life of the rotor. rotating assembly. It is further noted that the abutment, in the case of contact of the axial type, or the contact surface, in the case of contact of the oblique type, make it possible to prevent air from the vein from bypassing the rotor shell. and does not enter the inter-disk space.

Dans certains modes de réalisation, le rotor est configuré de manière à bloquer axialement la virole de rotor ou à la rappeler vers une position axiale stable. On s'assure ainsi que la position axiale de la virole soit stable lors du fonctionnement de l'ensemble rotatif et qu'elle continue ainsi à assurer l'étanchéité de l'espace inter-disques. En particulier, par construction, dans le cas d'un contact du type oblique, la surface d'appui oblique de l'étage rotorique rappelle automatiquement la virole de rotor qui glisse sur cette dernière vers une position stable. Dans certains modes de réalisation, la virole de rotor comprend une portion d'extrémité, formant portion de contact du type axial, qui s'étend radialernent vers l'extérieur et s'engage dans une portion de crochet avançant axialement puis vers l'intérieur depuis une partie de base de l'étage rotorique correspondant. La portion de crochet bloque axialement la virole de rotor mais laisse libre un déplacement relatif axial jusqu'à la butée formée par le creux du crochet.In some embodiments, the rotor is configured to lock the rotor ferrule axially or to return it to a stable axial position. This ensures that the axial position of the ferrule is stable during operation of the rotating assembly and that it thus continues to seal the inter-disc space. In particular, by construction, in the case of a contact of the oblique type, the oblique bearing surface of the rotor stage automatically recalls the rotor shell which slides on the latter to a stable position. In some embodiments, the rotor ferrule includes an end portion, forming an axial-type contact portion, which extends radially outwardly and engages a hook portion advancing axially and inwardly. from a base portion of the corresponding rotor stage. The hook portion axially blocks the rotor shell but leaves free axial relative displacement to the stop formed by the hollow of the hook.

Dans certains modes de réalisation, la virole de rotor comprend une portion d'extrémité, formant portion de contact du type axial, qui s'étend axialement et s'engage sous une saillie avançant axialement depuis une partie de base de l'étage rotorique correspondant. Dans certains modes de réalisation, une butée de l'étage rotorique 35 s'étend depuis le pied d'une aube mobile ou depuis un muret ou un flasque reliant les pieds des aubes mobiles. Lorsque la partie de base de l'étage rotorique est un muret ou un flasque, elle s'étend de préférence à 3600, de manière continue ou sectorisée, le long de cet élément. Dans certains modes de réalisation, une portion de contact du type oblique possède la même inclinaison que la surface d'appui oblique de l'étage rotorique correspondant. Dans certains modes de réalisation, l'inclinaison de la portion de contact de type oblique par rapport à l'axe principal de l'ensemble rotatif est compris entre 15 et 75°, de préférence entre 35 et 65°. Dans une telle plage de valeur, le glissement de la virole de rotor vers l'intérieur le long de la surface de contact oblique, causé par la dilatation axiale de l'ensemble rotatif, compense de manière assez précise le déplacement vers l'extérieur causé par la dilatation radiale des étages rotoriques. Dans certains modes de réalisation, une surface d'appui oblique d'un étage rotorique est la surface externe d'une saillie avançant depuis une partie de base de l'étage rotorique, de préférence depuis le pied d'une aube mobile ou depuis un muret ou un flasque reliant les pieds des aubes mobiles. Cette saillie peut prendre la forme d'une nervure annulaire s'étendant à 360° de manière continue ou sectorisée. Dans certains modes de réalisation, une surface d'appui oblique 20 d'un étage rotorique est la surface externe d'une virole d'appui rapportée sur ou formant partie intégrante d'une partie de base de l'étage rotorique. Cette virole d'appui est de préférence continue sur 360° ou fendue. Dans certains modes de réalisation, la virole d'appui comporte une portion d'extrémité qui s'étend radialement vers l'extérieur et s'engage 25 dans une portion de crochet avançant axialement puis vers l'intérieur depuis la partie de base de l'étage rotorique. Il s'agit d'une manière de fixer la position de cette virole d'appui. Dans certains modes de réalisation, le rotor comprend un dispositif d'entraînement permettant d'entraîner la virole de rotor en rotation 30 lorsque les étages rotoriques tournent. En fonctionnement, la virole de rotor tourne alors solidairement avec les étages rotoriques, ce qui assure un fonctionnement adéquat du rotor. Dans certains modes de réalisation, le dispositif d'entraînement comprend des saillies d'entraînement portées, pour certaines, par un 35 élément solidaire des étages rotoriques et, pour d'autres, par la virole de rotor et configurées pour coopérer les unes avec les autres afin d'entraîner la virole de rotor en rotation lorsque les étages rotoriques tournent. De cette manière, lorsque les étages rotoriques tournent, les saillies des étages rotoriques poussent et entraînent les saillies de la virole de rotor sans pour autant bloquer la liberté de déplacement radial de la virole de rotor. Dans certains modes de réalisation, chaque étage rotorique comprend un disque sur lequel sont montées les aubes mobiles de l'étage rotorique correspondant, une virole inter-disques reliant les disques des deux étages rotoriques consécutifs, et le dispositif d'entraînement comprend des saillies d'entraînement prévues, pour certaines, sur la virole inter-disques et, pour d'autres, sous la virole de rotor et configurées pour coopérer les unes avec les autres afin d'entraîner la virole de rotor en rotation lorsque les étages rotoriques tournent. La virole de rotor peut notamment comprendre des pattes s'étendant vers l'intérieur en direction de la virole inter-disques et coopérant avec des bossages de la virole inter-disques. Dans certains modes de réalisation, un jeu est laissé entre l'extrémité des saillies d'entraînement de la virole de rotor et la virole inter-disques. De cette manière, la virole de rotor n'est pas en appui sur la virole inter-disque et n'est donc pas déplacée radialement lorsque la virole inter-disque se dilate. Dans certains modes de réalisation, le dispositif d'entraînement comprend des saillies d'entraînement prévues, pour certaines, sur la virole d'appui et, pour d'autres, sous la virole de rotor et configurées pour coopérer les unes avec les autres afin d'entraîner la virole de rotor en rotation lorsque les étages rotoriques tournent. Ces saillies sont de préférence des cannelures engrenant les unes dans les autres. Dans certains modes de réalisation, le dispositif d'entraînement comprend des saillies d'entraînement portées, pour certaines, par la partie de base d'un étage rotorique et, pour d'autres, par la virole de rotor et configurées pour coopérer les unes avec les autres afin d'entraîner la virole de rotor en rotation lorsque les étages rotoriques tournent. Ces saillies sont de préférence des cannelures engrenant les unes dans les autres.In some embodiments, the rotor ferrule includes an axially extending axial end portion, which extends axially and engages a protrusion extending axially from a base portion of the corresponding rotor stage. . In some embodiments, a stop of the rotor stage 35 extends from the root of a moving blade or from a wall or a flange connecting the feet of the blades. When the base portion of the rotor stage is a wall or a flange, it preferably extends to 3600, continuously or sectored, along this element. In some embodiments, an oblique type contact portion has the same inclination as the oblique bearing surface of the corresponding rotor stage. In some embodiments, the inclination of the oblique-type contact portion with respect to the main axis of the rotating assembly is between 15 and 75 °, preferably between 35 and 65 °. In such a range of values, the sliding of the rotor ferrule inwards along the oblique contact surface, caused by the axial expansion of the rotating assembly, compensates for the outward displacement caused by the radial expansion of the rotor stages. In some embodiments, an oblique bearing surface of a rotor stage is the outer surface of a protrusion advancing from a base portion of the rotor stage, preferably from the root of a moving blade or from a wall or flange connecting the feet of the blades. This projection may take the form of an annular rib extending 360 ° continuously or sectored. In some embodiments, an oblique bearing surface 20 of a rotor stage is the outer surface of a bearing shell attached to or integral with a base portion of the rotor stage. This bearing shell is preferably continuous 360 ° or split. In some embodiments, the bearing ferrule has an end portion that extends radially outwardly and engages a hook portion extending axially and inwardly from the base portion of the barrel. rotor stage. This is a way to fix the position of this support ring. In some embodiments, the rotor includes a driving device for driving the rotating rotor shell 30 as the rotor stages rotate. In operation, the rotor shell then rotates solidly with the rotor stages, which ensures proper operation of the rotor. In some embodiments, the driving device comprises driving projections, some of which are supported by an element secured to the rotor stages and, for others, by the rotor shell and configured to cooperate with each other. other to drive the rotating rotor shell as the rotor stages rotate. In this way, when the rotor stages rotate, the projections of the rotor stages push and drive the protrusions of the rotor shell without blocking the freedom of radial displacement of the rotor shell. In some embodiments, each rotor stage comprises a disk on which are mounted the blades of the corresponding rotor stage, an inter-disk ferrule connecting the disks of the two consecutive rotor stages, and the driving device comprises projections of Some of the drives are provided on the inter-disk shell and, for others, under the rotor shell and configured to cooperate with one another to drive the rotor shell in rotation as the rotor stages rotate. The rotor shell may in particular comprise tabs extending inward towards the inter-disk shell and cooperating with bosses of the inter-disk shell. In some embodiments, a clearance is left between the end of the drive projections of the rotor ferrule and the inter-disk ferrule. In this way, the rotor shell is not supported on the inter-disk shell and is not displaced radially when the inter-disk shell expands. In some embodiments, the drive device includes drive protrusions provided, for some, on the bearing shell and, for others, under the rotor shell and configured to cooperate with one another so as to to drive the rotating rotor shell as the rotor stages rotate. These projections are preferably splines meshing with each other. In some embodiments, the driving device comprises driving projections carried, for some, by the base portion of a rotor stage and, for others, by the rotor ferrule and configured to cooperate with each other. with others to drive the rotating rotor shell as the rotor stages rotate. These projections are preferably splines meshing with each other.

Dans certains modes de réalisation, la piste abradable est portée par l'anneau de stator et ladite au moins une léchette est portée par la virole de rotor. Les inventeurs ont en effet constaté que la configuration inverse est moins favorable. Dans certains modes de réalisation, la virole de rotor est réalisée en matériau composite à matrice céramique. Ce matériau est plus léger, résiste bien à la chaleur et bénéficie d'un coefficient de dilatation inférieur à celui du métal. Sa bonne résistance à la chaleur permet notamment de réduire voire de supprimer la circulation de refroidissement de l'espace inter-disques et donc de réduire les prélèvements d'air en amont, ce qui améliore les performances de la turbomachine.In some embodiments, the abradable track is carried by the stator ring and the at least one wiper is carried by the rotor shell. The inventors have indeed found that the opposite configuration is less favorable. In some embodiments, the rotor ferrule is made of a ceramic matrix composite material. This material is lighter, heat-resistant and has a lower coefficient of expansion than metal. Its good resistance to heat makes it possible in particular to reduce or even eliminate the cooling circulation of the inter-disk space and thus to reduce upstream air sampling, which improves the performance of the turbomachine.

Dans certains modes de réalisation, les aubes mobiles, et plus généralement les étages rotoriques, sont réalisés en métal. Dans certains modes de réalisation, l'anneau de stator est monté sur les aubes fixes par l'intermédiaire d'un dispositif d'accrochage mettant en jeu une pluralité de fentes radiales, chaque fente étant pratiquée dans une patte radiale de l'anneau de stator ou une patte radiale solidaire des aubes fixes, et une pluralité de pions, chaque pion étant porté par une patte radiale de l'anneau de stator ou une patte radiale solidaire des aubes fixes et configuré pour s'engager dans une fente correspondante desdites fentes radiales.In some embodiments, the blades, and more generally the rotor stages, are made of metal. In some embodiments, the stator ring is mounted on the stationary blades by means of a hooking device involving a plurality of radial slots, each slot being formed in a radial tab of the ring of stator or a radial tab secured to the fixed vanes, and a plurality of pins, each pin being carried by a radial tab of the stator ring or a radial tab integral with the vanes and configured to engage in a corresponding slot of said slots radials.

Dans un tel ensemble rotatif, grâce à ce dispositif d'accrochage, l'anneau de stator est monté sur les aubes fixes mais ses mouvements de dilatation/contraction radiaux sont totalement décorrélés de ceux des aubes fixes. En effet, lorsque la dilatation des aubes fixes est plus importante que celle de l'anneau de stator, en raison par exemple d'une température plus élevée ou d'un matériau ayant un coefficient de dilatation plus élevé, les pions du dispositif d'accrochage peuvent se déplacer librement dans les fentes radiales et ne communiquent donc pas leur mouvement à l'anneau de stator. Dès lors, l'anneau de stator et les aubes fixes peuvent se dilater de 30 manière différente sans que des contraintes mécaniques n'apparaissent à l'interface entre ces pièces, ce qui prolonge la durée de vie de l'ensemble rotatif. En outre, la dilatation des aubes fixes, généralement importante, n'influe plus sur la position radiale de l'anneau de stator : cette position 35 est désormais régie uniquement par les propriétés propres à l'anneau de stator, essentiellement sa température et son coefficient de dilatation 3 0 2 7 3 4 1 8 thermique, et ne dépend plus d'une longue chaîne de côtes de différentes pièces montées les unes sur les autres. Ainsi, il est facile de contrôler la position de l'anneau de stator et de limiter le jeu séparant les léchettes et la bande abradable coïncidente en agissant sur ces paramètres, 5 notamment en choisissant un matériau à faible coefficient de dilatation thermique. En outre, un système de refroidissement du carter dans le seul but de contrôler ces jeux est superflu puisque l'anneau de stator n'est plus lié radialement au carter, ce qui permet d'économiser de l'air frais pour d'autres équipements. 10 Il faut en tout état de cause souligner que si l'anneau de stator est libre de se déplacer en dilatation/contraction radiale autour de l'axe principal de l'ensemble rotatif, ce dispositif d'accrochage permet de bloquer tangentiellement l'anneau de stator : ce dernier ne peut donc tourner et reste ainsi solidaire du stator. Les pattes radiales solidaires des 15 aubes fixes et portées par l'anneau de stator peuvent également permettre de caler axialement l'anneau de stator par rapport aux aubes fixes. En outre, si au moins deux fentes radiales sont dirigées selon deux directions différentes, ce dispositif d'accrochage permet de centrer 20 automatiquement l'anneau de rotor sur l'axe principal de l'ensemble rotatif. Dans certains modes de réalisation, chaque fente radiale du dispositif d'accrochage est pratiquée dans une patte radiale de l'anneau de stator. 25 Dans certains modes de réalisation, chaque pion du dispositif d'accrochage est porté par une patte radiale solidaire des aubes fixes. Dans certains modes de réalisation, un anneau de distributeur réunit les pieds des aubes fixes, cet anneau de distributeur comportant une bride radiale qui porte au moins certains pions du dispositif 30 d'accrochage et/ou dans laquelle sont pratiquées au moins certaines fentes radiales du dispositif d'accrochage. Cet anneau de distributeur peut être continu sur 360°, fendu ou sectorisé. Cette bride radiale s'étend donc sur 360° et empêche ainsi le passage de l'air au niveau du dispositif d'accrochage, ce que ne permet pas une configuration comportant une 35 pluralité de pattes distinctes et discontinues. 3 0 2 73 4 1 9 Dans certains modes de réalisation, l'anneau de distributeur est sectorisé et chacun de ses secteurs porte un pion. De préférence, chaque secteur réunit trois à cinq aubes fixes. Dans certains modes de réalisation, l'anneau de stator comporte 5 une première bride radiale qui porte au moins certains pions du dispositif d'accrochage et/ou dans laquelle sont pratiquées au moins certaines fentes radiales du dispositif d'accrochage. L'anneau de stator peut être continu sur 3600 ou fendu ; cette bride radiale s'étend donc sur 360° et empêche le passage de l'air au niveau du dispositif d'accrochage, ce que 10 ne permet pas une configuration comportant une pluralité de pattes distinctes et discontinues. En outre, il est possible de plaquer cette bride radiale contre la bride radiale de l'anneau de distributeur afin de caler axialement l'anneau de stator par rapport aux aubes fixes avec plus de facilité. 15 Dans certains modes de réalisation, l'anneau de stator comporte une deuxième bride radiale, chaque patte radiale solidaire des aubes fixes étant configurée pour s'engager entre les première et deuxième brides radiales de l'anneau de stator. Les pattes radiales solidaires des aubes fixes, prenant de préférence la forme d'une bride radiale, sont ainsi 20 engagées entre les première et deuxième brides de l'anneau de stator : on assure ainsi le blocage axial de l'anneau de rotor par rapport aux aubes fixes. Dans certains modes de réalisation, la deuxième bride radiale de l'anneau de stator est pleine, c'est-à-dire dépourvue d'ouverture. Ainsi, on 25 entrave encore d'avantage la circulation d'air traversant le dispositif d'accrochage. Dans certains modes de réalisation, au moins certaines fentes radiales sont des alésages oblongs s'étendant radialement. Dans certains modes de réalisation, au moins certaines fentes radiales sont des encoches oblongues s'étendant radialernent depuis le bord de leurs pattes radiales respectives. Dans certains modes de réalisation, les fentes radiales du dispositif d'accrochage sont régulièrement espacées dans un plan radial tout autour de l'anneau de stator. On assure ainsi une configuration bénéficiant d'au moins certaines symétries, ce qui facilite le centrage de l'anneau de stator et améliore son comportement en fonctionnement. 3 0 2 7 3 4 1 10 Dans certains modes de réalisation, l'anneau de stator est réalisé en matériau composite à matrice céramique. Ce matériau est plus léger, résiste bien à la chaleur et bénéficie d'un coefficient de dilatation inférieur à celui du métal. 5 Dans certains modes de réalisation, les aubes fixes et l'anneau de distributeur sont réalisés en métal. Dans certains modes de réalisation, l'anneau de stator et la virole de rotor possèdent des coefficients de dilatation thermique proches, de préférence égaux à ±10%, de préférence encore égaux à ±5%. De cette 10 manière, ces deux pièces autoportées se déplacent sensiblement de la même manière en fonctionnement. Dans certains modes de réalisation, l'anneau de stator et la virole de rotor sont réalisés dans le même matériau. Le présent exposé concerne en outre une turbomachine 15 comprenant un ensemble rotatif selon l'un quelconque des modes de réalisation précédents. Les caractéristiques et avantages précités, ainsi que d'autres, apparaîtront à la lecture de la description détaillée qui suit, d'exemples de réalisation de l'ensemble rotatif et de la turbomachine proposés. Cette 20 description détaillée fait référence aux dessins annexés. BREVE DESCRIPTION DES DESSINS Les dessins annexés sont schématiques et visent avant tout à illustrer les principes de l'invention. 25 Sur ces dessins, d'une figure (FIG) à l'autre, des éléments (ou parties d'élément) identiques sont repérés par les mêmes signes de référence. En outre, des éléments (ou parties d'élément) appartenant à des exemples de réalisation différents mais ayant une fonction analogue sont repérés sur les figures par des références numériques incrémentées 30 de 100, 200, etc. La FIG 1 est une vue en coupe axiale d'un exemple de turboréacteur. La FIG 2 est une vue en coupe axiale d'un premier exemple d'ensemble rotatif. 35 La FIG 3 est une vue en coupe axiale d'un deuxième exemple d'ensemble rotatif.In such a rotating assembly, thanks to this attachment device, the stator ring is mounted on the blades but its radial expansion / contraction movements are completely decorrelated from those of the blades. Indeed, when the expansion of the blades is greater than that of the stator ring, for example because of a higher temperature or a material having a higher coefficient of expansion, the pins of the device of snaps can move freely in the radial slots and therefore do not communicate their movement to the stator ring. As a result, the stator ring and the stationary blades can expand in a different manner without mechanical stresses appearing at the interface between these parts, which prolongs the service life of the rotary assembly. In addition, the expansion of the blades, generally important, no longer affects the radial position of the stator ring: this position 35 is now governed solely by the properties of the stator ring, essentially its temperature and its coefficient of expansion 3 0 2 7 3 4 1 8 thermal, and no longer depends on a long chain of ribs of different pieces mounted on each other. Thus, it is easy to control the position of the stator ring and to limit the clearance between the wipers and the coincident abradable band by acting on these parameters, particularly by choosing a material with a low coefficient of thermal expansion. In addition, a crankcase cooling system for the sole purpose of controlling these games is superfluous since the stator ring is no longer connected radially to the housing, which saves fresh air for other equipment . It must in any case be emphasized that if the stator ring is free to move in radial expansion / contraction around the main axis of the rotary assembly, this coupling device makes it possible to tangentially block the ring. stator: the latter can not rotate and thus remains integral with the stator. The integral radial tabs of the vanes fixed and carried by the stator ring can also make it possible to axially wedge the stator ring with respect to the fixed vanes. In addition, if at least two radial slots are directed in two different directions, this attachment device automatically centers the rotor ring on the main axis of the rotating assembly. In some embodiments, each radial slot of the attachment device is formed in a radial tab of the stator ring. In some embodiments, each pin of the hooking device is carried by a radial tab secured to the blades. In some embodiments, a distributor ring joins the feet of the stationary blades, this distributor ring comprising a radial flange which carries at least some pins of the attachment device and / or in which at least some radial slots of the device are formed. hanging device. This distributor ring can be continuous over 360 °, split or sectored. This radial flange thus extends over 360 ° and thus prevents the passage of air at the attachment device, which does not allow a configuration comprising a plurality of distinct and discontinuous tabs. In some embodiments, the dispenser ring is sectored and each of its sectors carries a peg. Preferably, each sector comprises three to five vanes. In some embodiments, the stator ring has a first radial flange which carries at least some pins of the attachment device and / or in which at least some radial slots of the attachment device are formed. The stator ring can be continuous on 3600 or split; this radial flange thus extends over 360 ° and prevents the passage of air at the attachment device, which does not allow a configuration comprising a plurality of distinct and discontinuous tabs. In addition, it is possible to press this radial flange against the radial flange of the distributor ring to axially position the stator ring relative to the fixed vanes with greater ease. In some embodiments, the stator ring has a second radial flange, each radial tab integral with the fixed vanes being configured to engage between the first and second radial flanges of the stator ring. The integral radial tabs of the fixed blades, preferably taking the form of a radial flange, are thus engaged between the first and second flanges of the stator ring: this ensures axial locking of the rotor ring relative to with fixed vanes. In some embodiments, the second radial flange of the stator ring is solid, i.e., devoid of aperture. Thus, the circulation of air passing through the fastening device is further impeded. In some embodiments, at least some radial slots are oblong bores extending radially. In some embodiments, at least some radial slots are oblong slots extending radially from the edge of their respective radial tabs. In some embodiments, the radial slits of the attachment device are evenly spaced in a radial plane around the stator ring. This ensures a configuration with at least some symmetries, which facilitates the centering of the stator ring and improves its behavior in operation. In some embodiments, the stator ring is made of a ceramic matrix composite material. This material is lighter, heat-resistant and has a lower coefficient of expansion than metal. In some embodiments, the stationary blades and the distributor ring are made of metal. In some embodiments, the stator ring and rotor ferrule have close thermal expansion coefficients, preferably equal to +/- 10%, more preferably +/- 5%. In this way, these two self-supporting parts move substantially in the same way in operation. In some embodiments, the stator ring and rotor ferrule are made of the same material. The present disclosure further relates to a turbomachine 15 comprising a rotary assembly according to any one of the preceding embodiments. The above-mentioned characteristics and advantages, as well as others, will appear on reading the detailed description which follows, of exemplary embodiments of the rotary assembly and the proposed turbomachine. This detailed description refers to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are schematic and are intended primarily to illustrate the principles of the invention. In these drawings, from one figure (FIG) to the other, identical elements (or parts of element) are identified by the same reference signs. In addition, elements (or parts of elements) belonging to different exemplary embodiments but having an analogous function are indicated in the figures by incremented numerals of 100, 200, etc. FIG 1 is an axial sectional view of an example of a turbojet engine. FIG 2 is an axial sectional view of a first example of a rotary assembly. FIG. 3 is an axial sectional view of a second exemplary rotary assembly.

La FIG 4 est une vue en coupe axiale d'un troisième exemple d'ensemble rotatif. La FIG 5 est une vue en coupe axiale d'un quatrième exemple d'ensemble rotatif.FIG 4 is an axial sectional view of a third example of a rotating assembly. FIG 5 is an axial sectional view of a fourth example of a rotary assembly.

La FIG 6 est une vue en coupe radiale d'un premier exemple de virole fendue. La FIG 7 est une vue en coupe radiale d'un deuxième exemple de virole fendue. La FIG 8 est une vue en coupe radiale d'un troisième exemple de virole fendue. DESCRIPTION DETAILLEE D'EXEMPLE(S) DE REALISATION Afin de rendre plus concrète l'invention, des exemples d'ensembles rotatifs sont décrits en détail ci-après, en référence aux dessins annexés.FIG 6 is a radial sectional view of a first example of split ferrule. FIG 7 is a radial sectional view of a second example of split ferrule. FIG 8 is a radial sectional view of a third example of split ferrule. DETAILED DESCRIPTION OF EMBODIMENT (S) In order to make the invention more concrete, examples of rotating assemblies are described in detail below, with reference to the accompanying drawings.

II est rappelé que l'invention ne se limite pas à ces exemples. La FIG 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à double flux 1 selon l'invention. Il comporte, d'amont en aval, une soufflante 2, un compresseur basse pression 3, un compresseur haute pression 4, une chambre de combustion 5, une turbine haute pression 6 et une turbine basse pression 7. La FIG 2 représente, en coupe selon le même plan axial, une partie de cette turbine basse pression 7 selon un premier exemple de réalisation. On notera à titre incident que l'invention s'appliquerait de manière tout à fait analogue à la turbine haute pression 6. Cette turbine 7 comporte une pluralité d'étages rotoriques 10a, 10b et d'étages statoriques 11 se succédant d'amont en aval, chaque étage rotorique 10a, 10b étant immédiatement suivi par un étage statorique 11. A fins de simplification, seuls un premier étage rotorique 10a, un étage statorique 11 et un deuxième étage rotorique 10b sont ici représentés.It is recalled that the invention is not limited to these examples. FIG 1 shows, in section along a vertical plane passing through its main axis A, a turbofan engine 1 according to the invention. It comprises, from upstream to downstream, a fan 2, a low-pressure compressor 3, a high-pressure compressor 4, a combustion chamber 5, a high-pressure turbine 6 and a low-pressure turbine 7. FIG. 2 represents, in section along the same axial plane, a portion of this low pressure turbine 7 according to a first embodiment. It will be noted incidentally that the invention would apply quite similar to the high-pressure turbine 6. This turbine 7 comprises a plurality of rotor stages 10a, 10b and stator stages 11 succeeding each other upstream. downstream, each rotor stage 10a, 10b being immediately followed by a stator stage 11. For the sake of simplification, only a first rotor stage 10a, a stator stage 11 and a second rotor stage 10b are represented here.

Chaque étage rotorique 10a, 10b comporte une pluralité d'aubes rotoriques mobiles 20, comprenant chacune une pale 21 et un pied 22, montées sur un disque 40 accouplé à un arbre de la turbomachine 1. Chaque étage statorique 11 comprend quant à lui une pluralité d'aubes statoriques fixes 30, comprenant chacune une pale 31, montées sur le carter extérieur de la turbine 7.Each rotor stage 10a, 10b comprises a plurality of movable rotor blades 20, each comprising a blade 21 and a foot 22, mounted on a disc 40 coupled to a shaft of the turbomachine 1. Each stator stage 11 comprises a plurality of fixed stator vanes 30, each comprising a blade 31, mounted on the outer casing of the turbine 7.

Dans cet exemple de réalisation, les aubes rotoriques 20 ainsi que les aubes statoriques 30 comprennent essentiellement des matériaux métalliques. Les disques 40 de chaque étage rotorique 10a, 10b sont reliés entre eux, deux à deux, par des viroles métalliques 41 appelées viroles inter- disques. Ces viroles 41 sont formées ici par deux demi-viroles 41a, 41b s'étendant chacune depuis un disque 40 et boulonnées l'une avec l'autre à leur point de rencontre. Les pieds 22 des aubes 20 du premier étage rotorique 10a sont reliés par une structure annulaire de pied d'aube 23 formant des plates- formes 24, un becquet amont 25 et un becquet aval 26. Un flasque 27, annulaire, est de plus rapporté sur la face aval des pieds d'aube 22 de manière à les relier. Tous ces éléments sont réalisés de préférence en matériau métallique. Les plates-formes 24 définissent la limite intérieure de la veine d'air circulant dans la turbine 7. Les pieds 22 des aubes 20 de deuxième étage rotorique 10b sont également munis d'une structure annulaire de pied d'aube 23 analogue formant des plates-formes 24, un becquet amont 25 et un becquet aval 26.In this exemplary embodiment, the rotor vanes 20 and the stator vanes 30 essentially comprise metallic materials. The discs 40 of each rotor stage 10a, 10b are interconnected, in pairs, by metal ferrules 41 called inter-disk ferrules. These rings 41 are formed here by two half-rings 41a, 41b each extending from a disk 40 and bolted with each other at their meeting point. The feet 22 of the blades 20 of the first rotor stage 10a are connected by an annular blade root structure 23 forming platforms 24, an upstream spoiler 25 and a downstream spoiler 26. A flange 27, annular, is also reported. on the downstream face of the blade roots 22 so as to connect them. All these elements are preferably made of metal material. The platforms 24 define the inner limit of the air flow circulating in the turbine 7. The feet 22 of the blades 20 of the second rotor stage 10b are also provided with an annular blade root structure 23 similar forming plates forms 24, an upstream spoiler 25 and a downstream spoiler 26.

Les aubes 20 des premier et deuxième étages rotoriques 10a, 10b sont en outre reliées par une virole 50, dite virole labyrinthe. Cette virole labyrinthe 50, annulaire, est réalisée en matériau composite à matrice céramique (CMC) tissé 3D par une méthode de tissage dite « contour weaving ». Le « contour weaving » est une technique connue de tissage d'une texture fibreuse de forme axisymétrique dans laquelle la structure fibreuse est tissée sur un mandrin avec appel de fils de chaîne, le mandrin présentant un profil extérieur défini en fonction du profil de la texture fibreuse à réaliser. Les pieds des aubes 30 de l'étage statorique 11 sont reliées par un anneau de distributeur 32, formé de plusieurs secteurs contigus, s'étendant à 360° autour de l'axe principal A. Cet anneau de distributeur 32, réalisé en métal, possède des projections amont 33 et aval 34 aptes à former des chicanes avec les béquets 26 et 25 des étages rotoriques amont 10a et aval 10b. Il possède en outre une bride radiale 35 s'étendant radialement vers l'intérieur tout le long de l'anneau de distributeur 32.The blades 20 of the first and second rotor stages 10a, 10b are further connected by a shell 50, called labyrinth ferrule. This labyrinth ferrule 50, annular, is made of a ceramic matrix composite material (CMC) woven 3D by a weaving method called "contour weaving". The "weaving contour" is a known technique for weaving a fibrous texture of axisymmetrical shape in which the fibrous structure is woven on a mandrel with a warp thread, the mandrel presenting an external profile defined according to the profile of the texture. fibrous to achieve. The blade roots 30 of the stator stage 11 are connected by a distributor ring 32, formed of several contiguous sectors, extending 360 ° about the main axis A. This distributor ring 32, made of metal, has upstream projections 33 and downstream 34 capable of forming baffles with the spoils 26 and 25 of the upstream rotor stages 10a and downstream 10b. It furthermore has a radial flange 35 extending radially inwards all along the distributor ring 32.

Un anneau porte-abradable 60 est rapporté sur l'anneau de distributeur 32 : il comprend une partie axiale 61, cylindrique de révolution, portant des pistes de matériau abradable 62, ainsi que deux brides radiales 63 et 64 s'étendant radialement vers l'extérieur. Ces deux brides radiales 63, 64 définissent entre elles deux un interstice 65 dont la largeur correspond sensiblement à la largeur de la bride radiale 35 de l'anneau de distributeur 32. La bride radiale aval 64 est pleine tandis que la bride radiale amont 63 comporte plusieurs alésages radiaux 66 régulièrement espacés autour de l'axe principal A : un alésage radial 66 peut par exemple être prévu en vis-à-vis du milieu de chaque secteur de l'anneau de distributeur 32. L'anneau porte-abradable 60 est monté sur l'anneau de distributeur 30 en engageant la bride radiale 35 de l'anneau de distributeur 30 dans l'interstice 65 et en montant serré des pions 67 dans cette bride radiale 35 à travers les alésages radiaux 66 de la bride amont 63 de l'anneau porteabradable 60. On bloque ainsi les positions axiale et tangentielle de l'anneau porte-abradable 60 par rapport à l'anneau de distributeur 32 tout en laissant libre son déplacement radial. La virole labyrinthe porte des léchettes 51 dont les pointes sont au contact des pistes abradable 62 de l'anneau porte-abradable 60 afin d'entraver le passage de l'air au pied des aubes fixes 30. Cet anneau porte-abradable 60 est également réalisé en CMC tissé 3D; on choisit de préférence un matériau identique à celui de la virole labyrinthe 50 afin d'avoir un coefficient de dilatation thermique identique entre ces deux pièces et donc d'assurer un contrôle continu des jeux séparant les léchettes 51 des pistes abradables 62. Dans ce premier exemple, la virole labyrinthe 50 est monté entre les étages rotoriques 10a, 10b selon une configuration axial/axial. La virole 50, orientée sensiblement axialement dans sa portion médiane 59 portant les léchettes 51, se redresse vers l'extérieur en direction de son extrémité aval afin de former, à son extrémité aval, une portion de contact du type axial 52 s'étendant radialement. Cette portion de contact 52 est en appui axial contre un muret 28 de la structure de pied d'aube 23 de l'étage rotorique aval 10b et s'engage dans une portion de crochet 71 avançant axialement puis radialement vers l'intérieur à partir de ce muret 28, cette portion de crochet 71 étant donc située plus à l'extérieur que la portion de contact 52 de la virole 50 : la position axiale de la virole labyrinthe 50 est ainsi bloquée par rapport à l'étage rotorique aval 10b mais leurs déplacements relatifs radiaux restent libres. Cette portion de crochet 71 est symétrique de révolution par rapport à l'axe A de la turbine 7 et présente donc un profil constant sur toute la circonférence de la virole labyrinthe 50. L'extrémité amont de la virole labyrinthe 50 présente quant à elle une seconde portion de contact du type axial 53 s'étendant axialement sous, c'est-à-dire plus à l'intérieur, une nervure 72 avançant axialement à partir du flasque 27 de l'étage rotorique amont 10a et s'étendant à 360° autour de l'axe A : les aubes mobiles 20 peuvent ainsi se dilater radialement sans entraîner le déplacement de la virole labyrinthe 50. En outre, lorsque la turbine 7 se dilate axialement, la virole labyrinthe 50 suit le mouvement axial de l'étage rotorique aval 10b mais son extrémité amont continue de chevaucher la nervure 72, limitant ainsi le passage de l'air de veine dans l'espace inter-disques. La virole labyrinthe 50 comporte en outre des pattes 54, prévues régulièrement autour de l'axe A, qui s'étendent depuis sa surface intérieure vers la virole métallique inter-disques 41. Cette dernière possède des bossages 42, prévus régulièrement autour de l'axe A dans le même plan radial que les pattes 54 : ainsi, lorsque le rotor tourne, ces bossages 42 entrent en contact avec les pattes 54 et entraînent la virole labyrinthe 50 solidairement en rotation avec l'ensemble du rotor. Un jeu est toutefois laissé entre les pattes 54 et la virole inter-disques 41 afin que cette dernière ne pousse pas radialement la virole labyrinthe 50 lorsqu'elle se dilate. La FIG 3 illustre un deuxième exemple d'ensemble rotatif 107 analogue en tout point au premier exemple sauf en ce qui concerne la virole labyrinthe 150 et son montage entre les étages rotoriques 110a et 110b, la virole labyrinthe 150 étant montée ici selon une configuration oblique/axial. Dans ce deuxième exemple, l'extrémité aval de la virole labyrinthe 150 est analogue à celle du premier exemple : elle comprend également une portion de contact du type axial 152 s'étendant radialement et 35 s'engageant dans une portion de crochet 171 avançant axialement puis radialement vers l'intérieur à partir d'un muret 128 de la structure de pied d'aube 123 de l'étage rotorique aval 110b. En revanche, son extrémité amont forme une portion de contact du type oblique 154 qui s'étend selon une direction oblique dont l'inclinaison forme un angle À d'environ 400 par rapport à l'axe principal A de la turbine 107. Cette portion de contact oblique 154 repose sur la surface externe 173a d'une saillie 173 avançant depuis le flasque 127 du premier étage rotorique 110a. Cette surface externe 173a s'étend selon la même inclinaison oblique que celle de la portion de contact 154 et forme donc le même angle À d'environ 40° par rapport à l'axe principal A. Ainsi, lorsque le premier étage rotorique 110a se dilate, la composante axiale de cette dilatation tend à faire descendre la virole 150 le long de la surface oblique 173a de la saillie 173, ce qui compense le mouvement ascendant de la virole 150 dû à la composante radiale de cette dilatation du premier étage rotorique 110a : la position radiale de la virole labyrinthe 150 reste ainsi sensiblement inchangée. Cette saillie 173 est de préférence symétrique de révolution par rapport à l'axe A de la turbine 107 et présente donc un profil constant sur toute la circonférence de la virole labyrinthe 150.An abradable bearing ring 60 is attached to the distributor ring 32: it comprises an axial portion 61, cylindrical of revolution, bearing tracks of abradable material 62, as well as two radial flanges 63 and 64 extending radially towards the outside. These two radial flanges 63, 64 define between them a gap 65 whose width corresponds substantially to the width of the radial flange 35 of the distributor ring 32. The downstream radial flange 64 is solid while the upstream radial flange 63 comprises several radial bores 66 regularly spaced around the main axis A: a radial bore 66 may for example be provided in relation to the middle of each sector of the distributor ring 32. The abradable bearing ring 60 is mounted on the distributor ring 30 by engaging the radial flange 35 of the distributor ring 30 in the gap 65 and by tightly mounting pins 67 in this radial flange 35 through the radial bores 66 of the upstream flange 63 of the porteabradable ring 60. Thus blocks the axial and tangential positions of the abradable holder ring 60 relative to the distributor ring 32 while leaving free its radial displacement. The labyrinth ferrule carries wipers 51 whose tips are in contact with the abradable tracks 62 of the abradable holder ring 60 to hinder the passage of air at the base of the vanes 30. This abradable holder ring 60 is also made of 3D woven CMC; a material identical to that of labyrinth shell 50 is preferably chosen in order to have an identical coefficient of thermal expansion between these two parts and thus to ensure continuous control of the gaps separating wipers 51 from abradable tracks 62. For example, the labyrinth sleeve 50 is mounted between the rotor stages 10a, 10b in an axial / axial configuration. The ferrule 50, oriented substantially axially in its median portion 59 carrying the wipers 51, straighten outwards towards its downstream end so as to form, at its downstream end, a contact portion of the axial type 52 extending radially. . This contact portion 52 bears axially against a wall 28 of the blade foot structure 23 of the downstream rotor stage 10b and engages in a hook portion 71 advancing axially and then radially inwards from this wall 28, this hook portion 71 thus being located more outside than the contact portion 52 of the shell 50: the axial position of the labyrinth shell 50 is thus locked with respect to the downstream rotor stage 10b but their Relative radial movements remain free. This portion of hook 71 is symmetrical with respect to revolution axis A of the turbine 7 and therefore has a constant profile on the entire circumference of the labyrinth shell 50. The upstream end of the labyrinth shell 50 has a second axial-type contact portion 53 extending axially under, that is to say more inboard, a rib 72 extending axially from the flange 27 of the upstream rotor stage 10a and extending 360 Around the axis A: the blades 20 can thus expand radially without causing the displacement of the labyrinth shell 50. In addition, when the turbine 7 expands axially, the labyrinth sleeve 50 follows the axial movement of the stage downstream rotor 10b but its upstream end continues to overlap the rib 72, thus limiting the passage of vein air into the inter-disk space. The labyrinth ferrule 50 further includes tabs 54, provided regularly around the axis A, which extend from its inner surface towards the inter-disk metal ferrule 41. The latter has bosses 42, provided regularly around the Axis A in the same radial plane as the tabs 54: thus, when the rotor rotates, these bosses 42 come into contact with the tabs 54 and drive the labyrinth sleeve 50 integrally in rotation with the entire rotor. A clearance is however left between the tabs 54 and the inter-disc shell 41 so that the latter does not push the labyrinth sleeve 50 radially when it expands. 3 illustrates a second example of a rotary assembly 107 similar in every respect to the first example except for the labyrinth sleeve 150 and its mounting between the rotor stages 110a and 110b, the labyrinth sleeve 150 being mounted here in an oblique configuration /axial. In this second example, the downstream end of the labyrinth sleeve 150 is similar to that of the first example: it also comprises an axial-type contact portion 152 extending radially and engaging in a hook portion 171 advancing axially then radially inward from a wall 128 of the blade root structure 123 of the downstream rotor stage 110b. On the other hand, its upstream end forms an oblique-type contact portion 154 which extends in an oblique direction whose inclination forms an angle Δ of approximately 400 with respect to the main axis A of the turbine 107. oblique contact 154 rests on the outer surface 173a of a protrusion 173 advancing from the flange 127 of the first rotor stage 110a. This external surface 173a extends at the same oblique inclination as that of the contact portion 154 and therefore forms the same angle Δt of about 40 ° with respect to the main axis A. Thus, when the first rotor stage 110a dilate, the axial component of this expansion tends to lower the shell 150 along the oblique surface 173a of the projection 173, which compensates for the upward movement of the shell 150 due to the radial component of this expansion of the first rotor stage 110a : The radial position of the labyrinth shell 150 thus remains substantially unchanged. This projection 173 is preferably symmetrical of revolution with respect to the axis A of the turbine 107 and therefore has a constant profile over the entire circumference of the labyrinth shell 150.

Le dispositif d'entrainement en rotation de la virole labyrinthe 150 est également différent de celui du premier exemple. Ici, des pattes 154 sont également portées par la virole labyrinthe 150 mais celles-ci se dirigent vers le disque 140 de l'étage rotorique aval 110b afin de coopérer avec des bossages 142 prévus sur la face amont de ce disque 140.The device for rotating the labyrinth ferrule 150 is also different from that of the first example. Here, tabs 154 are also carried by the labyrinth shell 150 but these move towards the disk 140 of the downstream rotor stage 110b in order to cooperate with bosses 142 provided on the upstream face of this disk 140.

La FIG 4 illustre un troisième exemple d'ensemble rotatif 207 analogue en tout point au premier exemple sauf en ce qui concerne la virole labyrinthe 250 et son montage entre les étages rotoriques 210a et 210b, la virole labyrinthe 250 étant montée ici selon une configuration axial/oblique.FIG. 4 illustrates a third example of a rotary assembly 207 similar in every respect to the first example except for the labyrinth ferrule 250 and its mounting between the rotor stages 210a and 210b, the labyrinth ferrule 250 being mounted here in an axial configuration /oblique.

Dans ce troisième exemple, l'extrémité amont de la virole labyrinthe 250 est analogue à celle du premier exemple : elle comprend également une portion de contact du type axial 253 s'étendant axialernent sous, c'est-à-dire plus à l'intérieur, une nervure 272 avançant axialement à partir du flasque 227 de l'étage rotorique amont 210a.In this third example, the upstream end of the labyrinth shell 250 is similar to that of the first example: it also comprises an axial-type contact portion 253 extending axially below, that is to say more at the interior, a rib 272 advancing axially from the flange 227 of the upstream rotor stage 210a.

En revanche, son extrémité aval présente une configuration du type oblique d'une forme différente de celle du deuxième exemple. Ici, l'étage rotorique aval 210b comprend en outre une virole d'appui 274, à symétrie de révolution, qui comporte une portion d'accroche 275, s'étendant radialement et s'engageant dans une portion de crochet 271 analogue à celle du premier exemple, et une portion d'appui 276 oblique dont la surface externe 276a forme une surface d'appui oblique dont l'inclinaison forme un angle p d'environ 55° par rapport à l'axe principal A de la turbine 207. La virole labyrinthe 250 comporte quant à elle à son extrémité aval une portion de contact du type oblique 255 qui s'étend selon une direction oblique, dont l'inclinaison forme le même angle p d'environ 550 par rapport à l'axe principal A, et repose sur la surface d'appui 276a de la virole d'appui 276. De manière analogue, cette surface d'appui oblique 276a permet d'obtenir une certaine compensation des déplacements radiaux de la virole 250 causés par les composantes radiale et axiale de la dilatation de l'étage rotorique 210b. Le dispositif d'entrainernent en rotation de la virole labyrinthe 250 est également différent de ceux des premier et deuxième exemples. Ici, des cannelures 256 et 277 correspondantes sont prévues respectivement sur la surface intérieure de la portion de contact oblique 255 de la virole labyrinthe 250 et sur la surface d'appui 276a de la virole d'appui 276. La FIG 5 illustre un quatrième exemple d'ensemble rotatif 307 analogue en tout point au premier exemple sauf en ce qui concerne la virole labyrinthe 350 et son montage entre les étages rotoriques 310a et 310b, la virole labyrinthe 350 étant montée ici selon une configuration 25 oblique/oblique. Toutefois, dans ce quatrième exemple, l'extrémité amont de la virole labyrinthe 350 est analogue à celle du deuxième exemple : elle comprend également une portion de contact du type oblique 354, qui s'étend selon une direction oblique dont l'inclinaison forme un angle À 30 d'environ 40° par rapport à l'axe principal A de la turbine 307, et repose sur la surface externe 373a d'une saillie 373 avançant depuis le flasque 327 du premier étage rotorique 310a. L'extrémité aval de la virole labyrinthe 350 est quant à elle analogue à celle du troisième exemple : elle comprend également une 35 portion de contact du type oblique 355, qui s'étend selon une direction oblique dont l'inclinaison forme le même angle p d'environ 55° par rapport à l'axe principal A, et repose sur la surface d'appui 376a d'une virole d'appui 374 analogue à celle du troisième exemple. Le dispositif d'entrainement en rotation de la virole labyrinthe 350 est encore différent dans ce quatrième exemple. Ici, des dents 357 avançant depuis la virole labyrinthe 350, plus précisément depuis l'intersection entre sa portion médiane 359 et sa portion de contact 354, engrènent dans des cannelures 378 du flasque 327. Ces cannelures sont de préférence ici usinées dans la portion inférieure de la saillie 373. Dans chacun de ces exemples, la virole labyrinthe 50 est de préférence continue sur 360° de telle sorte qu'elle est auto-portée dans la turbine 7 autour de l'axe principal A. Il serait toutefois également possible de concevoir une virole labyrinthe 450 fendue ou sectorisée afin de simplifier son montage ou de réduire les contraintes mécaniques tangentielles.On the other hand, its downstream end has an oblique configuration of a shape different from that of the second example. Here, the downstream rotor stage 210b further comprises a bearing shell 274, symmetrical of revolution, which comprises a hook portion 275, extending radially and engaging in a hook portion 271 similar to that of the first example, and an oblique bearing portion 276 whose outer surface 276a forms an oblique bearing surface whose inclination forms an angle ρ of about 55 ° with respect to the main axis A of the turbine 20. labyrinth ferrule 250 has at its downstream end a contact portion of the oblique type 255 which extends in an oblique direction, whose inclination forms the same angle p of about 550 relative to the main axis A, and rests on the bearing surface 276a of the bearing shell 276. Similarly, this oblique bearing surface 276a makes it possible to obtain a certain compensation for the radial displacements of the shell 250 caused by the radial and axial components of the expansion of the rotor stage 210b. The rotational driving device of the labyrinth ferrule 250 is also different from those of the first and second examples. Here, corresponding grooves 256 and 277 are respectively provided on the inner surface of the oblique contact portion 255 of the labyrinth ferrule 250 and on the bearing surface 276a of the bearing ferrule 276. FIG. 5 illustrates a fourth example Rotary assembly 307 similar in all respects to the first example except for the labyrinth shell 350 and its mounting between the rotor stages 310a and 310b, the labyrinth shell 350 being mounted here in an oblique / oblique configuration. However, in this fourth example, the upstream end of the labyrinth shell 350 is similar to that of the second example: it also comprises an oblique-type contact portion 354, which extends in an oblique direction whose inclination forms a At approximately 40 ° to the main axis A of the turbine 307, and rests on the outer surface 373a of a projection 373 advancing from the flange 327 of the first rotor stage 310a. The downstream end of the labyrinth sleeve 350 is similar to that of the third example: it also comprises a contact portion of the oblique type 355, which extends in an oblique direction whose inclination forms the same angle p approximately 55 ° relative to the main axis A, and rests on the bearing surface 376a of a bearing shell 374 similar to that of the third example. The device for rotating the labyrinth shell 350 is still different in this fourth example. Here, teeth 357 advancing from the labyrinth shell 350, more precisely from the intersection between its middle portion 359 and its contact portion 354, mesh in grooves 378 of the flange 327. These grooves are preferably here machined in the lower portion. 373. In each of these examples, the labyrinth sleeve 50 is preferably continuous over 360 ° so that it is self-supported in the turbine 7 around the main axis A. However, it would also be possible to design a labyrinth shell 450 split or sectored to simplify its assembly or reduce tangential mechanical stresses.

Néanmoins, dans un tel cas, il convient de mettre en place un dispositif de connexion étanche entre les secteurs 450a, 450b de la virole 450. De tels dispositifs sont présentés aux FIG 6 à 9. Une première solution, représentée à la FIG 6, est celle d'une étanchéité sous forme de clips : il s'agit de créer des sur-longueurs 491 lors du tissage de la virole labyrinthe 450, celles-ci seront par la suite repliées afin de créer une accroche pour une plaquette 495 munie elle aussi de pattes repliées 496, cette plaquette 495 permettant d'assurer l'étanchéité. Cette plaquette d'étanchéité 495 peut également être en CMC, ce qui limite les problématiques de dilatation différentielle ou de résistance à la température. Lors de la mise en rotation, la plaquette d'étanchéité 495 vient se plaquer contre la virole labyrinthe 450, sous l'effet de la force centrifuge d'une part et sous l'effet de l'ouverture des secteurs 450a, 450b de la 30 virole labyrinthe 450 d'autre part, et permet ainsi une bonne étanchéité. Par ailleurs, la longueur des différentes accroches 491 est dimensionnée en fonction de l'ouverture maximale de l'espace séparant les secteurs 450a, 450b lors du fonctionnement afin qu'à tout moment du fonctionnement la plaquette 495 soit d'une part retenue par la virole 450 35 et qu'aucune surcontrainte ne soit d'autre part exercée sur la plaquette 495 lors de l'ouverture des secteurs 450a, 450b.Nevertheless, in such a case, it is necessary to set up a device for sealing connection between the sectors 450a, 450b of the shell 450. Such devices are shown in FIGS. 6 to 9. A first solution, represented in FIG. 6, is that of sealing in the form of clips: it is to create over-lengths 491 during the weaving of the labyrinth shell 450, they will subsequently be folded to create a hook for a wafer 495 provided with it also folded tabs 496, this plate 495 for sealing. This sealing pad 495 can also be in CMC, which limits the problems of differential expansion or temperature resistance. During the rotation, the sealing plate 495 is pressed against the labyrinth shell 450, under the effect of the centrifugal force on the one hand and under the effect of the opening of the sectors 450a, 450b of the 30 labyrinth ferrule 450 on the other hand, and thus allows a good seal. Furthermore, the length of the different hooks 491 is dimensioned according to the maximum opening of the space separating the sectors 450a, 450b during operation so that at any moment of operation the wafer 495 is on the one hand retained by the 450 ferrule 35 and no over-stress is also exerted on the wafer 495 when opening sectors 450a, 450b.

Un blocage axial peut être aménagé sous la forme d'une petite encoche sur les accroches 491 repliées de la virole labyrinthe 450. Une seconde solution, représentée à la FIG 7, est celle d'une plaquette d'étanchéité 595 retenue par des déliaisons 592 de la virole labyrinthe 550 : cette solution est très similaire à la précédente et fonctionne de la même façon à ceci près que la plaquette 595 est cette fois retenue par des pattes 592 obtenues par déliaison de la structure tissée de la virole labyrinthe 550. Une troisième solution met en oeuvre une plaquette 695 munie d'un pied 697. Sous l'effet de la force centrifuge, la plaquette 695 vient se plaquer contre les secteurs 650a, 650b de la virole labyrinthe, créant ainsi une étanchéité. La rétention et l'entraînement en rotation de la plaquette 695 et des secteurs 650a, 650b peut être assurée à l'aide d'un dispositif d'accrochage crénelé analogue à celui décrit dans la demande de brevet français FR 13 57776 et représenté notamment sur les FIG 6 et 7 de cette demande : dans un tel dispositif d'accrochage crénelé, les pieds 697 et 698 de la plaquette 695 et des secteurs 650a, 650b de la virole labyrinthe 650 sont reçus entre les merlons du profil crénelé, aboutissant à un blocage axial et tangentiel de ces éléments tout en préservant leur liberté de mouvement selon la direction radiale. Les modes ou exemples de réalisation décrits dans le présent exposé sont donnés à titre illustratif et non limitatif, une personne du métier pouvant facilement, au vu de cet exposé, modifier ces modes ou exemples de réalisation, ou en envisager d'autres, tout en restant dans la portée de l'invention. De plus, les différentes caractéristiques de ces modes ou exemples de réalisation peuvent être utilisées seules ou être combinées entre elles. Lorsqu'elles sont combinées, ces caractéristiques peuvent l'être comme décrit ci-dessus ou différemment, l'invention ne se limitant pas aux combinaisons spécifiques décrites dans le présent exposé. En particulier, sauf précision contraire, une caractéristique décrite en relation avec un mode ou exemple de réalisation peut être appliquée de manière analogue à un autre mode ou exemple de réalisation.35Axial locking can be arranged in the form of a small notch on the folded hooks 491 of the labyrinth shell 450. A second solution, shown in FIG 7, is that of a sealing plate 595 retained by delimitations 592 labyrinth ferrule 550: this solution is very similar to the previous one and works in the same way except that the plate 595 is this time retained by legs 592 obtained by deliating the woven structure of the labyrinth shell 550. A third solution implements a wafer 695 provided with a foot 697. Under the effect of the centrifugal force, the wafer 695 is pressed against the sectors 650a, 650b of the labyrinth ferrule, thus creating a seal. The retention and the rotational drive of the wafer 695 and the sectors 650a, 650b can be provided by means of a crenellated fastening device similar to that described in the French patent application FR 13 57776 and represented in particular on FIGS. 6 and 7 of this application: in such a crenellated fastening device, the feet 697 and 698 of the plate 695 and the sectors 650a, 650b of the labyrinth shell 650 are received between the crenellated profile merlons, resulting in a Axial and tangential locking of these elements while preserving their freedom of movement in the radial direction. The modes or examples of embodiment described in the present description are given for illustrative and not limiting, a person skilled in the art can easily, in view of this presentation, modify these modes or embodiments, or consider others, while remaining within the scope of the invention. In addition, the various features of these modes or embodiments can be used alone or be combined with each other. When combined, these features may be as described above or differently, the invention not being limited to the specific combinations described herein. In particular, unless otherwise specified, a characteristic described in connection with a mode or example of embodiment may be applied in a similar manner to another embodiment or example embodiment.

Claims (15)

REVENDICATIONS1. Ensemble rotatif pour turbomachine, du type turbine ou compresseur, comprenant un rotor comportant - au moins deux étages rotoriques consécutifs (10a, 10b) munis d'une pluralité d'aubes mobiles (20), et 10 - une virole de rotor (50), annulaire, reliant lesdits deux étages rotoriques consécutifs (10a, 10b); un stator comportant - au moins un étage statorique (11), muni d'une pluralité d'aubes fixes (30), prévu entre lesdits deux étages rotoriques consécutifs (10a, 15 10b), et - un anneau de stator (60), annulaire, monté sur lesdites aubes fixes (30) ; dans lequel l'un (50) des éléments parmi la virole de rotor et l'anneau de stator porte au moins une léchette (51) configurée pour 20 coopérer avec une piste abradable (62) portée par l'autre (60) desdits éléments ; caractérisé en ce que la virole de rotor (50) comporte, à chacune de ses extrémités amont et aval, - soit une portion de contact du type axial (52, 53) s'étendant au-25 dessous d'une butée (71, 72) de l'étage rotorique correspondant, - soit une portion de contact du type oblique (354, 355) reposant sur une surface d'appui oblique (373a, 376a) de l'étage rotorique correspondant. 30REVENDICATIONS1. Turbomachine rotary assembly, of turbine or compressor type, comprising a rotor comprising - at least two consecutive rotor stages (10a, 10b) provided with a plurality of moving blades (20), and 10 - a rotor shell (50) , annular, connecting said two consecutive rotor stages (10a, 10b); a stator comprising - at least one stator stage (11), provided with a plurality of fixed blades (30), provided between said two consecutive rotor stages (10a, 10b), and - a stator ring (60), annular, mounted on said vanes (30); wherein one (50) of the rotor ferrule and the stator ring carries at least one wiper (51) configured to cooperate with an abradable track (62) carried by the other (60) of said elements. ; characterized in that the rotor shell (50) has, at each of its upstream and downstream ends, either an axial-type contact portion (52, 53) extending below a stop (71, 72) of the corresponding rotor stage, or an oblique-type contact portion (354, 355) resting on an oblique bearing surface (373a, 376a) of the corresponding rotor stage. 30 2. Ensemble rotatif selon la revendication 1, dans lequel le rotor est configuré de manière à bloquer axialement la virole de rotor (50) ou à la rappeler vers une position axiale stable.2. Rotary assembly according to claim 1, wherein the rotor is configured to axially lock the rotor sleeve (50) or to return to a stable axial position. 3. Ensemble rotatif selon la revendication 1 ou 2, dans lequel la 35 virole de rotor (50) comprend une portion d'extrémité, formant portion de contact du type axial (52), qui s'étend radialement vers l'extérieur ets'engage dans une portion de crochet (71) avançant axialement puis vers l'intérieur depuis une partie de base (28) de l'étage rotorique correspondant (10b).Rotary assembly according to claim 1 or 2, wherein the rotor shroud (50) comprises an end portion, forming an axial-type contact portion (52), which extends radially outwardly and engages in a hook portion (71) advancing axially and inwardly from a base portion (28) of the corresponding rotor stage (10b). 4. Ensemble rotatif selon l'une quelconque des revendications 1 à 3, dans lequel la virole de rotor comprend une portion d'extrémité, formant portion de contact du type axial (53), qui s'étend axialement et s'engage sous une saillie (72) avançant axialement depuis une partie de base (27) de l'étage rotorique correspondant (10a).4. Rotary assembly according to any one of claims 1 to 3, wherein the rotor shell comprises an end portion, forming an axial-type contact portion (53), which extends axially and engages under a protrusion (72) advancing axially from a base portion (27) of the corresponding rotor stage (10a). 5. Ensemble rotatif selon l'une quelconque des revendications 1 à 4, dans lequel une portion de contact du type oblique (154) possède la même inclinaison (À) que la surface d'appui oblique (173a) de l'étage rotorique correspondant (10a), et dans lequel l'inclinaison (À) de la portion de contact de type oblique (154) par rapport à l'axe principal (A) de l'ensemble rotatif (107) est comprise entre 15 et 75°.Rotary assembly according to any one of claims 1 to 4, wherein an oblique-type contact portion (154) has the same inclination (A) as the oblique bearing surface (173a) of the corresponding rotor stage. (10a), and wherein the inclination (A) of the oblique-type contact portion (154) with respect to the main axis (A) of the rotational assembly (107) is between 15 and 75 °. 6. Ensemble rotatif selon l'une quelconque des revendications 1 à 5, dans lequel une surface d'appui oblique d'un étage rotorique est la surface externe (173a) d'une saillie (173) avançant depuis une partie de base (127) de l'étage rotorique (10a).The rotary assembly according to any one of claims 1 to 5, wherein an oblique bearing surface of a rotor stage is the outer surface (173a) of a protrusion (173) advancing from a base portion (127). ) of the rotor stage (10a). 7. Ensemble rotatif selon l'une quelconque des revendications 1 à 6, dans lequel une surface d'appui oblique d'un étage rotorique est la surface externe (276a) d'une virole d'appui (274) rapportée sur ou formant partie intégrante d'une partie de base (228) de l'étage rotorique (10b).Rotary assembly according to any one of claims 1 to 6, wherein an oblique bearing surface of a rotor stage is the outer surface (276a) of a bearing shell (274) attached to or forming part integral with a base portion (228) of the rotor stage (10b). 8. Ensemble rotatif selon la revendication 8, dans lequel la virole d'appui (274) comporte une portion d'extrémité (275) qui s'étend radialement vers l'extérieur et s'engage dans une portion de crochet (271) avançant axialement puis vers l'intérieur depuis la partie de base (228) de l'étage rotorique (10b).8. A rotary assembly according to claim 8, wherein the support ring (274) comprises an end portion (275) which extends radially outwardly and engages in a portion of hook (271) advancing axially and then inward from the base portion (228) of the rotor stage (10b). 9. Ensemble rotatif selon l'une quelconque des revendications 1 à 8, dans lequel le rotor comprend un dispositif d'entraînement (42, 54)permettant d'entraîner la virole de rotor (50) en rotation lorsque les étages rotoriques (10a, 10b) tournent.Rotary assembly according to any one of claims 1 to 8, wherein the rotor comprises a drive device (42, 54) for driving the rotating rotor shell (50) when the rotor stages (10a, 10b) rotate. 10. Ensemble rotatif selon la revendication 9, dans lequel le dispositif d'entraînement comprend des saillies d'entraînement portées, pour certaines (42), par un élément (41) solidaire des étages rotoriques (10a, 10b) et, pour d'autres (54), par la virole de rotor (50) et configurées pour coopérer les unes avec les autres afin d'entraîner la virole de rotor (50) en rotation lorsque les étages rotoriques (10a, 10b) tournent.10. Rotary assembly according to claim 9, wherein the drive device comprises driving projections carried, some (42), by a member (41) secured to the rotor stages (10a, 10b) and, for d ' other (54), through the rotor shell (50) and configured to cooperate with each other to drive the rotor shell (50) in rotation as the rotor stages (10a, 10b) rotate. 11. Ensemble rotatif selon l'une quelconque des revendications 1 à 10, dans lequel la piste abradable (62) est portée par l'anneau de stator (60) et ladite au moins une léchette (51) est portée par la virole de rotor (50).Rotary assembly according to any one of claims 1 to 10, wherein the abradable track (62) is carried by the stator ring (60) and said at least one wiper (51) is carried by the rotor shell (50). 12. Ensemble rotatif selon l'une quelconque des revendications 1 à 11, dans lequel la virole de rotor (50) est réalisée en matériau composite à matrice céramique.12. Rotary assembly according to any one of claims 1 to 11, wherein the rotor ferrule (50) is made of ceramic matrix composite material. 13. Ensemble rotatif selon l'une quelconque des revendications 1 à 12, dans lequel l'anneau de stator (60) est monté sur les aubes fixes (30) par l'intermédiaire d'un dispositif d'accrochage mettant en jeu une pluralité de fentes radiales (66), chaque fente (66) étant pratiquée dans une patte radiale (63) de l'anneau de stator (60) ou une patte radiale (35) solidaire des aubes fixes (31), et une pluralité de pions (67), chaque pion (67) étant porté par une patte radiale (63) de l'anneau de stator (60) ou une patte radiale (35) solidaire des aubes fixes (30) et configuré pour s'engager dans une fente (66) correspondante desdites fentes radiales.Rotary assembly according to any one of claims 1 to 12, wherein the stator ring (60) is mounted on the vanes (30) via a coupling device involving a plurality radial slots (66), each slot (66) being formed in a radial lug (63) of the stator ring (60) or a radial lug (35) integral with the vanes (31), and a plurality of pins (67), each pin (67) being carried by a radial lug (63) of the stator ring (60) or a radial lug (35) integral with the vanes (30) and configured to engage a slot (66) corresponding said radial slots. 14. Ensemble rotatif selon la revendication 13, dans lequel l'anneau de stator (60) et la virole de rotor (50) possèdent des coefficients de dilatation thermique égaux à ±10%.The rotary assembly of claim 13, wherein the stator ring (60) and the rotor ferrule (50) have thermal expansion coefficients of ± 10%. 15. Turbomachine, comprenant un ensemble rotatif (7) selon l'une quelconque des revendications précédentes.15. Turbomachine, comprising a rotary assembly (7) according to any one of the preceding claims.
FR1459889A 2014-10-15 2014-10-15 ROTARY ASSEMBLY FOR TURBOMACHINE INCLUDING A SELF-PROPORTED ROTOR CRANKSET Active FR3027341B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FR1459889A FR3027341B1 (en) 2014-10-15 2014-10-15 ROTARY ASSEMBLY FOR TURBOMACHINE INCLUDING A SELF-PROPORTED ROTOR CRANKSET
US15/519,351 US20170226861A1 (en) 2014-10-15 2015-10-15 Rotary assembly for a turbine engine comprising a self-supported rotor collar
CN201580062098.6A CN107002690B (en) 2014-10-15 2015-10-15 Rotating assembly for a turbine engine comprising a self-supporting rotor casing
RU2017115405A RU2712560C2 (en) 2014-10-15 2015-10-15 Rotary assembly for turbine engine comprising self-supporting rotor casing
CA2966126A CA2966126C (en) 2014-10-15 2015-10-15 Rotary assembly for a turbine engine comprising a self-supported rotor collar
BR112017007761-2A BR112017007761B1 (en) 2014-10-15 2015-10-15 ROTATING ASSEMBLY FOR A TURBOMACHINE AND TURBOMACHINE
PCT/FR2015/052776 WO2016059348A1 (en) 2014-10-15 2015-10-15 Rotary assembly for a turbine engine comprising a self-supported rotor collar
EP15804160.8A EP3207221B1 (en) 2014-10-15 2015-10-15 Rotating assembly for turbomachine and turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1459889A FR3027341B1 (en) 2014-10-15 2014-10-15 ROTARY ASSEMBLY FOR TURBOMACHINE INCLUDING A SELF-PROPORTED ROTOR CRANKSET

Publications (2)

Publication Number Publication Date
FR3027341A1 true FR3027341A1 (en) 2016-04-22
FR3027341B1 FR3027341B1 (en) 2020-10-23

Family

ID=52824303

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1459889A Active FR3027341B1 (en) 2014-10-15 2014-10-15 ROTARY ASSEMBLY FOR TURBOMACHINE INCLUDING A SELF-PROPORTED ROTOR CRANKSET

Country Status (1)

Country Link
FR (1) FR3027341B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075253A1 (en) * 2017-12-20 2019-06-21 Safran Aircraft Engines SHOCK ABSORBER DEVICE
FR3080646A1 (en) * 2018-04-26 2019-11-01 Safran Aircraft Engines SEALING BETWEEN A FIXED WHEEL AND A MOBILE WHEEL OF A TURBOMACHINE
CN111520360A (en) * 2019-02-04 2020-08-11 赛峰航空助推器股份有限公司 Mixing rotor with segmented drum portion
US11208909B2 (en) 2017-06-13 2021-12-28 Safran Aircraft Engines Turbine engine and air-blowing sealing method
CN113891984A (en) * 2019-05-29 2022-01-04 赛峰飞机发动机公司 Dynamic seal for a turbomachine comprising a multilayer wear-resistant component
FR3120092A1 (en) * 2021-02-24 2022-08-26 Safran Aircraft Engines Impeller sealing ring
WO2023012414A1 (en) * 2021-08-05 2023-02-09 Safran Aircraft Engines Guide vane assembly for a turbomachine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264964A1 (en) * 2001-06-07 2002-12-11 Snecma Moteurs Arrangement for turbomachine rotor with two blade discs separated by a spacer
EP2236769A2 (en) * 2009-03-24 2010-10-06 General Electric Company Method and apparatus for turbine interstage seal ring
US20120051917A1 (en) * 2010-08-31 2012-03-01 Daniel Edward Wines Tapered collet connection of rotor components
EP2639409A2 (en) * 2012-03-12 2013-09-18 General Electric Company Turbine interstage seal system
DE102012014109A1 (en) * 2012-07-17 2014-01-23 Rolls-Royce Deutschland Ltd & Co Kg Washer seal for use in gas turbine engine, has sealing ring, which is arranged between radially outer sections of rotor disks and is clamped between rotor disks in axial direction, where sealing elements are arranged on sealing ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264964A1 (en) * 2001-06-07 2002-12-11 Snecma Moteurs Arrangement for turbomachine rotor with two blade discs separated by a spacer
EP2236769A2 (en) * 2009-03-24 2010-10-06 General Electric Company Method and apparatus for turbine interstage seal ring
US20120051917A1 (en) * 2010-08-31 2012-03-01 Daniel Edward Wines Tapered collet connection of rotor components
EP2639409A2 (en) * 2012-03-12 2013-09-18 General Electric Company Turbine interstage seal system
DE102012014109A1 (en) * 2012-07-17 2014-01-23 Rolls-Royce Deutschland Ltd & Co Kg Washer seal for use in gas turbine engine, has sealing ring, which is arranged between radially outer sections of rotor disks and is clamped between rotor disks in axial direction, where sealing elements are arranged on sealing ring

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208909B2 (en) 2017-06-13 2021-12-28 Safran Aircraft Engines Turbine engine and air-blowing sealing method
FR3075253A1 (en) * 2017-12-20 2019-06-21 Safran Aircraft Engines SHOCK ABSORBER DEVICE
US11466571B1 (en) 2017-12-20 2022-10-11 Safran Aircraft Engines Damping device
FR3080646A1 (en) * 2018-04-26 2019-11-01 Safran Aircraft Engines SEALING BETWEEN A FIXED WHEEL AND A MOBILE WHEEL OF A TURBOMACHINE
CN111520360A (en) * 2019-02-04 2020-08-11 赛峰航空助推器股份有限公司 Mixing rotor with segmented drum portion
CN111520360B (en) * 2019-02-04 2024-04-12 赛峰航空助推器股份有限公司 Mixing rotor with segmented drum
CN113891984A (en) * 2019-05-29 2022-01-04 赛峰飞机发动机公司 Dynamic seal for a turbomachine comprising a multilayer wear-resistant component
FR3120092A1 (en) * 2021-02-24 2022-08-26 Safran Aircraft Engines Impeller sealing ring
WO2022180330A1 (en) * 2021-02-24 2022-09-01 Safran Aircraft Engines Turbine sealing ring
WO2023012414A1 (en) * 2021-08-05 2023-02-09 Safran Aircraft Engines Guide vane assembly for a turbomachine
FR3126014A1 (en) * 2021-08-05 2023-02-10 Safran Aircraft Engines Distributor for turbomachinery

Also Published As

Publication number Publication date
FR3027341B1 (en) 2020-10-23

Similar Documents

Publication Publication Date Title
EP3207221B1 (en) Rotating assembly for turbomachine and turbomachine
FR3027343B1 (en) ROTARY ASSEMBLY FOR TURBOMACHINE COMPRISING A SELF-DOOR STATOR RING
FR3027341A1 (en) ROTARY ASSEMBLY FOR TURBOMACHINE COMPRISING A SELF-RACKED ROTOR VIROLE
CA2518355C (en) Retention of centring keys of the rings under the variable setting stator blades of a gas turbine engine
CA2854679C (en) Impeller for a turbomachine
CA2641963C (en) Blade tip clearance control for a turbine engine high-pressure turbine
EP3597864B1 (en) Sealing assembly for a turbine rotor of a turbine engine and turbine of a turbine engine comprising such an assembly
CA2925438C (en) Rotary assembly for a turbomachine
CA2882320A1 (en) Turbine rotor for a turbomachine
CA2952752A1 (en) Rotary assembly for turbomachine
FR3020408A1 (en) ROTARY ASSEMBLY FOR TURBOMACHINE
FR2973433A1 (en) Turbine rotor for low pressure turbomachine e.g. turbojet of aircraft, has upstream and downstream disks arranged coaxially, and bearing unit supporting end portion of flange to prevent deviation of flange of downstream disk
FR3001759A1 (en) ROUGE AUBAGEE OF TURBOMACHINE
FR3011031A1 (en) ROTARY ASSEMBLY FOR TURBOMACHINE
FR2919345A1 (en) Cylindrical or truncated ring for e.g. jet prop engine, has internal slots housing internal blades between discharge ends of channels and internal longitudinal edges of radial surfaces, where blades extend on axial length of ring sectors
FR2978793A1 (en) Turbine rotor for e.g. turbojet engine of aircraft, has annular ring deformed or moved in order to compensate deformation/displacement of plate so as to ensure sealing of annular space irrespective of position of plate
FR3029960A1 (en) AUBES WHEEL WITH RADIAL SEAL FOR A TURBOMACHINE TURBINE
FR2973829A1 (en) SEALING PLATE FOR AIRCRAFT TURBINE TURBINE TURBINE, COMPRISING ANTI-ROTATING FENSE TENONS
FR2926612A1 (en) Rotor drum for e.g. turbo-jet engine of aircraft, has cooling units at internal surface and at right of sealing elements to exchange heat by convection between wall and cooling and ventilation air circulating inside walls and between disks
FR2960589A1 (en) Paddle wheel i.e. low pressure turbine wheel, for turboshaft engine e.g. turbopropeller, of airplane, has sealing units arranged between piece and upstream ends of platforms of paddles
FR3009336A1 (en) ROTARY TURBOMACHINE ASSEMBLY WITH A VIROLE LABYRINTHE CMC
FR3066533B1 (en) SEALING ASSEMBLY FOR A TURBOMACHINE
FR2994453A1 (en) Radial inner assembly for bladed ring sector of compressor stator or turbine of e.g. turbojet engine of aircraft, has anti-rotation edge whose length is greater than maximum spacing distance between projections of casing head
FR2997128A1 (en) Guide vane e.g. fixed guide vane for e.g. turbojet engine, of aircraft, has annular hook engaged on cylindrical edge of internal wall, and annular rib co-operating with support face of wall to prevent hook from being disengaged from wall
FR3085708A1 (en) IMPROVED SEALING DEVICE FOR ROTARY TURBOMACHINE ASSEMBLY

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160422

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

CD Change of name or company name

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11