FR3024875A1 - ELECTRODE FOAM METALLIC - Google Patents

ELECTRODE FOAM METALLIC Download PDF

Info

Publication number
FR3024875A1
FR3024875A1 FR1401868A FR1401868A FR3024875A1 FR 3024875 A1 FR3024875 A1 FR 3024875A1 FR 1401868 A FR1401868 A FR 1401868A FR 1401868 A FR1401868 A FR 1401868A FR 3024875 A1 FR3024875 A1 FR 3024875A1
Authority
FR
France
Prior art keywords
electrode
coating
foam
metal
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1401868A
Other languages
French (fr)
Other versions
FR3024875B1 (en
Inventor
Michel Pillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMC SARL
Original Assignee
AMC SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMC SARL filed Critical AMC SARL
Priority to FR1401868A priority Critical patent/FR3024875B1/en
Publication of FR3024875A1 publication Critical patent/FR3024875A1/en
Application granted granted Critical
Publication of FR3024875B1 publication Critical patent/FR3024875B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Electrode pour électrolyte constituée d'une plaque de mousse métallique caractérisée en ce que ladite mousse est constituée d'un squelette de mousse de métal choisi dans le groupe consistant en fer, cobalt, nickel et leurs alliages recouvert d'au moins un revêtement en étain, indium, titane, platine, ruthénium, palladium, ou un de leurs alliages.Electrolyte electrode consisting of a metal foam plate characterized in that said foam consists of a metal foam skeleton selected from the group consisting of iron, cobalt, nickel and their alloys covered with at least one tin coating , indium, titanium, platinum, ruthenium, palladium, or an alloy thereof.

Description

1 La présente invention concerne les électrodes utilisées dans l'électrolyse ainsi que les électrodes utilisées dans la générateurs de courant tels que les piles et les batteries, et concerne en particulier une électrode en mousse métallique. Aujourd'hui, il est connu d'utiliser des électrodes, anodes et cathodes, composées d'une mousse de métal, par exemple du nickel, que ce soit des électrodes utilisées dans des cuves à électrolyse ou dans les générateurs de courant (piles, batteries). Une électrode composée de mousse métallique présente un avantage considérable du fait qu'elle présente une surface réelle développée bien supérieure à une électrode de même dimension formée d'une plaque de métal, et donc présente une conductance à l'interface entre l'électrolyte et l'électrode bien plus grande. En outre, par rapport à une surface de métal plane, le dégagement des bulles de gaz qui a lieu normalement affecte très peu la surface de contact avec l'électrolyte du fait que les bulles de gaz sont expulsées rapidement des alvéoles de la mousse parc que leur volume augmente qui augmente dépasse très vite le volume des alvéoles de la mousse. Toutefois il s'avère que les électrodes actuelles en mousse composées d'un seul métal présentent une conductance 25 limitée à l'interface entre l'électrolyte et l'électrode. C'est pourquoi le but de l'invention est de fournir une électrode métallique dont la conductance à l'interface entre l'électrolyte et l'électrode est maximale. Ce résultat inattendu a été obtenu en utilisant 30 plusieurs revêtements de métaux différents composant la mousse L'objet de l'invention est donc une électrode pour électrolyte constituée d'une plaque de mousse métallique caractérisée en ce que ladite mousse est constituée d'un 35 squelette de mousse de métal choisi dans le groupe consistant en fer, cobalt, nickel et leurs alliages 3024875 2 recouvert d'au moins un revêtement d'étain, d'indium, de platine ou un de leurs alliages. Les buts, objets et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description 5 qui suit. Comme énoncé ci-dessus, la mousse métallique composant l'électrode selon l'invention est une mousse à cellules ouvertes composée d'un squelette de mousse de métal choisi parmi le groupe consistant en fer, cobalt, nickel et leurs 10 alliages recouvert d'au moins un revêtement métallique tel qu'un revêtement en étain, indium, platine ou un de leurs alliages. L'obtention du squelette de mousse peut se faire par électrolyse. Dans ce cas, une plaque de mousse de matière 15 plastique telle qu'une mousse de polyuréthane est rendue électriquement conductrice et est utilisée comme cathode dans un bain électrolytique, ce qui permet de recouvrir toutes les surfaces des alvéoles ou cellules ouvertes de la mousse par une couche de métal.The present invention relates to the electrodes used in the electrolysis as well as the electrodes used in the current generators such as batteries and batteries, and relates in particular to a metal foam electrode. Today, it is known to use electrodes, anodes and cathodes, composed of a metal foam, for example nickel, whether electrodes used in electrolytic cells or in current generators (batteries, batteries). An electrode composed of metal foam has a considerable advantage in that it has a real developed surface much greater than an electrode of the same size formed of a metal plate, and therefore has a conductance at the interface between the electrolyte and the much larger electrode. In addition, with respect to a flat metal surface, the normally occurring bubble gas release has very little effect on the electrolyte contact surface because the gas bubbles are rapidly expelled from the cells of the foam pool. their volume increases which increases very quickly exceeds the volume of the cells of the foam. However, it turns out that current foam electrodes composed of a single metal have a conductance limited to the interface between the electrolyte and the electrode. This is why the object of the invention is to provide a metal electrode whose conductance at the interface between the electrolyte and the electrode is maximum. This unexpected result was obtained by using several different metal coatings making up the foam. The object of the invention is therefore an electrolyte electrode consisting of a metal foam plate characterized in that said foam consists of metal foam skeleton selected from the group consisting of iron, cobalt, nickel and their alloys 3024875 2 coated with at least one coating of tin, indium, platinum or an alloy thereof. The objects, objects and features of the invention will appear more clearly on reading the description which follows. As stated above, the metal foam composing the electrode according to the invention is an open cell foam composed of a metal foam skeleton selected from the group consisting of iron, cobalt, nickel and their alloys coated with at least one metal coating such as a coating of tin, indium, platinum or an alloy thereof. The skeleton of foam can be obtained by electrolysis. In this case, a plastic foam plate such as a polyurethane foam is made electrically conductive and is used as a cathode in an electrolytic bath, thereby covering all surfaces of the cells or open cells of the foam by a layer of metal.

20 Une deuxième méthode d'obtention de la plaque de mousse métallique consiste à déposer le métal par la technique du dépôt sous vide. Mais la meilleure méthode consiste en une première étape d'activation de la mousse de matière plastique par dépôt chimique d'une couche de métal de faible épaisseur suivie d'une seconde étape d'électrolyse pendant laquelle une couche du même métal d'épaisseur adéquate est déposée par électrolyse. Après le dépôt de la couche de métal, on se débarrasse 30 du polyuréthane par un procédé adéquat, par exemple par brûlage dans un four. Le polyuréthane brûle et disparaît, ne laissant qu'un squelette constitué exclusivement de métal. La structure de la mousse obtenue est alvéolaire et ses propriétés physiques sont principalement une porosité et une 35 déformabilité élevées afin de réduire la résistance 3024875 3 électrique de la connexion, ainsi qu'une faible densité de l'ordre de 400g/m. Une caractéristique essentielle de l'invention est que le squelette de mousse métallique est recouvert d'un premier 5 revêtement en étain, indium, titane, platine, ruthénium, palladium ou un de leurs alliages par électrolyse ou tout autre procédé (projection, immersion dans un bain...) de telle sorte que toute la surface alvéolaire soit revêtue de métal. A noter que le premier revêtement peut être également 10 recouvert de plusieurs autres revêtements d'un métal différent de celui du premier revêtement. Par exemple, si le premier revêtement est en étain ou titane, le deuxième revêtement peut être en indium, platine ou ruthénium. Le choix du fer, du cobalt, du nickel ou d'un de leurs 15 alliages qui sont des métaux présentant une grande dureté, permet d'obtenir une électrode présentant une rigidité indispensable pour la bonne tenue de l'électrode. A noter que la rigidité de l'électrode peut être améliorée en repliant les bords de la plaque de mousse ou en 20 disposant la mousse dans un cadre rigide en métal. Selon un mode de réalisation préférentiel de l'invention, l'électrode est composée d'un squelette en mousse de nickel recouvert d'un revêtement d'étain ou de titane. Comme déjà mentionné, l'électrode selon l'invention peut 25 être une électrode (anode ou cathode) utilisée dans une cuve à électrolyse, ou dans un générateur de courant, pile ou batterie, comme par exemple une batterie au lithium ou une pile à combustible.A second method of obtaining the metal foam plate is to deposit the metal by the vacuum deposition technique. But the best method consists in a first step of activating the plastic foam by chemical deposition of a thin metal layer followed by a second electrolysis step during which a layer of the same metal of adequate thickness is deposited by electrolysis. After the deposition of the metal layer, the polyurethane is removed by a suitable method, for example by burning in an oven. Polyurethane burns and disappears, leaving only a skeleton made exclusively of metal. The structure of the foam obtained is cellular and its physical properties are mainly high porosity and deformability in order to reduce the electrical resistance of the connection, as well as a low density of the order of 400 g / m 2. An essential feature of the invention is that the metal foam skeleton is coated with a first coating of tin, indium, titanium, platinum, ruthenium, palladium or an alloy thereof by electrolysis or any other process (spraying, immersion in a bath ...) so that the entire alveolar surface is coated with metal. It should be noted that the first coating may also be covered with several other coatings of a metal different from that of the first coating. For example, if the first coating is tin or titanium, the second coating may be indium, platinum or ruthenium. The choice of iron, cobalt, nickel or one of their alloys, which are metals having a high hardness, makes it possible to obtain an electrode having a rigidity essential for the good behavior of the electrode. Note that the rigidity of the electrode can be improved by folding the edges of the foam plate or by placing the foam in a rigid metal frame. According to a preferred embodiment of the invention, the electrode is composed of a nickel foam skeleton covered with a coating of tin or titanium. As already mentioned, the electrode according to the invention may be an electrode (anode or cathode) used in an electrolytic cell, or in a current generator, battery or battery, such as for example a lithium battery or a battery. combustible.

Claims (10)

REVENDICATIONS1. Electrode pour électrolyte constituée d'une plaque de mousse métallique caractérisée en ce que ladite mousse est constituée d'un squelette de mousse de métal choisi dans le groupe consistant en fer, cobalt, nickel et leurs alliages recouvert d'au moins un revêtement en étain, indium, titane, platine, ruthénium, palladium, ou un de leurs alliages.;REVENDICATIONS1. Electrolyte electrode consisting of a metal foam plate characterized in that said foam consists of a metal foam skeleton selected from the group consisting of iron, cobalt, nickel and their alloys covered with at least one tin coating indium, titanium, platinum, ruthenium, palladium, or an alloy thereof; 2. Electrode selon la revendication 1, dans laquelle 10 ledit squelette en mousse de métal est un squelette de mousse de nickel.The electrode of claim 1, wherein said metal foam skeleton is a nickel foam skeleton. 3. Electrode selon la revendication 2, dans laquelle ledit squelette en mousse de nickel est recouvert d'un revêtement en étain.An electrode according to claim 2, wherein said nickel foam skeleton is coated with a tin coating. 4. Electrode selon la revendication 2, dans laquelle ledit squelette en mousse de nickel est recouvert d'un revêtement en titane.The electrode of claim 2, wherein said nickel foam skeleton is coated with a titanium coating. 5. Electrode selon la revendication 3 ou 4, dans laquelle ledit revêtement en étain ou titane est recouvert d'un 20 revêtement en indium, platine ou ruthénium.An electrode according to claim 3 or 4, wherein said tin or titanium coating is coated with a coating of indium, platinum or ruthenium. 6. Electrode selon la revendication 2, dans laquelle ledit squelette en mousse de nickel est recouvert d'un revêtement de platine.The electrode of claim 2, wherein said nickel foam skeleton is covered with a platinum coating. 7. Electrode selon l'une des revendications 1 à 6, dans 25 laquelle les bords sont repliés de façon à améliorer la rigidité de l'électrode.Electrode according to one of claims 1 to 6, wherein the edges are folded so as to improve the rigidity of the electrode. 8. Electrode selon l'une des revendications 1 à 7, utilisée comme anode ou cathode dans une cuve à électrolyse.8. Electrode according to one of claims 1 to 7, used as anode or cathode in an electrolytic cell. 9. Electrode selon l'une des revendications 1 à 7, 30 utilisée comme anode ou cathode dans un générateur de courant tel qu'une pile ou une batterie.9. An electrode according to one of claims 1 to 7, 30 used as anode or cathode in a current generator such as a battery or a battery. 10. Electrode selon la revendication 9, dans laquelle ledit générateur de courant est une pile au lithium ou une pile à combustible.The electrode of claim 9, wherein said current generator is a lithium battery or a fuel cell.
FR1401868A 2014-08-14 2014-08-14 ELECTRODE FOAM METALLIC Active FR3024875B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1401868A FR3024875B1 (en) 2014-08-14 2014-08-14 ELECTRODE FOAM METALLIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401868A FR3024875B1 (en) 2014-08-14 2014-08-14 ELECTRODE FOAM METALLIC
FR1401868 2014-08-14

Publications (2)

Publication Number Publication Date
FR3024875A1 true FR3024875A1 (en) 2016-02-19
FR3024875B1 FR3024875B1 (en) 2019-05-31

Family

ID=52465393

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1401868A Active FR3024875B1 (en) 2014-08-14 2014-08-14 ELECTRODE FOAM METALLIC

Country Status (1)

Country Link
FR (1) FR3024875B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187350A (en) * 1978-09-05 1980-02-05 The Dow Chemical Company Porous catalyzed electrode provision and technique
CN101435095A (en) * 2008-12-05 2009-05-20 西北有色金属研究院 Method for electroplating metal on surface of stephanoporate metal product
WO2012007701A1 (en) * 2010-07-16 2012-01-19 Amc Electrical connection device having improved conductance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187350A (en) * 1978-09-05 1980-02-05 The Dow Chemical Company Porous catalyzed electrode provision and technique
CN101435095A (en) * 2008-12-05 2009-05-20 西北有色金属研究院 Method for electroplating metal on surface of stephanoporate metal product
WO2012007701A1 (en) * 2010-07-16 2012-01-19 Amc Electrical connection device having improved conductance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIA VAN DRUNEN ET AL: "Electrochemically Active Nickel Foams as Support Materials for Nanoscopic Platinum Electrocatalysts", ACS APPLIED MATERIALS & INTERFACES, vol. 6, no. 15, 16 July 2014 (2014-07-16), pages 12046 - 12061, XP055190376, ISSN: 1944-8244, DOI: 10.1021/am501097t *

Also Published As

Publication number Publication date
FR3024875B1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
Sun et al. Development of PVD coatings for PEMFC metallic bipolar plates
Mabille et al. Mechanism of dissolution of a Cu–13Sn alloy in low aggressive conditions
JP2009540508A5 (en)
CN105917505A (en) Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
CN105934842A (en) Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
FR2511395A1 (en) ZINC ALLOY FOR USE IN ELECTRODE CONFECTION
Song et al. Fabrication and characterization of micro‐arc oxidation (MAO) coatings on Mg‐Li alloy in alkaline polyphosphate electrolytes without and with the addition of K2TiF6
FR2962856A1 (en) ELECTRICAL CONNECTION DEVICE WITH IMPROVED CONDUCTANCE
WO2009045567A3 (en) Electrochemical cells and methods for generating fuel
EP2491608A1 (en) Interconnector for a high-temperature solid oxide fuel cell and electrolyser
TWI570997B (en) Stainless steel foil for separator for solid polymer fuel cell
JP2015224368A (en) Titanium alloy used for separator material for fuel cell and production method of separator material
FR3024875A1 (en) ELECTRODE FOAM METALLIC
EP2904615B1 (en) Powder and paste for improving the conductivity of electrical connections
JP2017047466A (en) Ni-PLATED STEEL FOIL, BATTERY CONDUCTIVE MEMBER, AND MANUFACTURING METHOD OF Ni-PLATED STEEL FOIL
EP3126546B1 (en) Electrochemical cell for the electrolysis of water in steam or liquid form, manufacturing method and uses
JP5741934B2 (en) Mg alloy member and casing of electric device
WO2006111837A2 (en) Method for production of foamed metal
US20170216831A1 (en) Method of preparing platinum-based catalyst and platinum-based catalyst
Wei et al. Microstructure and corrosion resistance studies of PEO coated Mg alloys with a HF and US pretreatment
JP5571301B2 (en) Ultrathin plating layer and manufacturing method thereof
JP2007302935A (en) Ni plated steel sheet for positive electrode can of alkali battery and method of manufacturing the same
JP7059877B2 (en) Terminal material for connectors and terminals for connectors
EP3830310A1 (en) Coating for decreasing the contact resistance of a passive metal substrate before application of a conductive layer providing corrosion resistance

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160219

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11