FR3020227A1 - IMPROVED NOMADE DEVICE - Google Patents

IMPROVED NOMADE DEVICE Download PDF

Info

Publication number
FR3020227A1
FR3020227A1 FR1453553A FR1453553A FR3020227A1 FR 3020227 A1 FR3020227 A1 FR 3020227A1 FR 1453553 A FR1453553 A FR 1453553A FR 1453553 A FR1453553 A FR 1453553A FR 3020227 A1 FR3020227 A1 FR 3020227A1
Authority
FR
France
Prior art keywords
detector
signal
acoustic
chirp
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1453553A
Other languages
French (fr)
Other versions
FR3020227B1 (en
Inventor
Romain Deprez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stimshop
Original Assignee
Stimshop
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stimshop filed Critical Stimshop
Priority to FR1453553A priority Critical patent/FR3020227B1/en
Priority to EP15725740.3A priority patent/EP3132549B1/en
Priority to PCT/FR2015/051023 priority patent/WO2015159024A1/en
Publication of FR3020227A1 publication Critical patent/FR3020227A1/en
Application granted granted Critical
Publication of FR3020227B1 publication Critical patent/FR3020227B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves

Abstract

Un dispositif nomade comprend au moins un microphone (201), et un démodulateur (205) de signal à modulation chirp. Le dispositif comprend en outre un détecteur (204) agencé pour déterminer une valeur d'énergie acoustique dans au moins une bande de fréquences ultrasons d'un signal acoustique tiré du microphone (201), et le démodulateur (205) est agencé pour démoduler un signal acoustique tiré du microphone (201) en réponse à la détermination par le détecteur (204) d'une valeur d'énergie acoustique supérieure à une valeur seuil.A nomadic device includes at least one microphone (201), and a chirp modulated signal demodulator (205). The device further comprises a detector (204) arranged to determine an acoustic energy value in at least one ultrasonic frequency band of an acoustic signal from the microphone (201), and the demodulator (205) is arranged to demodulate a acoustic signal from the microphone (201) in response to the detector (204) determining an acoustic energy value greater than a threshold value.

Description

Dispositif nomade amélioré L'invention concerne la transmission de données par un signal ultrasonore.Improved nomadic device The invention relates to the transmission of data by an ultrasonic signal.

La démocratisation des appareils mobiles connectés, en particulier les téléphones ou « smartphones », ouvre de nombreuses perspectives de développement en termes de communication de proximité et de marketing ciblé. Récemment, il a été constaté que les microphones des téléphones portables pouvaient capter, des fréquences dépassant légèrement la plage des fréquences acoustiques audibles pour l'oreille humaine (d'environ 20Hz jusqu'à 18kHz) et appartenant au domaine des ultrasons (de 18kHz jusqu'à environ 25kHz). Or, de nombreux magasins disposent de systèmes de diffusion sonore pour créer des ambiances dans les points de vente, et leurs émissions sont souvent audibles à plusieurs mètres du point de vente. Il a donc été imaginé d'utiliser la bande des ultrasons de ces systèmes, pour transmettre des données à des téléphones portables à proximité de la source ultrasonore. En effet, les ultrasons sont généralement inaudibles pour l'oreille humaine, et les systèmes de diffusion sonore existants permettent l'utilisation de cette bande. À ce sujet, on peut par exemple citer les documents WO 2011/014292 et EP 2 574 021. La modulation d'ondes ultrasonores à fins de communication et d'échange de données existe par ailleurs depuis de nombreuses années et a notamment été développée pour des applications militaires de type sonar et communication sous-marine. Des applications civiles ont également été envisagées, les documents EP 1 906 696, WO 97/31437 et US 6 607 136 en décrivent des exemples. Cependant, ces applications utilisent des solutions matérielles non adaptables sur des téléphones portables, et peuvent utiliser des fréquences élevées, de l'ordre du MHz. À l'inverse, les ultrasons exploitables par les téléphones portables présentent des fréquences relativement faibles. Les ondes ultrasonores peuvent subir de nombreuses altérations susceptibles de perturber leur bonne réception et leur décodage. Ainsi, le signal peut subir divers phénomènes d'atténuation, mais également des perturbations par effet Doppler (dû au déplacement de l'utilisateur du téléphone), par propagation multidirectionnelle et réverbération sur l'environnement, par superposition des ondes, etc.The democratization of connected mobile devices, in particular phones or "smartphones", opens up many development prospects in terms of proximity communication and targeted marketing. Recently, it has been found that mobile phone microphones can pick up frequencies slightly above the range of acoustic frequencies audible to the human ear (from about 20 Hz to 18 kHz) and belonging to the field of ultrasound (from 18 kHz at about 25kHz). However, many stores have sound distribution systems to create moods in sales outlets, and their emissions are often audible several meters from the point of sale. It has therefore been imagined to use the ultrasound band of these systems, to transmit data to mobile phones near the ultrasonic source. Indeed, ultrasound is generally inaudible to the human ear, and existing sound diffusion systems allow the use of this band. In this regard, one can cite for example WO 2011/014292 and EP 2 574 021. The modulation of ultrasonic waves for communication and data exchange purposes has also existed for many years and has notably been developed for military applications such as sonar and underwater communication. Civil applications have also been envisaged, the documents EP 1 906 696, WO 97/31437 and US 6 607 136 describe examples thereof. However, these applications use non-adaptable hardware solutions on mobile phones, and can use high frequencies in the MHz range. Conversely, ultrasound that can be used by mobile phones has relatively low frequencies. Ultrasound waves can undergo many alterations that can disrupt their reception and decoding. Thus, the signal can undergo various attenuation phenomena, but also disturbances by Doppler effect (due to the movement of the user of the telephone), multidirectional propagation and reverberation on the environment, by superposition of waves, etc.

Des travaux de recherche ont proposé une solution pour pallier ces difficultés en utilisant une modulation à étalement de spectre basée sur une modulation linéaire de fréquence (LFM en anglais, pour « linear frequency modulation »), également désignée par le terme « chirp ». Ce type de modulation améliore la résistance du signal aux perturbations, mais la démodulation est beaucoup plus complexe. Il en résulte un coût de démodulation en termes de temps de calcul et d'énergie consommée qui est incompatible avec une application sur un dispositif nomade. En effet, les dispositifs nomades comme les téléphones portables possèdent une autonomie et une puissance de calcul limitées. Il ne leur est donc pas possible de réaliser une écoute avec démodulation en permanence, du fait la démodulation du signal avec modulation chirp est une opération gourmande en termes de ressources de calcul et par voie de conséquence très consommatrice d'énergie. De plus, une telle solution n'est pas satisfaisante en termes de marketing car elle ne permet pas un fonctionnement continu en tâche de fond. L'utilisateur doit donc allumer et éteindre l'application avant et après être entré dans le lieu de vente. Cela est gênant tant d'un point de vue pratique que commercial. En effet, le but est de pousser un service vers l'utilisateur sans que celui-ci n'ait à agir, ce qui est incompatible avec cette pratique.Research has proposed a solution to overcome these difficulties by using a spread spectrum modulation based on a linear frequency modulation (LFM), also referred to as "chirp". This type of modulation improves the resistance of the signal to the disturbances, but the demodulation is much more complex. This results in a cost of demodulation in terms of computing time and consumed energy that is incompatible with an application on a nomadic device. Indeed, nomadic devices such as mobile phones have limited autonomy and computing power. It is therefore not possible for them to perform a listening with demodulation permanently, because the demodulation of the signal with chirp modulation is a greedy operation in terms of computing resources and consequently very energy consuming. In addition, such a solution is unsatisfactory in terms of marketing because it does not allow continuous operation in the background. The user must turn the application on and off before and after entering the point of sale. This is embarrassing both from a practical and commercial point of view. Indeed, the goal is to push a service to the user without it having to act, which is incompatible with this practice.

Une autre solution est de n'activer l'écoute du signal et de ne le démoduler qu'à intervalles réguliers. Cette technique est connue sous le nom d'attente active ou « polling ». Cette solution n'est hélas pas plus satisfaisante car, la démodulation du signal avec modulation chirp nécessite un temps d'environ une seconde, tandis qu'il a été estimé qu'une démodulation devrait être effectuée environ toutes les cinq secondes, ce qui correspond au temps de passage d'un utilisateur dans la zone de diffusion d'un émetteur. Il s'ensuit que le lancement de la démodulation reste trop fréquent et que le rapport du temps de traitement sur le temps d'attente reste trop élevé, et la consommation d'énergie trop importante. Il existe par conséquent un besoin pour une solution permettant d'utiliser une modulation chirp dans un contexte nomade. La présente invention vient améliorer la situation et propose un dispositif nomade comprenant au moins un microphone, et un démodulateur de signal à modulation chirp. Le dispositif comprend en outre un détecteur agencé pour déterminer une valeur d'énergie acoustique dans au moins une bande de fréquences ultrasons d'un signal acoustique tiré du microphone, et le démodulateur est agencé pour démoduler un signal acoustique tiré du microphone en réponse à la détermination par le détecteur d'une valeur d'énergie acoustique supérieure à une valeur seuil.Another solution is to activate the listening of the signal and to demodulate it only at regular intervals. This technique is known as active waiting or "polling". This solution is unfortunately not more satisfactory because, the demodulation of the signal with chirp modulation requires a time of about one second, while it has been estimated that a demodulation should be performed about every five seconds, which corresponds to the passage time of a user in the broadcast area of a transmitter. As a result, the launch of demodulation is too frequent and the ratio of the processing time to the waiting time remains too high and the energy consumption too high. There is therefore a need for a solution to use a chirp modulation in a nomadic context. The present invention improves the situation and proposes a nomadic device comprising at least one microphone, and a chirp modulated signal demodulator. The device further comprises a detector arranged to determine an acoustic energy value in at least one ultrasound frequency band of an acoustic signal taken from the microphone, and the demodulator is arranged to demodulate an acoustic signal from the microphone in response to the determination by the detector of an acoustic energy value greater than a threshold value.

Ainsi, en prévoyant la mise en oeuvre d'un étage intermédiaire, il est possible de n'effectuer l'étape de démodulation chirp, fortement consommatrice, que lorsque la présence d'un signal modulé est avérée ou, à tout le moins, fortement probable. Le détecteur, peu consommateur en termes d'énergie et de ressources de calcul peut ainsi être activé de manière continue ou de manière discontinue avec une fréquence d'activation relativement élevée, en tâche de fond du téléphone. Selon les variantes, le dispositif pourra présenter une ou plusieurs des caractéristiques suivantes : - le détecteur met en oeuvre un filtre de Goertzel, - le filtre de Goertzel est appliqué avec une résolution comprise entre 100Hz et 2kHz, de préférence avec une résolution d'environ 400Hz, - le détecteur met en oeuvre au moins un filtre passe-bande et un intégrateur, - le dispositif comprend une pluralité de filtres passe-bande centrés respectivement sur les bandes de fréquences ultrasons sur lesquelles une valeur d'énergie acoustique est déterminée, -le détecteur est activé de manière périodique, de préférence toutes les trois secondes, et - le démodulateur et / ou le détecteur sont réalisés sous forme de composants logiciels exécutés par un processeur du dispositif. Ce dispositif peut être intégré dans un système de communication comprenant au moins un émetteur (100) d'un signal acoustique à ultrasons à modulation. L'invention concerne également un procédé de réception de données mis en oeuvre par un dispositif nomade comprenant les étapes suivantes : a) recevoir un signal acoustique, b) déterminer une valeur d'énergie acoustique dans au moins une bande de fréquences ultrasons du signal acoustique, et c) démoduler le signal acoustique en réponse à la détermination d'une valeur d'énergie acoustique supérieure à une valeur seuil.Thus, by providing for the implementation of an intermediate stage, it is possible to carry out the chirp demodulation step, which is a heavy consumer, only when the presence of a modulated signal is proven or, at the very least, strongly likely. The detector, which consumes little in terms of energy and computing resources, can thus be activated continuously or discontinuously with a relatively high activation frequency, in the background of the telephone. According to the variants, the device may have one or more of the following characteristics: the detector implements a Goertzel filter; the Goertzel filter is applied with a resolution of between 100 Hz and 2 kHz, preferably with a resolution of approximately 400 Hz, the detector uses at least one band-pass filter and an integrator, the device comprises a plurality of band-pass filters centered respectively on the ultrasound frequency bands on which an acoustic energy value is determined, the detector is activated periodically, preferably every three seconds, and the demodulator and / or the detector are implemented as software components executed by a processor of the device. This device can be integrated in a communication system comprising at least one transmitter (100) of a modulation ultrasonic acoustic signal. The invention also relates to a method for receiving data implemented by a nomadic device comprising the following steps: a) receiving an acoustic signal, b) determining an acoustic energy value in at least one ultrasonic frequency band of the acoustic signal and c) demodulating the acoustic signal in response to determining an acoustic energy value greater than a threshold value.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, tirée d'exemples donnés à titre illustratif et non limitatif, tirés des dessins sur lesquels : - la figure 1 est une représentation schématique d'un système de communication comprenant un dispositif de réception de données selon l'invention, et - la figure 2 est une représentation exemplaire des étapes mises en oeuvre par le dispositif de réception de la figure 1. Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. La présente description est de nature à faire intervenir des éléments susceptibles de protection par le droit d'auteur et/ou le copyright. Le titulaire des droits n'a pas d'objection à la reproduction à l'identique par quiconque du présent document de brevet ou de sa description, telle qu'elle apparaît dans les dossiers officiels. Pour le reste, il réserve intégralement ses droits.Other features and advantages of the invention will appear better on reading the following description, taken from examples given for illustrative and non-limiting purposes, taken from the drawings in which: FIG. 1 is a diagrammatic representation of a communication system comprising a data receiving device according to the invention, and - Figure 2 is an exemplary representation of the steps implemented by the receiving device of Figure 1. The drawings and the description below contain, for the essential, elements of a certain character. They can therefore not only serve to better understand the present invention, but also contribute to its definition, if any. This description is likely to involve elements likely to be protected by copyright and / or copyright. The rights holder has no objection to the identical reproduction by anyone of this patent document or its description, as it appears in the official records. For the rest, he reserves his rights in full.

Un système de diffusion tel que représenté sur la figure 1 comprend un émetteur 100 et un récepteur 200. L'émetteur 100 comprend un modulateur 101 associé à un haut-parleur 102 ayant une bande passante s'étendant dans la zone des fréquences ultrasonores, à savoir des fréquences comprises plus particulièrement entre 18kHz et 24kHz. Le modulateur 101 reçoit des données à transmettre à des dispositifs nomade, et les encode et les module selon une modulation chirp à étalement de spectre (CSS pour « chirp spread spectrum ») dans une ou plusieurs plages de fréquences ultrasons comprises dans la bande passante du haut-parleur 102. La technique d'encodage n'est pas directement l'objet de la présente demande, et l'homme du métier est libre de choisir la manière dont les données à transmettre sont encodées dans la modulation chirp. En variante, il n'y a pas d'encodage, et les données sont uniquement modulées selon la modulation chirp dans la ou les bandes ultrasons considérées. Le haut-parleur 102 émet ainsi une onde acoustique modulée 103 comprenant la ou les composantes ultrasons modulées correspondantes, laquelle onde se propage au sein d'une zone de diffusion. L'émetteur 100 est destiné tout particulièrement à être installé dans des espaces commerciaux, par exemple des centres commerciaux, des points de vente, des supermarchés, des parcs, etc. L'onde modulée 103 peut être émise seule, ou être superposée à un signal sonore audible, tel que par exemple une annonce vocale, une musique d'ambiance, etc. Dans l'exemple décrit ici, chaque bande ultrason sur laquelle est réalisée la modulation chirp présente une largeur comprise entre 100Hz et 2kHz. Cette largeur de bande assure que le signal à modulation chirp est robuste vis-à-vis de la plupart des perturbations et interférences, notamment l'effet Doppler, les multiples réverbérations de l'onde acoustique modulée 103 dans l'environnement de la zone de diffusion, etc.A broadcasting system as shown in FIG. 1 comprises a transmitter 100 and a receiver 200. The transmitter 100 comprises a modulator 101 associated with a loudspeaker 102 having a bandwidth extending in the zone of the ultrasonic frequencies, to know frequencies more particularly between 18kHz and 24kHz. The modulator 101 receives data to be transmitted to nomadic devices, and encodes and modulates them according to a chirp spread spectrum (CSS) modulation in one or more ultrasonic frequency ranges included in the bandwidth of the device. speaker 102. The encoding technique is not directly the subject of the present application, and the skilled person is free to choose how the data to be transmitted are encoded in the chirp modulation. In a variant, there is no encoding, and the data are modulated only according to the chirp modulation in the ultrasound band or bands considered. The loudspeaker 102 thus emits a modulated acoustic wave 103 comprising the corresponding modulated ultrasonic component or components, which wave propagates within a diffusion zone. The transmitter 100 is particularly intended to be installed in commercial spaces, such as shopping centers, retail outlets, supermarkets, parks, etc. The modulated wave 103 may be transmitted alone, or superimposed on an audible sound signal, such as for example a voice announcement, background music, etc. In the example described here, each ultrasound band on which the chirp modulation is performed has a width of between 100 Hz and 2 kHz. This bandwidth ensures that the chirp modulated signal is robust to most disturbances and interferences, including the Doppler effect, the multiple reverberations of the modulated acoustic wave 103 in the environment of the chirp zone. dissemination, etc.

De manière préférée, la largeur des bandes ultrasons sur lesquelles est réalisée la modulation est d'environ 400Hz. En fonction de la largeur de bande choisie, il est possible de diviser la bande des fréquences ultrasons en plusieurs sous-plages qui pourront être utilisées comme autant de canaux de diffusion. De manière préférée, chaque sous-plage est séparée d'une autre sous-plage par un intervalle d'au moins 100Hz. De plus, la plupart des dispositifs de diffusion sonore, ainsi que la plupart des microphones et leurs filtres associés étant limités à environ 24kHz au maximum, les bandes ultrasons pourront être choisies entre 18kHz et 24kHz. Cependant, la bande passante de la majorité des microphones des téléphones se dégrade de manière significative au-delà de 20kHz. Pour cette raison, les bandes ultrasons pourront être choisies préférentiellement entre 18kHz et 20kHz À titre d'exemple, la plage des fréquences comprises entre 18kHz et 22kHz pourra être comprendre trois sous-plages de 400Hz de largeur, à savoir : - une première sous-plage couvrant la zone des fréquences comprises entre 18,5kHz et 18,9kHz, - une deuxième sous-plage couvrant la zone des fréquences comprises entre 19kHz et 19,4kHz, - une troisième sous-plage couvrant la zone des fréquences comprises entre 19,5kHz et 19,9kHz. Les données à transmettre peuvent être émise sur un seul ou plusieurs des canaux de diffusion ainsi définis. La diffusion sur plusieurs canaux permet alors d'organiser une redondance du signal, ce qui rend la transmission plus robuste. Les canaux peuvent également être alloués à des émetteurs distincts, attribués, par exemple, à des zones de diffusion différentes. En présence de plusieurs émetteurs ayant des zones de diffusion se recouvrant au moins partiellement, les émetteurs pourront être configurés pour utiliser chacun des canaux différents, afin de limiter les interférences. Cela permet d'éviter d'utiliser un encodage sur les données modulées.In a preferred manner, the width of the ultrasound bands on which the modulation is performed is approximately 400 Hz. Depending on the bandwidth chosen, it is possible to divide the ultrasonic frequency band into several sub-ranges that can be used as broadcast channels. Preferably, each sub-range is separated from another sub-range by an interval of at least 100 Hz. In addition, most sound diffusion devices, as well as most microphones and their associated filters being limited to about 24kHz maximum, ultrasonic bands can be chosen between 18kHz and 24kHz. However, the bandwidth of the majority of the phones' microphones degrades significantly beyond 20kHz. For this reason, the ultrasound bands may be chosen preferentially between 18 kHz and 20 kHz. For example, the frequency range between 18 kHz and 22 kHz may be comprised of three sub-ranges of 400 Hz in width, namely: a first sub-band; range covering the frequency range 18.5kHz to 18.9kHz, - a second sub-range covering the frequency range 19kHz to 19.4kHz, - a third sub-range covering the frequency range 19, 5kHz and 19.9kHz. The data to be transmitted can be transmitted on one or more of the broadcast channels thus defined. Broadcasting on several channels then makes it possible to organize a redundancy of the signal, which makes the transmission more robust. Channels can also be allocated to separate transmitters, for example allocated to different broadcast areas. In the presence of several transmitters with at least partially overlapping broadcast areas, the transmitters may be configured to use each of the different channels to limit interference. This avoids using an encoding on the modulated data.

Le récepteur 200 est un dispositif nomade qui comprend un microphone 201. Le microphone 201 est choisi de manière à avoir une bande passante correspondant aux fréquences d'émission de l'onde acoustique modulée 103. Dans l'exemple décrit ici, le récepteur 200 est un téléphone portable ou un smartphone dont le microphone est apte à capter les fréquences ultrasonores comprises entre 18kHz et 20kHz. En variante, le microphone 201 peut capter des signaux dont la fréquence peut s'étendre jusqu'à 24kHz. Le récepteur 200 comprend en outre un filtre 203, un détecteur 204 et un démodulateur 205. Le filtre 203 est optionnel et est conçu pour éliminer au moins une partie des fréquences situées en dehors de la plage des fréquences de modulation chirp. Il s'agit en particulier d'éliminer les des ondes sonores audibles. Le filtre 203 permet ainsi de débruiter le signal capté par le microphone 201. Le détecteur 204 est conçu pour appliquer au signal une transformée mathématique permettant d'évaluer la présence d'une ou plusieurs fréquences dans la plage des fréquences de modulation. Dans l'exemple décrit ici, le détecteur 204 est mis en oeuvre au moyen d'un filtre de Goertzel. Dans le cas où plusieurs canaux de diffusion sont définis, le détecteur 204 peut opérer sur une ou plusieurs bandes de fréquences correspondantes séquentiellement ou en parallèle. Selon une première variante de réalisation, le filtre de Goertzel est appliqué sur une fréquence correspondant au centre de la bande de fréquences utilisée pour la modulation chirp. À partir de cette fréquence centrale, le filtre de Goertzel est appliqué avec une résolution qui correspond sensiblement à la largeur de la bande de fréquences utilisée pour la modulation chirp.The receiver 200 is a nomadic device which comprises a microphone 201. The microphone 201 is chosen so as to have a bandwidth corresponding to the transmission frequencies of the modulated acoustic wave 103. In the example described here, the receiver 200 is a mobile phone or smartphone whose microphone is capable of picking up ultrasound frequencies between 18kHz and 20kHz. Alternatively, the microphone 201 can pick up signals whose frequency can extend up to 24kHz. The receiver 200 further comprises a filter 203, a detector 204 and a demodulator 205. The filter 203 is optional and is designed to eliminate at least a portion of the frequencies outside the chirp modulation frequency range. This is in particular to eliminate the audible sound waves. The filter 203 thus enables the signal picked up by the microphone 201 to be denoised. The detector 204 is designed to apply to the signal a mathematical transform making it possible to evaluate the presence of one or more frequencies in the range of the modulation frequencies. In the example described here, the detector 204 is implemented by means of a Goertzel filter. In the case where several diffusion channels are defined, the detector 204 can operate on one or more corresponding frequency bands sequentially or in parallel. According to a first variant embodiment, the Goertzel filter is applied on a frequency corresponding to the center of the frequency band used for the chirp modulation. From this center frequency, the Goertzel filter is applied with a resolution that corresponds substantially to the width of the frequency band used for the chirp modulation.

Ainsi, par exemple, pour le canal de fréquence compris entre 18,5kHz et 18,9kHz, le filtre de Goertzel sera appliqué sur une fréquence proche de 18,7kHz, avec une résolution d'environ 200Hz autour de cette fréquence. De cette manière le filtre de Goertzel retournera une valeur représentant l'énergie des fréquences comprises dans la plage [18,51(Hz ; 18,9kHz]. Ceci est particulièrement avantageux car la précision d'un filtre de Goertzel dépend du nombre d'échantillons qui sont utilisés, sa résolution augmentant avec le nombre d'échantillons. Classiquement, les filtres de Goertzel sont utilisés pour déterminer avec précision les coefficients de la transformée de Fourier à une fréquence donnée, donc avec un nombre important d'échantillons. Par exemple, 2048 échantillons sont nécessaires pour obtenir une résolution de 10Hz. Dans le cadre de l'invention, le fait que les plages de fréquence de modulation chirp sont assez larges permet d'utiliser un nombre réduit d'échantillons. Par exemple, on utilise 256 échantillons pour une bande de 400Hz. Ainsi, le calcul du filtre de Goertzel est à la fois rapide et consomme très peu d'énergie.Thus, for example, for the frequency channel between 18.5kHz and 18.9kHz, the Goertzel filter will be applied on a frequency close to 18.7kHz, with a resolution of about 200Hz around this frequency. In this way the Goertzel filter will return a value representing the energy of frequencies in the range [18.51 (Hz; 18.9kHz). This is particularly advantageous because the accuracy of a Goertzel filter depends on the number of samples that are used, its resolution increases with the number of samples Classically, Goertzel filters are used to accurately determine the Fourier transform coefficients at a given frequency, so with a large number of samples. 2048 samples are required to obtain a resolution of 10 Hz In the context of the invention, the fact that the chirp modulation frequency ranges are wide enough makes it possible to use a reduced number of samples, for example 256 samples for a band of 400Hz Thus, the calculation of the Goertzel filter is both fast and consumes very little energy.

La valeur retournée par le filtre de Goertzel correspond au poids de la fréquence visée dans le signal reçu et permet d'évaluer la probabilité de présence d'une modulation CSS correspondante dans le signal. En effet, si cette valeur est élevée, cela signifie qu'il existe un ou plusieurs signaux d'énergie significative dans la bande considérée. Or, comme les ultrasons sont une bande rarement utilisée, cela signifie qu'il y a une forte chance qu'un signal à modulation chirp soit présent. Cette détermination est réalisée par comparaison à un seuil de détection qui peut être ajusté. Dans l'exemple décrit ici, ce seuil est relatif. La détection est réalisée par comparaison à une bande de référence dans laquelle seul du bruit est attendu. Il s'agit alors d'appliquer le filtre de Goertzel sur la bande d'intérêt et la bande de référence, puis de calculer le rapport entre les deux valeurs obtenues. Un seuil relatif peut alors être appliqué, par exemple d'une valeur de 1000. La bande de référence peut être choisie comme étant l'une des trois bandes disponibles, mais dont on sait qu'elle n'est pas utilisée. En variante, la bande de référence peut être choisie parmi les bandes de fréquences qui relient les bandes disponibles dans la mesure où elles ne sont pas continues. L'homme du métier saura aussi choisir d'autres bandes de référence.The value returned by the Goertzel filter corresponds to the weight of the target frequency in the received signal and makes it possible to evaluate the probability of presence of a corresponding CSS modulation in the signal. Indeed, if this value is high, it means that there is one or more signals of significant energy in the band considered. Since ultrasound is a rarely used band, this means that there is a strong chance that a chirp modulated signal will be present. This determination is made by comparison with a detection threshold that can be adjusted. In the example described here, this threshold is relative. The detection is performed by comparison with a reference band in which only noise is expected. It is then necessary to apply the Goertzel filter on the band of interest and the reference band, then to calculate the ratio between the two obtained values. A relative threshold can then be applied, for example a value of 1000. The reference band can be chosen as being one of the three available bands, but we know that it is not used. As a variant, the reference band may be chosen from the frequency bands that connect the available bands to the extent that they are not continuous. The skilled person will also choose other reference bands.

Bien sûr, des « faux positifs » peuvent avoir lieu : il est possible qu'une composante discrète dans la bande considérée présente une énergie suffisante pour que le détecteur 204 retourne une valeur supérieure au seuil de déclenchement. Cependant, l'utilisation de bandes de fréquences de largeur supérieure à 100Hz, et de 400Hz dans l'exemple décrit ici, rend cette probabilité assez faible. Selon une deuxième variante de réalisation, chaque bande de fréquence de modulation chirp est divisée en plusieurs sous-bandes contiguës, et plusieurs filtres de Goertzel visant chacune de ces sous-bandes sont mis en oeuvre. Enfin, les valeurs retournées par chaque filtre sont alors additionnées pour recouvrer la valeur de la bande de modulation considérée. Cette deuxième variante permet de limiter les faux positifs. En effet, si la valeur retournée par le détecteur 204 est supérieure au seuil mais qu'il s'agit d'un faux positif, plusieurs des valeurs liées aux sous-bandes seront nulles. Dans cette variante, le détecteur 204 peut donc être agencé pour vérifier que les valeurs détectées sur chaque sous-bande excèdent un sous-seuil. Dans une troisième variante, la détection de seuil est réalisée de manière absolue. En variante, le filtre de Goertzel pourrait être remplacé par un ou plusieurs filtres passe- bande, en fonction du nombre de canaux retenu, en combinaison avec un intégrateur pour déterminer l'énergie du signal dans chaque bande de modulation. Dans une autre variante, d'autres propriétés de l'énergie déterminée par un filtre de Goertzel sur un intervalle de temps (1 seconde par exemple) peuvent être utilisées, notamment statistiques (comme la variance, l'écart-type, etc/). Lorsque le détecteur 204 détermine qu'un signal à modulation chirp est vraisemblablement présent, le démodulateur 205 est activé.Of course, "false positives" can take place: it is possible for a discrete component in the band considered to have sufficient energy for the detector 204 to return a value greater than the tripping threshold. However, the use of frequency bands of greater than 100Hz, and 400Hz in the example described here, makes this probability quite low. According to a second variant embodiment, each chirp modulation frequency band is divided into several contiguous subbands, and several Goertzel filters targeting each of these subbands are implemented. Finally, the values returned by each filter are then added to recover the value of the modulation band considered. This second variant makes it possible to limit false positives. Indeed, if the value returned by the detector 204 is greater than the threshold but it is a false positive, many of the values related to the subbands will be zero. In this variant, the detector 204 can therefore be arranged to check that the values detected on each sub-band exceed a sub-threshold. In a third variant, the threshold detection is performed absolutely. Alternatively, the Goertzel filter could be replaced by one or more bandpass filters, depending on the number of channels retained, in combination with an integrator to determine the signal energy in each modulation band. In another variant, other properties of the energy determined by a Goertzel filter over a time interval (for example 1 second) can be used, in particular statistics (such as the variance, the standard deviation, etc.) . When the detector 204 determines that a chirp modulated signal is likely present, the demodulator 205 is activated.

Le démodulateur 205 décode le signal à modulation chirp et en extrait les données correspondantes. Le démodulateur 205 est un démodulateur compatible avec la modulation du modulateur 101 de l'émetteur 100, en l'espèce une modulation chirp. Lorsque les données sont encodées avant d'être modulées par l'émetteur 100, le démodulateur 205 peut également comprendre un décodeur correspondant. En variante, ce décodeur est déporté. Dans l'exemple décrit ici, la démodulation est réalisée par convolution du signal et corrélation avec des signaux de référence (« matched filter »). La convolution pourra être optimisée en maximisant l'énergie grâce à un opérateur Teager-Kaiser. Le « matched filter » fonctionne de la façon suivante : le signal reçu est convolué avec le chirp retourné temporellement. Cela correspond à ce qu'on appelle typiquement une autocorrélation, ou une corrélation croisée. Cette opération peut également s'effectuer dans le domaine fréquentiel (convolution par FFT). Dans ce cas là, il faut multiplier la conjuguée complexe de la transformée de Fourier du chirp avec la transformée de Fourier du signal, puis procéder à une transformation de Fourier inverse du résultat pour obtenir un signal réel.The demodulator 205 decodes the chirp modulated signal and extracts the corresponding data. The demodulator 205 is a demodulator compatible with the modulation of the modulator 101 of the transmitter 100, in this case a chirp modulation. When the data is encoded before being modulated by the transmitter 100, the demodulator 205 may also include a corresponding decoder. In a variant, this decoder is remote. In the example described here, the demodulation is performed by convolution of the signal and correlation with reference signals ("matched filter"). Convolution can be optimized by maximizing energy through a Teager-Kaiser operator. The matched filter works as follows: the received signal is convoluted with the chirp returned temporally. This corresponds to what is typically called autocorrelation, or cross-correlation. This operation can also be carried out in the frequency domain (convolution by FFT). In this case, it is necessary to multiply the complex conjugate of the Fourier transform of the chirp with the Fourier transform of the signal, then to carry out an inverse Fourier transformation of the result to obtain a real signal.

L' autocorrélation permet d'obtenir une courbe/vecteur/suite de valeurs au sein de laquelle des pics d'intensité seront situés aux instants où le chirp à retrouver est présent dans le signal. L'utilisation de l'opérateur de Teager-Kaiser permet à la fois d'affiner ces pics et d'augmenter leurs amplitudes. Le gain est un accès plus aisé aux positions de ces pics, et donc un meilleur décodage, ou un décodage équivalent dans des conditions dégradées. Le rapport signal à bruit peut donc être amélioré grâce à l'emploi de l'opérateur TeagerKaiser. En variante, l'opérateur de Teager-Kaiser peut être omis ou remplacé par une autre optimisation.The autocorrelation makes it possible to obtain a curve / vector / sequence of values within which peaks of intensity will be located at the times when the chirp to be found is present in the signal. The use of the Teager-Kaiser operator allows both to refine these peaks and to increase their amplitudes. The gain is easier access to the positions of these peaks, and therefore better decoding, or equivalent decoding in degraded conditions. The signal-to-noise ratio can therefore be improved by using the TeagerKaiser operator. Alternatively, the Teager-Kaiser operator may be omitted or replaced by another optimization.

Ainsi, le filtre 203 (optionnel) et le détecteur 204 constituent un premier étage qui permet de détecter avec un rapport coût / fiabilité favorable la présence d'un signal à modulation chirp. Le démodulateur 205 constitue un deuxième étage qui n'est donc mis en oeuvre que lorsque cela est pertinent. Cette combinaison permet ainsi d'utiliser la modulation chirp dans un dispositif nomade, puisque la démodulation coûteuse n'est mise en oeuvre qu'aux moments opportuns. Ainsi, le dispositif de l'invention rend possible l'utilisation d'une modulation chirp dans un contexte nomade, contrairement à tous les préjugés existant.Thus, the filter 203 (optional) and the detector 204 constitute a first stage which makes it possible to detect with a favorable cost / reliability ratio the presence of a chirp modulated signal. The demodulator 205 constitutes a second stage which is therefore implemented only when it is relevant. This combination thus makes it possible to use chirp modulation in a nomadic device, since costly demodulation is implemented only at the appropriate times. Thus, the device of the invention makes it possible to use a chirp modulation in a nomadic context, contrary to all existing prejudices.

La figure 2 représente les étapes mises en oeuvre par le dispositif nomade 200. Dans une première opération 300 un signal acoustique est reçu par le microphone et converti en signal audio analogique S(t).FIG. 2 represents the steps implemented by the mobile device 200. In a first operation 300, an acoustic signal is received by the microphone and converted into an analog audio signal S (t).

Le signal audio est filtré par le filtre 203 et transformé en un signal audio S'(t) dans une opération 310. Le signal S'(t) est ensuite soumis au détecteur 204 qui applique un filtre de Goertzel G(S') et retourne une valeur d'énergie E(f) pour la fréquence ou plage de fréquences visée dans une opération 320. Selon la variante, la valeur d'énergie E(f) peut être absolue ou relative.The audio signal is filtered by the filter 203 and converted into an audio signal S '(t) in an operation 310. The signal S' (t) is then subjected to the detector 204 which applies a Goertzel filter G (S ') and returns an energy value E (f) for the frequency or frequency range targeted in an operation 320. According to the variant, the energy value E (f) may be absolute or relative.

Dans une opération 320, il est testé si la valeur d'intensité E(f) est supérieure ou égale à une valeur p prédéterminée. Si c'est la cas, alors cela signifie qu'il est fortement probable que le signal reçu contienne une composante ultrason à modulation chirp, donc porteuse de données.In an operation 320, it is tested whether the intensity value E (f) is greater than or equal to a predetermined value p. If this is the case, then it means that it is highly probable that the received signal contains an ultrasound component with chirp modulation, thus carrying data.

Le signal S'(t) est alors transmis au démodulateur 205, qui applique une fonction DeMod () dans une opération 340 pour démoduler ledit signal et extraire les données.The signal S '(t) is then transmitted to the demodulator 205, which applies a function DeMod () in an operation 340 to demodulate said signal and extract the data.

Si la valeur d'intensité E(f) est inférieure à une intensité p prédéterminée, alors le démodulateur 205 n'est pas activé, et le procédé reprend avec la captation du signal S(t). La boucle de test peut être effectuée en continu, ou, pour encore optimiser la consommation d'énergie, prévoir un temps d'attente après chaque boucle. Par exemple, la boucle de test peut être effectuée une fois par seconde, voire toutes les trois secondes ou toutes les cinq secondes. Bien que l'invention ait été décrite avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.If the intensity value E (f) is lower than a predetermined intensity p, then the demodulator 205 is not activated, and the process resumes with the capture of the signal S (t). The test loop can be performed continuously, or, to further optimize power consumption, provide a waiting time after each loop. For example, the test loop can be performed once a second, or even every three seconds or every five seconds. Although the invention has been described with particular examples of embodiment, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they fall into the scope of the invention.

Claims (11)

REVENDICATIONS1. Dispositif nomade comprenant au moins un microphone (201), et un démodulateur (205) de signal à modulation chirp, caractérisé en ce qu'il comprend en outre un détecteur (204) agencé pour déterminer une valeur d'énergie acoustique dans au moins une bande de fréquences ultrasons d'un signal acoustique tiré du microphone (201), et en ce que le démodulateur (205) est agencé pour démoduler un signal acoustique tiré du microphone (201) en réponse à la détermination par le détecteur (204) d'une valeur d'énergie acoustique supérieure à une valeur seuil.REVENDICATIONS1. A nomadic device comprising at least one microphone (201), and a chirp modulated signal demodulator (205), characterized in that it further comprises a detector (204) arranged to determine an acoustic energy value in at least one ultrasonic frequency band of an acoustic signal taken from the microphone (201), and in that the demodulator (205) is arranged to demodulate an acoustic signal from the microphone (201) in response to the determination by the detector (204) of an acoustic energy value greater than a threshold value. 2. Dispositif selon la revendication 1, dans lequel le détecteur (204) met en oeuvre un filtre de Goertzel.2. Device according to claim 1, wherein the detector (204) implements a Goertzel filter. 3. Dispositif selon la revendication 2, dans lequel le filtre de Goertzel est appliqué avec une résolution comprise entre 100Hz et 2kHz, de préférence avec une résolution d'environ 400Hz.3. Device according to claim 2, wherein the Goertzel filter is applied with a resolution between 100Hz and 2kHz, preferably with a resolution of about 400Hz. 4. Dispositif selon la revendication 1, dans lequel le détecteur (204) met en oeuvre au moins un filtre passe-bande et un intégrateur.4. Device according to claim 1, wherein the detector (204) implements at least one band-pass filter and an integrator. 5. Dispositif selon l'une des revendications 1 à 4, comprenant une pluralité de filtres passe-bande centrés respectivement sur les bandes de fréquences ultrasons sur lesquelles une valeur d'énergie acoustique est déterminée.5. Device according to one of claims 1 to 4, comprising a plurality of bandpass filters centered respectively on the ultrasonic frequency bands on which an acoustic energy value is determined. 6. Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel le détecteur (204) est activé de manière périodique, de préférence toutes les trois secondes.6. Device according to any one of claims 1 to 3, wherein the detector (204) is activated periodically, preferably every three seconds. 7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel le démodulateur (205) et / ou le détecteur (204) sont réalisés sous forme de composants logiciels exécutés par un processeur du dispositifApparatus according to any one of claims 1 to 6, wherein the demodulator (205) and / or the detector (204) are implemented as software components executed by a device processor. 8. Système de communication comprenant au moins un émetteur (100) d'un signal acoustique à ultrasons à modulation chirp et au moins un dispositif nomade (200), dans lequel le dispositif nomade (200) est selon l'une quelconque des revendications 1 à 7.8. Communication system comprising at least one transmitter (100) of a chirp-modulated ultrasonic acoustic signal and at least one mobile device (200), in which the nomadic device (200) is according to any one of claims 1 at 7. 9. Procédé de réception de données mis en oeuvre par un dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend les étapes suivantes : a) recevoir un signal acoustique, b) déterminer une valeur d'énergie acoustique dans au moins une bande de fréquences ultrasons du signal acoustique, et c) démoduler le signal acoustique en réponse à la détermination d'une valeur d'énergie acoustique supérieure à une valeur seuil.9. A method of receiving data implemented by a device according to any one of claims 1 to 7, characterized in that it comprises the following steps: a) receiving an acoustic signal, b) determining a value of energy in at least one ultrasound frequency band of the acoustic signal, and c) demodulating the acoustic signal in response to determining an acoustic energy value greater than a threshold value. 10. Procédé selon la revendication 9, dans lequel l'étape b) comprend l'application d'un filtre de Goertzel.The method of claim 9, wherein step b) comprises applying a Goertzel filter. 11. Procédé selon la revendication 9 ou 10, dans lequel l'étape b) est répétée sensiblement toutes les trois secondes.The method of claim 9 or 10, wherein step b) is repeated substantially every three seconds.
FR1453553A 2014-04-18 2014-04-18 IMPROVED NOMADE DEVICE Expired - Fee Related FR3020227B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1453553A FR3020227B1 (en) 2014-04-18 2014-04-18 IMPROVED NOMADE DEVICE
EP15725740.3A EP3132549B1 (en) 2014-04-18 2015-04-15 Improved nomad device
PCT/FR2015/051023 WO2015159024A1 (en) 2014-04-18 2015-04-15 Improved nomad device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1453553A FR3020227B1 (en) 2014-04-18 2014-04-18 IMPROVED NOMADE DEVICE

Publications (2)

Publication Number Publication Date
FR3020227A1 true FR3020227A1 (en) 2015-10-23
FR3020227B1 FR3020227B1 (en) 2016-05-13

Family

ID=51726596

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1453553A Expired - Fee Related FR3020227B1 (en) 2014-04-18 2014-04-18 IMPROVED NOMADE DEVICE

Country Status (3)

Country Link
EP (1) EP3132549B1 (en)
FR (1) FR3020227B1 (en)
WO (1) WO2015159024A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728905B2 (en) * 2020-10-05 2023-08-15 CUE Audio, LLC Method and system for digital communication over an acoustic channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082696A2 (en) * 2001-04-02 2002-10-17 Qinetiq Limited Communication system for underwater use
EP1906696A1 (en) * 2005-06-28 2008-04-02 Field System, Inc. Information providing system
US20130171930A1 (en) * 2011-04-07 2013-07-04 Malbec Labs, Inc. Ultrasonic near-field communication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1615097A (en) 1996-02-20 1997-09-10 Sonic Systems Digital sonic and ultrasonic communications networks
US6607136B1 (en) 1998-09-16 2003-08-19 Beepcard Inc. Physical presence digital authentication system
US10304069B2 (en) 2009-07-29 2019-05-28 Shopkick, Inc. Method and system for presentment and redemption of personalized discounts
US8401569B1 (en) 2011-09-23 2013-03-19 Sonic Notify, Inc. System effective to demodulate a modulated code and provide content to a user

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082696A2 (en) * 2001-04-02 2002-10-17 Qinetiq Limited Communication system for underwater use
EP1906696A1 (en) * 2005-06-28 2008-04-02 Field System, Inc. Information providing system
US20130171930A1 (en) * 2011-04-07 2013-07-04 Malbec Labs, Inc. Ultrasonic near-field communication

Also Published As

Publication number Publication date
WO2015159024A1 (en) 2015-10-22
FR3020227B1 (en) 2016-05-13
EP3132549B1 (en) 2018-08-29
EP3132549A1 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
EP2430825B1 (en) Method for selecting a microphone among a plurality of microphones in a speech processing system such as a hands-free telephone device operating in a noisy environment
EP2100161B1 (en) Method for the multipath passive radar processing of an fm opportunity signal
EP0790753B1 (en) System for sound spatial effect and method therefor
EP0803991B1 (en) Method for optimising radio communication between a base station and a mobile
EP1543638B1 (en) Data transmission system and method using sound waves
CH702399A2 (en) Apparatus and method for capturing and processing voice.
EP0813688B1 (en) Personal direction finding apparatus
WO2015193491A1 (en) Method and system for acoustic communication
EP3132549B1 (en) Improved nomad device
EP1508233A1 (en) Method and device for synchronization upon reception of a signal and echoes
WO2016181054A1 (en) Method and device for probing by wave propagation
EP1961138B1 (en) Doppler tracking method and device for a wide band modem
KR101686969B1 (en) Method for aerial acoustic communication and system therefor
FR3011086A1 (en) METHOD FOR JOINTLY SYNCHRONIZING, IDENTIFYING, MEASURING, ESTIMATING THE PROPAGATION FILTER AND LOCATING USEFUL AND INTERFERING TRANSMITTERS
FR3001040A1 (en) ENVIRONMENTAL FIELD SENSOR SYSTEM
FR2974443A1 (en) METHOD AND SYSTEM FOR REDUCING NOISE
EP3840422A1 (en) Audio balancing method using uwb geolocation
FR3056058B1 (en) METHOD OF NORMALLY MEASURING THE MODULATION OF AN AMPLITUDE MODULE RADIO SIGNAL AND METHOD OF FILTERING SAID RADIO SIGNAL
CN104299617A (en) Method for inlaying and detecting digital information in audio frequency
Shi et al. A long-range aerial acoustic communication scheme
FR3064754A1 (en) LOCALIZATION METHOD AND LOCATION SYSTEM IMPLEMENTING THE METHOD
EP3400457B1 (en) Method for deleting a signal coming from an on-board radar
FR2559325A1 (en) Equipment making it possible to pick up and transmit distantly the speech of a person positioned in a disturbed medium so as to carry out a processing of this speech.
EP2849179B1 (en) Method for detecting symbols carried by at least one signal transmitted in the presence of noise
EP2558881B1 (en) Path-forming adaptive processing for active sonar

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

ST Notification of lapse

Effective date: 20201214