FR3016899A1 - ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK. - Google Patents

ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK. Download PDF

Info

Publication number
FR3016899A1
FR3016899A1 FR1400170A FR1400170A FR3016899A1 FR 3016899 A1 FR3016899 A1 FR 3016899A1 FR 1400170 A FR1400170 A FR 1400170A FR 1400170 A FR1400170 A FR 1400170A FR 3016899 A1 FR3016899 A1 FR 3016899A1
Authority
FR
France
Prior art keywords
anode
electrolytic cell
electrolysis
anodic
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1400170A
Other languages
French (fr)
Other versions
FR3016899B1 (en
Inventor
Steeve Renaudier
Benoit BARDET
Yves Rochet
Denis Laroche
Olivier Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1400170A priority Critical patent/FR3016899B1/en
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Priority to BR112016001951A priority patent/BR112016001951A2/en
Priority to AU2014305612A priority patent/AU2014305612B2/en
Priority to PCT/CA2014/050721 priority patent/WO2015017923A1/en
Priority to US14/911,164 priority patent/US10697074B2/en
Priority to EP14834525.9A priority patent/EP3030694B1/en
Priority to EA201690340A priority patent/EA034760B1/en
Priority to MYPI2016700417A priority patent/MY178283A/en
Priority to CN201480044964.4A priority patent/CN105531400B/en
Priority to CA2919544A priority patent/CA2919544C/en
Publication of FR3016899A1 publication Critical patent/FR3016899A1/en
Application granted granted Critical
Publication of FR3016899B1 publication Critical patent/FR3016899B1/en
Priority to DKPA201670125A priority patent/DK178961B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Abstract

Cette cuve (1) comprend un caisson (2) présentant deux côtés (18) longitudinaux symétriques par rapport à un plan (P) médian longitudinal de la cuve (1) d'électrolyse, un ensemble anodique mobile uniquement en translation verticale par rapport au caisson (2), l'ensemble anodique comprenant un bloc (100) anodique et un support (200) anodique transversal s'étendant de façon orthogonale aux côtés (18) longitudinaux du caisson (2) et auquel est suspendu le bloc (100) anodique. Le support (200) anodique comprend deux portions (202) de connexion à partir desquelles est alimenté le support (200) anodique en courant d'électrolyse, et la cuve (1) comprend des conducteurs (20) électriques de connexion connectés électriquement aux deux portions (202) de connexion du support (200) anodique, les deux portions (202) de connexion étant agencées de part et d'autre du plan (P).This tank (1) comprises a box (2) having two longitudinal sides (18) symmetrical with respect to a longitudinal median plane (P) of the electrolytic cell (1), an anode assembly movable only in vertical translation relative to the box (2), the anode assembly comprising an anode block (100) and a transverse anode support (200) extending orthogonally to the longitudinal sides (18) of the box (2) and to which the block (100) is suspended anodic. The anodic support (200) comprises two connection portions (202) from which the electrolytic current anode carrier (200) is fed, and the vessel (1) comprises electrical connection conductors (20) electrically connected to the two electrodes. connection portions (202) of the anodic support (200), the two connection portions (202) being arranged on either side of the plane (P).

Description

La présente invention concerne une cuve d'électrolyse, destinée à la production d'aluminium, et une usine d'électrolyse, notamment une aluminerie, comprenant cette cuve d'électrolyse. Il est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant classiquement un caisson en acier à l'intérieur duquel est agencé un revêtement en matériaux réfractaires, une cathode en matériau carboné, traversée par des conducteurs cathodiques destinés à collecter le courant d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques traversant le fond ou les côtés du caisson, des conducteurs d'acheminement s'étendant sensiblement horizontalement jusqu'à la cuve suivante depuis les sorties cathodiques, un bain électrolytique dans lequel est dissout l'alumine, au moins un ensemble anodique comportant une tige anodique sensiblement verticale et au moins un bloc anodique suspendu à la tige anodique et plongé dans ce bain électrolytique, un cadre anodique auquel est suspendu l'ensemble anodique par l'intermédiaire de la tige anodique sensiblement verticale, celle-ci étant mobile avec le cadre anodique par rapport au caisson et à la cathode, et des conducteurs de montée du courant d'électrolyse, s'étendant de bas en haut, reliés aux conducteurs d'acheminement de la cuve d'électrolyse précédente pour acheminer le courant d'électrolyse depuis les sorties cathodiques jusqu'au cadre anodique et à l'ensemble anodique et l'anode de la cuve suivante. Les anodes sont plus particulièrement de type anodes précuites avec des blocs carbonés précuits, c'est-à-dire cuits avant introduction dans la cuve d'électrolyse. Les blocs anodiques étant consommés au cours de la réaction d'électrolyse, il est nécessaire de remplacer périodiquement les ensembles anodiques. Classiquement, le remplacement d'un ensemble anodique est réalisé sur un côté de la cuve d'électrolyse. Cependant, le remplacement d'ensembles anodiques sur les côtés des cuves impose de disposer d'un espace inter-cuves relativement important. Le document US3575827 divulgue le remplacement d'un ensemble anodique par le haut de la cuve. Selon ce document, les cuves d'électrolyse sont agencées transversalement par rapport à la longueur de la file qu'elles forment. Les cuves d'électrolyse comprennent un ensemble anodique avec un conducteur anodique sous forme de plaque électriquement conductrice, non verticale, mais horizontale, à laquelle est suspendue une anode, la plaque conductrice étant alimentée en courant d'électrolyse par des conducteurs électriques souples connectés à un seul côté, amont, de l'ensemble anodique. Ainsi, l'ensemble anodique peut être extrait par le haut de la cuve.The present invention relates to an electrolysis cell, intended for the production of aluminum, and an electrolysis plant, in particular an aluminum smelter, comprising this electrolytic cell. It is known to produce aluminum industrially from alumina by electrolysis according to the Hall-Héroult process. For this purpose, there is provided an electrolytic cell conventionally comprising a steel box inside which is arranged a coating of refractory materials, a cathode of carbon material, crossed by cathode conductors for collecting the electrolysis current to the cathode to lead cathodic outputs through the bottom or sides of the box, routing conductors extending substantially horizontally to the next vessel from the cathode outlets, an electrolytic bath in which is dissolved alumina, at least one anode assembly comprising a substantially vertical anode rod and at least one anode block suspended from the anode rod and immersed in this electrolytic bath, an anode frame to which the anode assembly is suspended via the anode rod substantially vertical, the latter being movable with the anode frame relative to the box and the cathode, and con Electrolytic current rise drivers, extending from bottom to top, connected to the routing conductors of the preceding electrolytic cell for conveying the electrolysis current from the cathode outputs to the anode frame and to the anode assembly and the anode of the next vat. The anodes are more particularly of anode type precooked with precooked carbon blocks, that is to say cooked before introduction into the electrolytic cell. Since the anode blocks are consumed during the electrolysis reaction, it is necessary to periodically replace the anode assemblies. Conventionally, the replacement of an anode assembly is performed on one side of the electrolytic cell. However, the replacement of anode sets on the sides of the tanks requires to have a relatively large inter-tank space. US3575827 discloses the replacement of an anode assembly by the top of the tank. According to this document, the electrolysis tanks are arranged transversely to the length of the line they form. The electrolysis cells comprise an anode assembly with an anode conductor in the form of an electrically conductive, non-vertical but horizontal plate, to which an anode is suspended, the conductive plate being supplied with electrolysis current by flexible electrical conductors connected to only one side upstream of the anode assembly. Thus, the anode assembly can be extracted from the top of the tank.

Cependant, du fait de cet agencement horizontal et sous forme de plaque, le conducteur anodique est davantage exposé à des températures élevées. Il en résulte une augmentation de la résistivité électrique, impliquant des pertes énergétiques, et une réduction de la solidité mécanique de l'ensemble anodique.However, because of this horizontal and plate-like arrangement, the anode conductor is further exposed to elevated temperatures. This results in an increase in the electrical resistivity, involving energy losses, and a reduction in the mechanical strength of the anode assembly.

De plus, l'utilisation d'une plaque connectée et alimentée en courant uniquement du côté amont, pour répartir le courant sur les anodes de la cuve implique un important équilibrage électrique entre le côté amont et le côté aval de la cuve compte tenu de la largeur des cuves actuelles. Ainsi pour assurer un équilibrage électrique correct, il faut utiliser une plaque de section très importante ou dissocier cette plaque en une pluralité de plaques distinctes parallèles formant une pluralité de circuits électriques distincts de résistance équivalente. Dans les deux cas cela conduirait à des ensembles anodiques équipés de conducteurs électriques anodiques de très fort encombrement et couteux en matière première. Par ailleurs, le flux thermique extrait par les conducteurs anodiques du côté amont de la cuve introduirait un déséquilibre thermique important entre les deux côtés de la cuve, rendant difficile le contrôle du procédé d'électrolyse et réduisant fortement la durée de vie de la cuve. Aussi, la présente invention vise à remédier à tout ou partie de ces inconvénients en proposant une cuve d'électrolyse permettant un remplacement d'ensemble anodique par le haut tout en conservant un rendement élevé. A cet effet, la présente invention a pour objet une cuve d'électrolyse, destinée à la production d'aluminium par électrolyse, dans laquelle la cuve d'électrolyse comprend un caisson présentant deux côtés longitudinaux opposés, un ensemble anodique, mobile uniquement en translation verticale par rapport au caisson, l'ensemble anodique comprenant au moins un bloc anodique et un support anodique transversal s'étendant de façon sensiblement transversale aux côtés longitudinaux du caisson et auquel est suspendu ledit au moins un bloc anodique, le support anodique transversal comprenant deux portions de connexion à partir desquelles est destiné à être alimenté le support anodique transversal en courant d'électrolyse, la cuve d'électrolyse comprenant en outre des conducteurs électriques de connexion connectés électriquement aux deux portions de connexion du support anodique transversal, caractérisée en ce que les deux portions de connexion sont distantes selon une direction sensiblement transversale de la cuve d'électrolyse. Du fait de cette double connexion de part et d'autre du support anodique, il est possible de diminuer la quantité de matière première constituant ce dernier, de réduire ses dimensions, notamment sa section moyenne, tout en conservant une conductivité électrique équilibrée sur la largeur de la cuve. L'équilibre thermique de la cuve n'est par ailleurs pas perturbé par d'importantes différences de pertes thermiques entre le côté amont et le côté aval, du fait de cette double connexion de part et d'autre du support anodique et plus particulièrement de part et d'autre de la cuve. Ainsi, la cuve d'électrolyse selon l'invention permet avantageusement un allègement de l'ensemble anodique et une minimisation de son l'encombrement ce qui apporte une économie de matière première sur l'ensemble anodique mais aussi sur les équipements structurels périphériques. L'allègement et la compacité de l'ensemble anodique permet d'envisager l'utilisation de moyens de déplacement des ensembles anodiques de dimensions réduites, et donc moins coûteuse. L'allègement de l'ensemble anodique permet aussi en pratique d'envisager plus facilement un remplacement d'ensemble anodique par le haut, c'est-à-dire par traction verticale ascendante de l'ensemble anodique. Un remplacement d'ensemble anodique par le haut permet avantageusement de libérer l'espace entre les cuves, soit pour faciliter les opérations, soit pour rapprocher les cuves les unes des autres afin d'aligner davantage de cuves dans un même espace ou un même nombre de cuves dans un espace moindre. Avantageusement, les deux côtés longitudinaux opposés sont sensiblement symétriques par rapport à un plan médian longitudinal de la cuve d'électrolyse, et les deux portions de connexion sont agencées de part et d'autre dudit plan. Plus particulièrement, le support anodique transversal comporte deux portions d'extrémités, et les portions de connexion sont disposées sur ces portions d'extrémités. Selon un mode de réalisation préféré, le support anodique comprend une première structure, en un premier matériau électriquement conducteur, et une deuxième structure, en un deuxième matériau électriquement conducteur, le deuxième matériau présentant une conductivité électrique sensiblement supérieure à celle du premier matériau. Ainsi, le support anodique offre une combinaison d'un matériau présentant une conductivité électrique élevée, pour assurer la conductivité électrique et diminuer les pertes énergétiques, et d'un matériau présentant une conductivité électrique certes plus faible, mais servant de structure porteuse résistante et rigide permettant de supporter mécaniquement une pluralité de blocs anodiques, malgré l'exposition de cette structure porteuse à de fortes températures pouvant atteindre environ 1 000°C. L'utilisation d'un tel support anodique composite permet de diminuer la quantité et le cout des matières premières nécessaires pour que le support anodique puisse assurer les deux fonctions de transport du courant électrique et de support des blocs anodiques. Le premier matériau est plus particulièrement de l'acier pour son faible cout et sa résistance mécanique importante, également à haute température. Le deuxième matériau est plus particulièrement du cuivre pour sa très haute conductivité électrique, mais également sa capacité à se déformer et ses propriétés intéressantes comme surface de contact pour une connexion électrique. Un support anodique en cuivre seul se déformerait sous le poids des blocs anodiques, plus particulièrement du fait des hautes températures dans la cuve. Aussi, un support anodique en acier seul présenterait un encombrement très important pour assurer une conduction correcte du courant d'électrolyse vers les blocs anodiques, malgré les améliorations évoquées ci-dessus apportées par la présente invention. De préférence, la deuxième structure est fixée à la première structure de sorte que la première structure supporte mécaniquement la deuxième structure. Cette fixation peut être réalisée par exemple par boulonnage, soudure ou moulage d'une des matières dans un squelette formé par l'autre matière, notamment un moulage de cuivre dans un squelette d'acier. Selon un mode de réalisation particulier, la première structure comprend une barre transversale s'étendant sensiblement transversalement d'une portion de connexion à l'autre portion de connexion.In addition, the use of a plate connected and supplied with current only on the upstream side, to distribute the current on the anodes of the tank implies a significant electrical balance between the upstream side and the downstream side of the tank taking into account the width of the current tanks. Thus to ensure proper electrical balancing, it is necessary to use a very large section plate or dissociate the plate into a plurality of parallel separate plates forming a plurality of separate electrical circuits of equivalent strength. In both cases it would lead to anode assemblies equipped with anodic electrical conductors of very large size and expensive raw material. Furthermore, the heat flux extracted by the anode conductors on the upstream side of the tank would introduce a significant thermal imbalance between the two sides of the tank, making it difficult to control the electrolysis process and greatly reducing the service life of the tank. Also, the present invention aims to remedy all or part of these disadvantages by providing an electrolytic cell for anodic assembly replacement from above while maintaining a high efficiency. For this purpose, the subject of the present invention is an electrolysis cell, intended for the production of aluminum by electrolysis, in which the electrolytic cell comprises a box having two opposite longitudinal sides, an anode assembly, movable only in translation. vertical relative to the box, the anode assembly comprising at least one anode block and a transverse anodic support extending substantially transversely to the longitudinal sides of the box and to which said at least one anode block is suspended, the transverse anodic support comprising two connecting portions from which is intended to be fed the transverse anode support electrolysis current, the electrolysis cell further comprising electrical connection conductors electrically connected to the two connecting portions of the transverse anodic support, characterized in that the two portions of connection are distant according to a di substantially transverse rection of the electrolytic cell. Due to this double connection on either side of the anodic support, it is possible to reduce the amount of raw material constituting the latter, to reduce its dimensions, in particular its mean section, while maintaining a balanced electrical conductivity across the width. of the tank. The thermal equilibrium of the tank is also not disturbed by significant differences in heat losses between the upstream side and the downstream side, because of this double connection on either side of the anode support and more particularly of on both sides of the tank. Thus, the electrolytic cell according to the invention advantageously allows a lightening of the anode assembly and a minimization of its size which provides a saving of raw material on the anode assembly but also on peripheral structural equipment. The lightening and compactness of the anode assembly makes it possible to envisage the use of means for moving anodic assemblies of reduced dimensions, and therefore less expensive. The lightening of the anode assembly also makes it possible in practice to consider more easily an assembly of anode assembly from above, that is to say by vertical upward traction of the anode assembly. An anodic assembly replacement from above advantageously makes it possible to free the space between the tanks, either to facilitate the operations, or to bring the tanks closer together to align more tanks in the same space or the same number. tanks in a smaller space. Advantageously, the two opposite longitudinal sides are substantially symmetrical with respect to a longitudinal median plane of the electrolytic cell, and the two connection portions are arranged on either side of said plane. More particularly, the transverse anodic support comprises two end portions, and the connection portions are disposed on these end portions. According to a preferred embodiment, the anode support comprises a first structure, made of a first electrically conductive material, and a second structure, a second electrically conductive material, the second material having an electrical conductivity substantially greater than that of the first material. Thus, the anodic support offers a combination of a material having a high electrical conductivity, to ensure the electrical conductivity and to reduce the energy losses, and a material having a lower electrical conductivity, but serving as a strong and rigid carrier structure for mechanically supporting a plurality of anode blocks, despite the exposure of this carrier structure to high temperatures of up to about 1000 ° C. The use of such a composite anodic support makes it possible to reduce the quantity and the cost of the raw materials necessary so that the anodic support can ensure the two functions of transporting electric current and supporting the anode blocks. The first material is more particularly steel for its low cost and its high mechanical strength, also at high temperature. The second material is more particularly copper for its very high electrical conductivity, but also its ability to deform and its interesting properties as a contact surface for an electrical connection. Anodic support in copper alone would deform under the weight of the anode blocks, more particularly because of the high temperatures in the tank. Also, an anode support in steel alone would have a very large footprint to ensure proper conduction of the electrolysis current to the anode blocks, despite the improvements mentioned above provided by the present invention. Preferably, the second structure is attached to the first structure so that the first structure mechanically supports the second structure. This attachment can be achieved for example by bolting, welding or molding of one of the materials in a skeleton formed by the other material, including a copper molding in a steel skeleton. According to a particular embodiment, the first structure comprises a transverse bar extending substantially transversely from one connecting portion to the other connecting portion.

Une telle barre est moins sensible au rayonnement thermique dégagé par le bain électrolytique qu'une plaque de section équivalente disposée horizontalement et l'air environnant circule également mieux autour. Une barre est également mécaniquement plus adaptée pour supporter des charges lourdes. Avantageusement, la barre s'étend d'un seul tenant entre les portions de connexion.Such a bar is less sensitive to the thermal radiation generated by the electrolytic bath than a plate of equivalent section disposed horizontally and the surrounding air also circulates better around. A bar is also mechanically more suitable for supporting heavy loads. Advantageously, the bar extends in one piece between the connection portions.

Par s'étendre d'un seul tenant il faut entendre s'étendre sans discontinuer d'une portion de connexion à l'autre. Autrement dit, chaque barre longitudinale est monobloc et correspond à une seule et même pièce mécanique s'étendant d'une portion de connexion à l'autre. Ainsi, la tenue mécanique de la barre est améliorée et cela limite également éventuellement les pertes énergétiques en comparaison avec une cuve d'électrolyse dans laquelle les barres formant le support anodique seraient discontinues, formées d'une pluralité de tronçons joints les uns aux autres. De manière avantageuse, les portions de connexion sont agencées sur les extrémités de la barre longitudinale et sont plus particulièrement situées à proximité des côtés longitudinaux du caisson. De manière avantageuse, la deuxième structure forme au moins partiellement les portions de connexion du support anodique. Ainsi, la connexion électrique de l'ensemble anodique avec les conducteurs électriques de connexion de la cuve est réalisée au moyen de la deuxième structure formé avec un matériau ayant une bonne conductivité électrique. Les chutes de tension sont alors minimisées pour le transport du courant d'électrolyse vers les blocs anodiques. Selon un mode de réalisation avantageux, la deuxième structure comprend deux parties distinctes formant chacune au moins partiellement l'une des deux portions de connexion.To extend in one piece must be understood to extend without stopping from one connecting portion to another. In other words, each longitudinal bar is monobloc and corresponds to one and the same mechanical part extending from one connecting portion to the other. Thus, the mechanical strength of the bar is improved and this also possibly limits the energy losses in comparison with an electrolytic cell in which the bars forming the anodic support would be discontinuous, formed of a plurality of sections joined to each other. Advantageously, the connection portions are arranged on the ends of the longitudinal bar and are more particularly located near the longitudinal sides of the box. Advantageously, the second structure at least partially forms the connection portions of the anode carrier. Thus, the electrical connection of the anode assembly with the electrical connection conductors of the tank is performed by means of the second structure formed with a material having good electrical conductivity. The voltage drops are then minimized for transporting the electrolysis current to the anode blocks. According to an advantageous embodiment, the second structure comprises two distinct parts each forming at least partially one of the two connection portions.

Il n'est pas nécessaire que la deuxième structure de meilleure conductivité électrique soit continue d'une portion de connexion à l'autre du support anodique, car cette deuxième structure sert à l'alimentation électrique des blocs anodiques et ne serait par conséquent quasiment pas parcourue par un courant électrique sur toute sa longueur du fait qu'elle est alimentée en courant d'électrolyse en deux points distincts distants selon une direction sensiblement transversale de la cuve, notamment à deux extrémités opposées du support anodique, de chaque côté de la cuve. Cette discontinuité, ou séparation de la deuxième structure en deux parties distinctes permet de minimiser la quantité de deuxième matériau utilisé, ce deuxième matériau ayant classiquement un cout élevé. Ces deux parties distinctes sont plus particulièrement distantes selon la direction transversale de la cuve. Avantageusement, les deux côtés longitudinaux opposés de la cuve sont sensiblement symétriques par rapport à un plan médian longitudinal de la cuve d'électrolyse, et les deux parties distinctes sont agencées de part et d'autre du plan (P). Le courant d'électrolyse parcourant chacune des deux parties distinctes est alors d'intensité sensiblement identique mais de direction opposé dans le support anodique de sorte que l'équilibrage électrique dans le support est réalisé au centre du support anodique. Aussi, les deux parties distinctes sont avantageusement sensiblement symétriques par rapport audit plan. Les ensembles anodiques peuvent donc présenter une symétrie par rapport à un plan médian de sorte que les ensembles anodiques peuvent être insérés dans la cuve sans qu'il n'y ait de sens prédéterminé à respecter. Selon un mode de réalisation préféré, le support anodique transversal comporte une pluralité de rondins fixés sur la première structure et destinés à être scellés dans des évidements formés dans une surface dudit au moins un bloc anodique, et la distance selon la direction transversale entre les deux parties distinctes est sensiblement équivalente à la distance entre deux rondins adjacents.It is not necessary for the second structure of better electrical conductivity to be continuous from one connecting portion to the other of the anodic support, since this second structure serves to supply the anode blocks with electrical power and would therefore hardly be traversed by an electric current over its entire length because it is supplied with electrolysis current at two distinct points distant in a substantially transverse direction of the vessel, in particular at two opposite ends of the anode carrier, on each side of the vessel . This discontinuity, or separation of the second structure into two distinct parts makes it possible to minimize the quantity of second material used, this second material conventionally having a high cost. These two distinct parts are more particularly distant in the transverse direction of the tank. Advantageously, the two opposite longitudinal sides of the vessel are substantially symmetrical with respect to a longitudinal median plane of the electrolysis vessel, and the two distinct parts are arranged on either side of the plane (P). The electrolysis current flowing through each of the two distinct parts is then of substantially identical intensity but of opposite direction in the anodic support so that the electrical balance in the support is made in the center of the anode support. Also, the two distinct parts are advantageously substantially symmetrical with respect to said plane. The anode assemblies may therefore have a symmetry with respect to a median plane so that the anode assemblies can be inserted into the vessel without there being a predetermined direction to be respected. According to a preferred embodiment, the transverse anodic support comprises a plurality of logs fixed on the first structure and intended to be sealed in recesses formed in a surface of said at least one anode block, and the distance in the transverse direction between the two distinct parts is substantially equivalent to the distance between two adjacent logs.

Lorsque l'alimentation des blocs anodiques est réalisée au moyen de rondins connectés électriquement au support anodique, une zone dans laquelle le courant ne circule dans le support anodique peut être réalisée entre deux rondins de sorte que cette configuration permet une économie importante de deuxième matière pour former la deuxième structure.When the feed of the anode blocks is carried out by means of logs electrically connected to the anode support, an area in which the current flows in the anode carrier can be made between two logs so that this configuration allows a significant saving of second material for form the second structure.

Selon un mode de réalisation préféré, le support anodique transversal comporte une pluralité de rondins fixés sur la première structure et chaque partie est fixée à la première structure uniquement au niveau de la fixation des rondins et d'une portion de connexion. Cette fixation de la deuxième structure sur la première structure peut par exemple être réalisée par soudure ou boulonnage.According to a preferred embodiment, the transverse anodic support comprises a plurality of logs fixed on the first structure and each part is fixed to the first structure only at the level of the fixing of the logs and a connecting portion. This fixing of the second structure on the first structure may for example be performed by welding or bolting.

Chaque rondin peut par conséquent être parfaitement alimenté électriquement par la partie de la deuxième structure qui s'étend depuis la portion de connexion correspondante jusqu'à l'extrémité de fixation du rondin sur la première structure qui est la structure porteuse. Aussi, cette manière de fixer la deuxième structure sur la première structure permet à la première structure de pouvoir se dilater indépendamment de la deuxième structure de sorte que les changements de température subis par le support anodique au cours de sa vie ne le dégradent pas. Plus particulièrement, en prenant le cas de l'acier comme premier matériau et de cuivre comme deuxième matériau, le premier matériau se dilatera moins que le deuxième matériau lors d'une exposition à la chaleur, et le deuxième matériau, plus flexible que le premier matériau, qui doit être rigide pour former la structure porteuse, pourra se déformer légèrement le long de la première structure entre deux points de fixation. Selon un mode de réalisation particulier, l'ensemble anodique comprend deux blocs anodiques adjacents selon une direction transversale de la cuve d'électrolyse, les deux blocs anodiques étant supportés par une même première structure et disposés sous deux parties distinctes de la deuxième structure. Les cuves d'électrolyse actuelles sont de largeur importante de sorte qu'il est avantageux d'utiliser deux blocs anodiques sur la largeur de la cuve, donc accrochés à un même ensemble anodique pour faciliter l'évacuation de gaz s'accumulant sous les blocs anodiques, la fabrication et la manutention des blocs anodiques.Each log can therefore be perfectly electrically powered by the portion of the second structure which extends from the corresponding connecting portion to the fixing end of the log on the first structure which is the supporting structure. Also, this way of fixing the second structure on the first structure allows the first structure to be able to expand independently of the second structure so that the temperature changes experienced by the anodic support during its lifetime do not degrade it. More particularly, taking the case of steel as the first material and copper as the second material, the first material will expand less than the second material when exposed to heat, and the second material, more flexible than the first material, which must be rigid to form the carrier structure, may be slightly deformed along the first structure between two attachment points. According to a particular embodiment, the anode assembly comprises two adjacent anode blocks in a transverse direction of the electrolytic cell, the two anode blocks being supported by the same first structure and arranged in two distinct parts of the second structure. The current electrolysis tanks are of large width so that it is advantageous to use two anode blocks across the width of the tank, so hooked to the same anode assembly to facilitate the evacuation of gas accumulating under the blocks anodic, manufacture and handling of anodic blocks.

Selon un mode de réalisation préféré, le support anodique forme un anneau délimité par deux barres transversales reliées l'une à l'autre à leurs extrémités, les barres s'étendant de façon sensiblement parallèle entre elles et perpendiculaire aux côtés longitudinaux du caisson. La forme annulaire du support anodique permet de réaliser des économies de matière première et un allègement par rapport à un support anodique formé d'une barre unique ou d'une plaque qui couvrirait globalement la même superficie dans un plan horizontal que l'anneau ainsi formé, pour une résistance mécanique et une conductivité électrique équivalente. Cette forme annulaire permet notamment de minimiser les longueurs totales de conducteurs électriques depuis les portions de connexions jusqu'aux blocs anodiques. La forme annulaire permet de minimiser les gauchissements ou déformations des supports anodiques en vrille du fait des dilatations successives subies par les supports anodiques. La forme annulaire ou multi-barres parallèles offre également la possibilité d'élargir les ensembles anodiques en minimisant le cout matière. Le fait de disposer d'ensembles anodiques larges, notamment avec deux blocs anodiques adjacents dans le sens de la longueur de la cuve d'électrolyse, permet de diminuer le nombre de moyens de déplacement ou structure de soulèvement selon la direction verticale des ensembles anodiques, en particulier de diminuer le nombre de vérins, et le nombre de connexions électriques avec des conducteurs électriques de connexion. Ainsi, l'ensemble anodique comprend avantageusement deux blocs anodiques adjacents selon une direction longitudinale de la cuve d'électrolyse, chaque bloc anodique étant supporté par une barre transversale distincte. Aucune barre ne s'étend au-dessus de l'espace entre les deux blocs anodiques adjacents selon la direction longitudinale de la cuve de sorte que la chaleur rayonnée par le bain entre ces blocs anodiques n'impacte pas la résistance et la conductivité des supports anodiques. Aussi, les barres ne font pas obstacle au déversement par le dessus de produit de couverture entre ces blocs anodiques adjacents. Les rondins reliant le support anodique aux blocs anodiques s'étendent avantageusement sensiblement verticalement sous chaque barre. Ainsi, cela permet une économie de matière, en comparaison avec des rondins présentant des traverses et longerons multidirectionnels supportant une pluralité de pieds scellés dans un bloc anodique. Selon un mode de réalisation préféré, la première structure forme un anneau et la deuxième structure est agencée à l'intérieur de l'anneau formé par la première structure. Cela permet de réaliser avantageusement des économies de matière car la longueur et la quantité de matière de la deuxième structure est ainsi minimisée pour remplir la fonction de conduction électrique, plus particulièrement depuis les portions de connexions jusqu'aux extrémités supérieures de fixation des rondins sur la première structure. Les rondins doivent avant tout être tenus mécaniquement, c'est pour cela qu'ils doivent être fixés, plus particulièrement soudés, au droit de la première structure. La connexion électrique à la deuxième structure peut ensuite être raccordée par le flan du rondin ou encore le courant peut passer au travers de la première structure mais sur une courte distance pour ne dégrader la consommation énergétique. Ainsi, lorsque les rondins reliant le support anodique aux blocs anodiques s'étendent avantageusement sensiblement verticalement sous chaque barre, la première structure est située à l'aplomb des rondins tandis que la deuxième structure est décalée sur l'intérieur de l'anneau par rapport à l'axe le long duquel s'étendent les rondins ; la deuxième structure n'est pas dans la continuité de cet axe mais sa longueur est minimisée car elle est positionnée sur l'intérieur de l'anneau. Aussi, la deuxième matière formant la deuxième structure est protégée par la première structure l'entourant, contre des dégradations dues à un fort rayonnement thermique engendré par un retrait d'un ensemble anodique adjacent du bain électrolytique, contre des projections de matières corrosives, et contre d'éventuels chocs lors de la manipulation du support anodique seul ou des ensembles anodique comportant un tel support anodique. Avantageusement, l'anneau présente des extrémités en forme de U, la deuxième structure comporte deux parties présentant chacune une forme en U correspondante complémentaire de celle des extrémités de l'anneau, et, à température ambiante, la longueur de la paroi périphérique extérieure des portions curvilignes du U formé par chaque partie de la deuxième structure (220) est inférieure à la longueur de la paroi périphérique intérieure des portions curvilignes du U formé par l'extrémité correspondante de l'anneau Ainsi, cela évite une usure prématurée du support anodique causée par une dilatation de la deuxième structure sous l'effet de la température dans la cuve d'électrolyse en fonctionnement. Sans un tel agencement, la deuxième matière viendrait forcer contre la première structure. Comme la deuxième matière à tendance à se dilater plus que la première matière, le mode de réalisation défini ci-dessus permet à la seconde matière de se dilater sans venir forcer contre la première matière et risquer de dégrader la deuxième matière ou les fixations de la deuxième structure sur la première structure. Une zone de dilatation libre est préservée pour la dilatation de la deuxième structure, via un rayon de courbure plus court de la deuxième structure, afin d'éviter une rupture des fixations (soudures-boulonnage) et des connexions électriques entre la première structure et la deuxième structure.According to a preferred embodiment, the anodic support forms a ring delimited by two transverse bars connected to one another at their ends, the bars extending substantially parallel to each other and perpendicular to the longitudinal sides of the box. The annular shape of the anodic support makes it possible to save raw material and lightening compared to an anodic support formed of a single bar or a plate which would cover generally the same area in a horizontal plane as the ring thus formed. for mechanical strength and equivalent electrical conductivity. This annular shape makes it possible in particular to minimize the total lengths of electrical conductors from the connection portions to the anode blocks. The annular shape makes it possible to minimize the warping or deformations of the anode supports in twisting because of the successive expansions experienced by the anode supports. The annular or parallel multi-bar form also offers the possibility of expanding the anode assemblies by minimizing material cost. The fact of having wide anode assemblies, in particular with two adjacent anode blocks in the direction of the length of the electrolytic cell, makes it possible to reduce the number of displacement means or lifting structure in the vertical direction of the anode assemblies, in particular to reduce the number of cylinders, and the number of electrical connections with electrical connection conductors. Thus, the anode assembly advantageously comprises two adjacent anode blocks in a longitudinal direction of the electrolytic cell, each anode block being supported by a separate transverse bar. No bar extends above the space between the two adjacent anode blocks in the longitudinal direction of the vessel so that the heat radiated by the bath between these anode blocks does not impact the strength and conductivity of the supports. anodic. Also, the bars do not interfere with the overflow of cover material between these adjacent anode blocks. The logs connecting the anode support to the anode blocks advantageously extend substantially vertically under each bar. Thus, this allows a saving of material, in comparison with logs having crosspieces and multidirectional spars supporting a plurality of feet sealed in an anode block. According to a preferred embodiment, the first structure forms a ring and the second structure is arranged inside the ring formed by the first structure. This advantageously makes it possible to economize material because the length and the quantity of material of the second structure is thus minimized to fulfill the function of electrical conduction, more particularly from the connection portions to the upper ends of the logs on the first structure. The logs must first and foremost be held mechanically, that is why they must be fixed, especially welded, to the right of the first structure. The electrical connection to the second structure can then be connected by the blank of the log or the current can pass through the first structure but a short distance to degrade the energy consumption. Thus, when the logs connecting the anode carrier to the anode blocks advantageously extend substantially vertically under each bar, the first structure is located vertically above the logs while the second structure is offset on the inside of the ring relative to to the axis along which the logs extend; the second structure is not in continuity with this axis but its length is minimized because it is positioned on the inside of the ring. Also, the second material forming the second structure is protected by the first structure surrounding it, against damage due to strong thermal radiation generated by removal of an adjacent anode assembly of the electrolytic bath, against projections of corrosive materials, and against possible shocks when handling the anodic support alone or anode assemblies comprising such anodic support. Advantageously, the ring has U-shaped ends, the second structure comprises two parts each having a corresponding U shape complementary to that of the ends of the ring, and, at ambient temperature, the length of the outer peripheral wall of the curvilinear portions of the U formed by each portion of the second structure (220) is less than the length of the inner peripheral wall of the curvilinear portions of the U formed by the corresponding end of the ring Thus, this avoids premature wear of the anode carrier caused by a dilation of the second structure under the effect of the temperature in the electrolytic cell in operation. Without such an arrangement, the second material would force against the first structure. Since the second material tends to expand more than the first material, the embodiment defined above allows the second material to expand without forcing against the first material and risk degrading the second material or the fasteners of the second structure on the first structure. A zone of free expansion is preserved for the expansion of the second structure, via a shorter radius of curvature of the second structure, in order to avoid a break in fasteners (welds-bolting) and electrical connections between the first structure and the second structure.

Avantageusement, l'ensemble anodique comprend une pluralité de rondins s'étendant entre le support anodique et ledit au moins un bloc anodique et en ce que le support anodique comprend une portion coudée dans un plan vertical à chacune de ses extrémités de sorte que les portions de connexion du support anodique sont disposées au-dessus de la surface supérieure des rondins. Ainsi, cela permet de réduire la distance entre le support anodique et le bloc anodique, donc de réduire la hauteur des rondins. Des rondins de hauteur excessive conduiraient à une augmentation de la chute de potentiel, préjudiciable au rendement de la cuve d'électrolyse, ainsi qu'à une augmentation de la longueur et la masse de matériau conducteur formant le support anodique. Avantageusement, l'ensemble anodique comprend une pluralité de rondins s'étendant sensiblement verticalement entre le support anodique et ledit au moins un bloc anodique, et en ce que le rondin comporte une extrémité de scellement sensiblement horizontale scellée à l'intérieur du bloc anodique.Advantageously, the anode assembly comprises a plurality of logs extending between the anode carrier and the at least one anode block and in that the anode carrier comprises a portion bent in a vertical plane at each of its ends so that the portions connection of the anodic support are arranged above the upper surface of the logs. Thus, this makes it possible to reduce the distance between the anodic support and the anode block, thus reducing the height of the logs. Logs of excessive height would lead to an increase in the potential drop, detrimental to the efficiency of the electrolysis cell, as well as to an increase in the length and the mass of conductive material forming the anodic support. Advantageously, the anode assembly comprises a plurality of logs extending substantially vertically between the anode carrier and the at least one anode block, and in that the log has a substantially horizontal sealing end sealed inside the anode block.

L'utilisation de tels rondins permet de diminuer le nombre total de rondins et d'améliorer l'équilibre thermique et électrique des ensembles anodiques. Selon une possibilité avantageuse, le support anodique comprend au moins un longeron de renfort s'étendant selon une direction sensiblement transversale de la cuve d'électrolyse et reliant les deux extrémités du support anodique.The use of such logs reduces the total number of logs and improve the thermal and electrical balance of the anode assemblies. According to an advantageous possibility, the anodic support comprises at least one reinforcing beam extending in a substantially transverse direction of the electrolytic cell and connecting the two ends of the anode carrier.

Cette caractéristique permet de renforcer mécaniquement le support anodique et de limiter la flexion ou la déformation de ce dernier. Selon une forme d'exécution avantageuse, le support anodique comprend une traverse s'étendant selon une direction longitudinale de la cuve d'électrolyse et reliant les deux barres longitudinales entre elles et le cas échéant avec ledit au moins un longeron de renfort. Cela renforce davantage encore le support anodique pour limiter la flexion. Longerons et traverses peuvent servir de moyens de préhension des ensembles anodiques pour leur manipulation. Selon un mode de réalisation, l'ensemble anodique comprend deux blocs anodiques adjacents selon une direction longitudinale de la cuve d'électrolyse, chaque bloc anodique étant supporté par une barre longitudinale distincte. Selon un autre aspect, l'invention concerne une usine d'électrolyse, notamment une aluminerie, comprenant une cuve d'électrolyse ayant les caractéristiques précitées, dans laquelle les cuves d'électrolyse sont disposées transversalement par rapport à la longueur de la file. D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description détaillée ci-après d'un mode de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels : - La figure 1 est une vue schématique de côté en coupe d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - La figure 2 est une vue schématique de côté en coupe d'une cuve d'électrolyse selon un mode de réalisation de l'invention, La figure 3 est une vue schématique de côté d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - La figure 4 est une vue de dessus de l'ensemble anodique de la figure 3, - La figure 5 est une vue en coupe selon la ligne 1-1 de la figure 3, respectivement de côté sur laquelle est représentée un ensemble anodique, - La figure 6 est une vue schématique de côté d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention, La figure 7 est une vue de dessus de l'ensemble anodique de la figure 6, La figure 8 est une vue en coupe selon la ligne 11-11 de la figure 6, La figure 9 est une vue en coupe schématique de côté d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention, La figure 10 est une vue schématique de dessus d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - La figure 11 est une vue schématique en coupe de côté selon la ligne III-III de la figure 10, La figure 12 est une vue schématique de dessus d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - La figure 13 est une vue schématique en coupe de côté selon la ligne IV-IV de la figure 12, La figure 14 est une vue schématique en perspective d'un ensemble anodique des figures 12 et 13 ; La figure 15 est une vue schématique de dessus d'un ensemble anodique d'une cuve d'électrolyse selon un mode de réalisation de l'invention.This characteristic makes it possible to mechanically reinforce the anodic support and to limit the flexion or deformation of the latter. According to an advantageous embodiment, the anode support comprises a cross member extending in a longitudinal direction of the electrolytic cell and connecting the two longitudinal bars together and optionally with said at least one reinforcing beam. This further strengthens the anodic support to limit flexion. Longerons and sleepers can serve as gripping means for anode assemblies for their handling. According to one embodiment, the anode assembly comprises two adjacent anode blocks in a longitudinal direction of the electrolytic cell, each anode block being supported by a separate longitudinal bar. According to another aspect, the invention relates to an electrolysis plant, in particular an aluminum smelter, comprising an electrolysis tank having the aforementioned characteristics, in which the electrolysis tanks are arranged transversely with respect to the length of the line. Other characteristics and advantages of the present invention will emerge clearly from the following detailed description of an embodiment, given by way of non-limiting example, with reference to the appended drawings in which: FIG. 1 is a view schematic sectional side view of an electrolytic cell according to one embodiment of the invention, - Figure 2 is a schematic sectional side view of an electrolytic cell according to one embodiment of the invention. FIG. 3 is a schematic side view of an anode assembly of an electrolytic cell according to one embodiment of the invention; FIG. 4 is a top view of the anode assembly of FIG. FIG. 5 is a sectional view along line 1-1 of FIG. 3, on the side on which an anode assembly is shown; FIG. 6 is a schematic side view of an anode assembly of a electrolytic cell according to a mode of realization FIG. 7 is a top view of the anode assembly of FIG. 6; FIG. 8 is a sectional view along line 11-11 of FIG. 6; FIG. schematic side section of an anode assembly of an electrolytic cell according to an embodiment of the invention, FIG. 10 is a schematic top view of an anode assembly of an electrolysis cell in a embodiment of the invention, - Figure 11 is a schematic side sectional view along the line III-III of Figure 10, Figure 12 is a schematic top view of an anode assembly of a tank of According to one embodiment of the invention, FIG. 13 is a diagrammatic side sectional view along the line IV-IV of FIG. 12. FIG. 14 is a schematic perspective view of an anode assembly of FIGS. 12 and 13; FIG. 15 is a schematic view from above of an anode assembly of an electrolytic cell according to one embodiment of the invention.

La figure 1 montre des cuves 1 d'électrolyse selon un mode de réalisation de l'invention, destinées à la production d'aluminium par électrolyse. Les cuves 1 d'électrolyse comprennent un caisson 2, notamment en acier, à l'intérieur duquel est agencé un revêtement 4 en matériaux réfractaires, une cathode 6 en matériau carboné, traversée par des conducteurs 8 cathodiques destinés à collecter le courant d'électrolyse à la cathode 6 pour le conduire jusqu'à des sorties 10 cathodiques traversant le fond ou les côtés du caisson 2, des conducteurs 12 d'acheminement s'étendant sensiblement horizontalement jusqu'à la cuve 1 d'électrolyse suivante depuis les sorties 10 cathodiques, un bain 14 électrolytique dans lequel est dissout l'alumine, et une nappe 16 de métal liquide, notamment d'aluminium liquide, se formant au cours de la réaction d'électrolyse. Le caisson 2 peut présenter une forme sensiblement parallélépipédique. Il comprend deux côtés 18 longitudinaux opposés, sensiblement symétriques par rapport à un plan P médian longitudinal de la cuve 1 d'électrolyse. Le caisson 2 peut présenter deux côtés transversaux reliant les côtés longitudinaux en délimitant sensiblement un rectangle. Par plan médian longitudinal on entend plan sensiblement perpendiculaire à une direction transversale X de la cuve 1 d'électrolyse et séparant la cuve 1 d'électrolyse en deux parties sensiblement égales. On notera que la cuve 1 d'électrolyse est agencée transversalement par rapport à la longueur d'une file de cuves d'électrolyse. En d'autres termes, la cuve 1 d'électrolyse s'étend en longueur selon une direction longitudinale Y qui est sensiblement perpendiculaire à la direction X dans laquelle s'étend la file de cuves d'électrolyse dont la cuve 1 d'électrolyse fait partie. La cuve 1 d'électrolyse selon l'invention comprend par ailleurs un ensemble anodique.FIG. 1 shows electrolysis tanks 1 according to one embodiment of the invention, intended for the production of aluminum by electrolysis. The electrolysis tanks 1 comprise a box 2, in particular made of steel, inside which is arranged a coating 4 of refractory materials, a cathode 6 made of carbon material, crossed by cathode conductors 8 for collecting the electrolysis current. at the cathode 6 to lead to cathode outlets through the bottom or sides of the box 2, conductors 12 extending substantially horizontally to the next electrolysis tank 1 from the cathode outlets , an electrolytic bath in which the alumina is dissolved, and a sheet 16 of liquid metal, in particular of liquid aluminum, forming during the electrolysis reaction. The casing 2 may have a substantially parallelepiped shape. It comprises two opposite longitudinal sides 18, substantially symmetrical with respect to a longitudinal median plane P of the electrolysis tank 1. The box 2 may have two transverse sides connecting the longitudinal sides substantially delimiting a rectangle. Longitudinal median plane means plane substantially perpendicular to a transverse direction X of the electrolysis tank 1 and separating the electrolysis tank 1 into two substantially equal parts. It will be noted that the electrolysis tank 1 is arranged transversely with respect to the length of a row of electrolysis cells. In other words, the electrolysis tank 1 extends in length in a longitudinal direction Y which is substantially perpendicular to the direction X in which extends the row of electrolysis cells whose electrolysis cell 1 part. The electrolysis tank 1 according to the invention also comprises an anode assembly.

L'ensemble anodique comprend un ou plusieurs blocs 100 anodiques et un support 200 anodique transversal, allongé transversalement par rapport à la longueur de la cuve 1 d'électrolyse, auquel est suspendu le ou les blocs 100 anodiques. Les blocs 100 anodiques sont plus particulièrement en matériau carboné de type précuits, c'est-à-dire cuits avant introduction dans la cuve 1 d'électrolyse.The anode assembly comprises one or more anodic blocks 100 and a transverse anodic support 200, elongated transversely with respect to the length of the electrolysis tank 1, to which the anode block or blocks 100 are suspended. The anodic blocks 100 are more particularly made of carbon material of the pre-cooked type, that is to say cooked before introduction into the electrolysis tank 1.

L'ensemble anodique est mobile uniquement en translation, notamment en translation verticale, par rapport au caisson 2. Aussi, la cuve 1 d'électrolyse est configurée pour permettre un changement d'ensemble anodique par le haut, comme cela est représenté sur la figure 1 pour la cuve 1 située à droite de la figure 1. Comme on peut le voir sur la figure 1 ou 2, le support 200 anodique transversal s'étend de façon sensiblement orthogonale aux côtés 18 longitudinaux du caisson 2. Autrement dit, le support 200 anodique transversal s'étend selon une direction sensiblement transversale X de la cuve 1 d'électrolyse. Le support 200 anodique transversal comprend deux portions 202 de connexion. C'est à partir de ces portions 202 de connexion que le support 200 anodique est alimenté en courant d'électrolyse. La cuve 1 d'électrolyse comprend en outre des conducteurs 20 électriques de connexion, connectés électriquement aux deux portions 202 de connexion pour conduire le courant d'électrolyse jusqu'au support 200 anodique.The anode assembly is movable only in translation, in particular in vertical translation, with respect to the casing 2. Also, the electrolysis tank 1 is configured to allow anodic assembly change from above, as shown in FIG. 1 for the tank 1 on the right of Figure 1. As can be seen in Figure 1 or 2, the transverse anodic support 200 extends substantially orthogonal to the longitudinal sides 18 of the box 2. In other words, the support 200 anodic transverse extends in a substantially transverse direction X of the electrolysis tank 1. The transverse anodic support 200 comprises two connecting portions 202. It is from these connecting portions 202 that the anodic support 200 is supplied with electrolysis current. The electrolysis tank 1 further comprises electrical connection leads, electrically connected to the two connection portions 202 for conducting the electrolysis current to the anodic support 200.

Les conducteurs 20 électriques de connexion s'étendent sensiblement verticalement le long de chaque côté 18 longitudinal du caisson 2. On remarquera que les deux portions 202 de connexion sont agencées de part et d'autre du plan P, si bien que le support 200 anodique bénéficie d'une connexion bilatérale. Les deux portions 202 de connexion sont distinctes et distantes selon une direction sensiblement transversale X de la cuve 1 d'électrolyse. Les deux portions 202 de connexion peuvent être agencées de façon sensiblement symétrique par rapport au plan P. Elles peuvent être agencées à chacune des deux extrémités du support 200 anodique transversal.The electrical connecting conductors extend substantially vertically along each longitudinal side of the box 2. It will be noted that the two connecting portions 202 are arranged on either side of the plane P, so that the anodic support 200 enjoys a bilateral connection. The two connecting portions 202 are separate and distant in a substantially transverse direction X of the electrolysis tank 1. The two connecting portions 202 may be arranged substantially symmetrically with respect to the plane P. They may be arranged at each of the two ends of the transverse anodic support 200.

En particulier, les portions 202 de connexion peuvent être agencées à proximité des côtés 18 longitudinaux du caisson 2. Plus précisément, elles peuvent être agencées sensiblement verticalement au-dessus des côtés 18 longitudinaux du caisson 2, ou, plus avantageusement, elles peuvent ne pas s'étendre au droit du caisson 2, c'est-à-dire qu'elles peuvent être agencées en-dehors d'un volume obtenu par translation verticale d'une surface projetée dans un plan horizontal du caisson 2. Les portions 202 de connexion sont ainsi moins exposées à la chaleur dégagée par le bain 14 électrolytique en fonctionnement. Comme cela est visible sur les figures 10 et 12, le support 200 anodique présente une forme d'anneau. Il comprend notamment deux barres 204 longitudinales, sensiblement parallèles entre elles, s'étendant de façon sensiblement orthogonale aux côtés 18 longitudinaux du caisson 2, c'est-à-dire selon une direction sensiblement transversale X de la cuve d'électrolyse. Les barres 204 sont reliées l'une à l'autre au niveau de leurs extrémités. Chaque barre 204 longitudinale s'étend d'un seul tenant entre ses deux extrémités. Autrement dit, chaque barre 204 longitudinale correspond à une seule et même pièce mécanique s'étendant de l'une de ses extrémités à l'autre extrémité. Les portions 202 de connexion sont avantageusement agencées au niveau des extrémités de chacune des barres 204 longitudinales, donc aux extrémités de l'anneau formé par le support 200 anodique, de manière à les déporter le plus loin possible du centre de la cuve 1 d'électrolyse.In particular, the connecting portions 202 may be arranged near the longitudinal sides 18 of the box 2. More specifically, they may be arranged substantially vertically above the longitudinal sides 18 of the box 2, or, more advantageously, they may not extend to the right of the box 2, that is to say that they can be arranged outside a volume obtained by vertical translation of a projected surface in a horizontal plane of the box 2. The portions 202 of Connection are thus less exposed to the heat generated by the electrolytic bath in operation. As can be seen in FIGS. 10 and 12, the anodic support 200 has a ring shape. It comprises in particular two longitudinal bars 204, substantially parallel to each other, extending substantially orthogonal to the longitudinal sides 18 of the box 2, that is to say in a substantially transverse direction X of the electrolytic cell. Bars 204 are connected to each other at their ends. Each longitudinal bar 204 extends in one piece between its two ends. In other words, each longitudinal bar 204 corresponds to one and the same mechanical part extending from one of its ends to the other end. The connection portions 202 are advantageously arranged at the ends of each of the longitudinal bars 204, therefore at the ends of the ring formed by the anodic support 200, so as to deport them as far as possible from the center of the tank 1 of electrolysis.

Comme on peut le voir sur les figures, le support 200 anodique peut comprendre une première structure 210, destinée à assurer la tenue mécanique du support 200 anodique, et une deuxième structure 220, destinée à assurer le transport du courant d'électrolyse depuis les portions 202 de connexion vers le ou les blocs 100 anodiques. La première structure 210 est en un premier matériau électriquement conducteur. La deuxième structure 220 est en un deuxième matériau électriquement conducteur. Le deuxième matériau présente une conductivité électrique sensiblement supérieure à celle du premier matériau. Par exemple, la première structure 210 est en acier, la deuxième structure 220 est en cuivre. Ainsi, le premier matériau peut correspondre à de l'acier, le deuxième matériau peut correspondre à du cuivre, le support 200 anodique correspondant donc à un composite acier/cuivre. La première structure 210 est formée par les barres 204 longitudinales. La deuxième structure 220 peut être formée par des barres additionnelles en cuivre, distinctes des barres 204 longitudinales. Les barres en cuivre peuvent épouser la forme des barres 204 longitudinales. La deuxième structure 220 est fixée à la première structure 210. Ainsi, la première structure 210 supporte la deuxième structure 220. La première structure 210 présente une forme annulaire. A cet effet, les barres 204 longitudinales peuvent être une même barre pliée à leurs extrémités ou des barres distinctes fixées ensemble à leurs extrémités. Les barres 222 de conduction en cuivre formant la deuxième structure 220 peuvent être également pliées pour épouser la forme de la première structure 210. Les conducteurs 20 électriques de connexion peuvent être connectés à la deuxième structure 220. Comme visible sur la figure 14, la deuxième structure 220 forme plus particulièrement une semelle 32 dans chaque portion 202 de connexion, la semelle étant destinée à reposer contre une surface de connexion du conducteur 20 électrique de connexion associé. Un connecteur 30 peut être utilisé pour assurer une bonne connexion électrique du support 200 anodique par compression de la portion 202 de connexion (la semelle) contre le conducteur 20 électrique de connexion associé (la surface de connexion). La deuxième structure 220 est avantageusement dissociée en deux parties 220a,220b distinctes correspondant à deux barres 222 de conduction distinctes et distantes. Une partie de chacune des barres 222 de conduction forme au moins en partie l'une des deux portions 202 de connexion. Selon l'exemple des figures 1 à 9, la deuxième structure 220 est agencée sur un côté de la barre 204 formant la première structure 210. Selon l'exemple des figures 10 à 13, la deuxième structure 220 est agencée à l'intérieur de l'anneau formé par la première structure 210. La deuxième structure est alors moins longue que si disposée sur l'extérieur de l'anneau et en outre protégée par la première partie l'entourant. Plus particulièrement, selon l'exemple des figures 10 et 11, l'anneau formé par la première structure 210 présente des extrémités en forme de U et les deux barres 222 de conduction ou parties 220a,220b de la deuxième structure 220 présentent également une forme en U, complémentaire de celle des extrémités de l'anneau formé par la première structure 210. De plus, à température ambiante, c'est-à-dire à une température comprise entre 15°C et 25°C, la longueur de la paroi périphérique extérieure des portions curvilignes du U formé par chaque barre 222 de conduction est inférieure à la longueur de la paroi périphérique intérieure des portions curvilignes du U formé par l'extrémité correspondante de l'anneau. Il existe ainsi un jeu, à froid, entre les barres 222 de conduction et les barres 204 longitudinales, notamment au niveau des portions curvilignes de ces barres. Comme on peut le voir sur les figures, l'ensemble anodique comprend une pluralité de rondins 230 entre le support 200 anodique et le ou les blocs 100 anodiques.As can be seen in the figures, the anodic support 200 may comprise a first structure 210, intended to ensure the mechanical strength of the anodic support 200, and a second structure 220, intended to ensure the transport of the electrolysis current from the portions. 202 of connection to the anode block or 100. The first structure 210 is made of a first electrically conductive material. The second structure 220 is a second electrically conductive material. The second material has an electrical conductivity substantially greater than that of the first material. For example, the first structure 210 is steel, the second structure 220 is copper. Thus, the first material may correspond to steel, the second material may correspond to copper, the anodic support 200 thus corresponding to a steel / copper composite. The first structure 210 is formed by the longitudinal bars 204. The second structure 220 may be formed by additional copper bars, distinct longitudinal bars 204. The copper bars can follow the shape of the longitudinal bars 204. The second structure 220 is attached to the first structure 210. Thus, the first structure 210 supports the second structure 220. The first structure 210 has an annular shape. For this purpose, the longitudinal bars 204 may be the same bar bent at their ends or separate bars fixed together at their ends. The copper conduction bars 222 forming the second structure 220 may also be folded to conform to the shape of the first structure 210. The connecting electrical conductors 20 may be connected to the second structure 220. As shown in FIG. Structure 220 more particularly forms a sole 32 in each connection portion 202, the soleplate being intended to rest against a connecting surface of the associated electrical connecting conductor. A connector 30 may be used to provide good electrical connection of the anodic support 200 by compressing the connection portion 202 (the soleplate) against the associated electrical connection lead (the connection surface). The second structure 220 is advantageously dissociated into two distinct portions 220a, 220b corresponding to two separate and distant conduction bars 222. Part of each of the conduction bars 222 forms at least part of one of the two connecting portions 202. According to the example of Figures 1 to 9, the second structure 220 is arranged on one side of the bar 204 forming the first structure 210. According to the example of Figures 10 to 13, the second structure 220 is arranged inside of the ring formed by the first structure 210. The second structure is then shorter than if disposed on the outside of the ring and further protected by the first part surrounding it. More particularly, according to the example of FIGS. 10 and 11, the ring formed by the first structure 210 has U-shaped ends and the two conduction bars 222 or portions 220a, 220b of the second structure 220 also have a shape. in U, complementary to that of the ends of the ring formed by the first structure 210. In addition, at room temperature, that is to say at a temperature between 15 ° C and 25 ° C, the length of the outer circumferential wall of the curvilinear portions of the U formed by each conduction bar 222 is less than the length of the inner peripheral wall of the curvilinear portions of the U formed by the corresponding end of the ring. There is thus a clearance, cold, between the conduction bars 222 and the longitudinal bars 204, particularly at the curvilinear portions of these bars. As can be seen in the figures, the anode assembly comprises a plurality of logs 230 between the anodic support 200 and the anode block (s).

Chaque rondin 230 comprend une extrémité proximale fixée à une face supérieure du ou de l'un des blocs 100 anodiques et une extrémité distale rattachée à la première structure 210 uniquement. L'extrémité proximale peut être par exemple soudée sur la première structure 210. Une connexion électrique peut en outre être réalisée par soudure entre les rondins 230 et la deuxième structure 220.Each log 230 includes a proximal end attached to an upper face of one or one of the anode blocks 100 and a distal end attached to the first structure 210 only. The proximal end may for example be welded to the first structure 210. An electrical connection may also be made by welding between the logs 230 and the second structure 220.

Chaque rondin 230 peut s'étendre de façon sensiblement rectiligne entre son extrémité proximale et son extrémité distale, comme cela est représenté sur la figure 5. La deuxième structure 220 est avantageusement fixée sur la première structure 210 uniquement au niveau des portions 202 de connexion et/ou au niveau des extrémités distales des rondins 230, comme cela est illustré sur les figures 10 et 12. La deuxième structure 220 est par exemple rivetée, boulonnée ou soudée sur la première structure. Selon l'exemple des figures 10 et 12, une pluralité d'organes 240 de fixation maintient la deuxième structure 220 fixée contre la première structure 210. Chaque partie 220a,220b alimente en courant électrique des rondins 230 distincts et les parties sont distantes selon la direction sensiblement transversale de la cuve d'électrolyse. Du fait de cette double connexion de part et d'autre du support anodique, il est possible d'utiliser une deuxième structure discontinue, en deux parties 220a,220b et minimiser les couts en matière première. Les deux parties 220a,220b sont plus particulièrement distantes d'une distance correspondant à l'écartement entre les deux rondins 230 les plus au centre de l'ensemble anodique et symétrique par rapport au plan P. Chaque rondin 230 peut comprendre une unique extrémité proximale et une unique extrémité distale. Autrement dit, les rondins 230 peuvent être dépourvus de traverses ou longeron s'étendant dans un plan sensiblement horizontal.Each log 230 can extend substantially rectilinearly between its proximal end and its distal end, as shown in FIG. 5. The second structure 220 is advantageously fixed on the first structure 210 only at the level of the connecting portions 202 and / or at the distal ends of the logs 230, as shown in Figures 10 and 12. The second structure 220 is for example riveted, bolted or welded to the first structure. According to the example of FIGS. 10 and 12, a plurality of fixing members 240 hold the second structure 220 fixed against the first structure 210. Each portion 220a, 220b supplies electrical power to the separate logs 230 and the parts are separated according to the substantially transverse direction of the electrolytic cell. Due to this double connection on either side of the anode support, it is possible to use a second discontinuous structure, in two parts 220a, 220b and minimize the costs of raw material. The two parts 220a, 220b are more particularly distant from a distance corresponding to the spacing between the two logs 230 the most central of the anode assembly and symmetrical with respect to the plane P. Each log 230 may comprise a single proximal end and a single distal end. In other words, the logs 230 may be devoid of sleepers or spar extending in a substantially horizontal plane.

Comme cela est visible sur la figure 9, l'extrémité proximale peut être solidaire d'une barre 240 ou plaque de scellement sensiblement horizontale s'étendant transversalement par rapport à la cuve et scellée à l'intérieur du bloc 100 anodique. La figure 15 montre un autre ensemble anodique dans lequel une telle barre 240 ou plaque de scellement s'étend longitudinalement par rapport à la cuve.As can be seen in FIG. 9, the proximal end may be integral with a bar 240 or substantially horizontal sealing plate extending transversely of the vessel and sealed within the anode block 100. Figure 15 shows another anode assembly in which such bar 240 or sealing plate extends longitudinally with respect to the vessel.

Comme cela est représenté sur les figures 2 à 8 et 10 à 13, le support 200 anodique comprend avantageusement une portion 250 coudée à chacune de ses extrémités. Plus précisément, les barres 204 longitudinales et le cas échéant les barres 222 de conduction peuvent être pliées pour présenter une portion 250 coudée dans un plan vertical à chacune de leurs extrémités, de sorte que les portions de connexion du support anodique soient disposées au-dessus de la surface supérieure des rondins. Ainsi, la distance entre le support anodique et le bloc anodique peut être réduite, et par conséquent la hauteur des rondins. Des rondins de hauteur excessive conduiraient à une augmentation de la chute de potentiel, préjudiciable au rendement de la cuve d'électrolyse, ainsi qu'à une augmentation de la longueur et la masse de matériau conducteur formant le support anodique. Comme on peut le voir sur les figures 2 et 11, le support 200 anodique peut comprendre au moins un longeron 260 de renfort s'étendant selon une direction sensiblement transversale X de la cuve 1 d'électrolyse et reliant les deux extrémités du support 200 anodique. Comme on peut le voir sur la figure 12, le support 200 anodique peut par ailleurs comprendre une ou plusieurs traverses 270 s'étendant selon une direction sensiblement longitudinale Y de la cuve 1 d'électrolyse. La ou les traverses 270 relient les deux barres 204 longitudinales entre elles Ces longerons 260 et traverses 270 peuvent également servir de moyen d'accrochage pour la manutention de l'ensemble anodique ou du support anodique. Selon l'exemple des figures 10 à 14, l'ensemble anodique comprend deux blocs 100a,100b anodiques adjacents selon une direction longitudinale Y de la cuve 1 d'électrolyse. Chaque bloc 100a,100b anodique est avantageusement supporté par une barre 204 longitudinale distincte. Comme cela est visible sur les figures, l'extrémité proximale de chaque rondin 230 peut être agencée sur une ligne médiane de la face supérieure du bloc 100 anodique correspondant.As shown in FIGS. 2 to 8 and 10 to 13, the anodic support 200 advantageously comprises a portion 250 bent at each of its ends. More precisely, the longitudinal bars 204 and, if appropriate, the conduction bars 222 can be folded to present a portion 250 bent in a vertical plane at each of their ends, so that the connection portions of the anodic support are disposed above of the upper surface of the logs. Thus, the distance between the anode carrier and the anode block can be reduced, and therefore the height of the logs. Logs of excessive height would lead to an increase in the potential drop, detrimental to the efficiency of the electrolysis cell, as well as to an increase in the length and the mass of conductive material forming the anodic support. As can be seen in FIGS. 2 and 11, the anodic support 200 may comprise at least one reinforcing beam 260 extending in a substantially transverse direction X of the electrolysis tank 1 and connecting the two ends of the anodic support 200. . As can be seen in Figure 12, the anodic support 200 may further comprise one or more cross members 270 extending in a substantially longitudinal direction Y of the electrolysis vessel 1. The cross member (s) 270 connect the two longitudinal bars 204 to one another. These longitudinal members 260 and cross members 270 may also serve as hooking means for handling the anode assembly or the anodic support. According to the example of FIGS. 10 to 14, the anode assembly comprises two adjacent anode blocks 100a, 100b in a longitudinal direction Y of the electrolysis tank 1. Each anode block 100a, 100b is advantageously supported by a separate longitudinal bar 204. As can be seen in the figures, the proximal end of each log 230 may be arranged on a median line of the upper face of the corresponding anodic block 100.

Chaque rondin 230 peut par exemple s'étendre selon une direction sensiblement verticale uniquement. Selon l'exemple des figures 6 à 8, l'ensemble anodique comprend deux blocs 100a,100a' ou 100b,100b' anodiques adjacents selon une direction longitudinale Y de la cuve 1 d'électrolyse, et ces deux blocs 100a,100a' ou 100b,100b' anodiques sont supportés par une même barre 204 longitudinale. Comme cela est visible sur la figure 8, les rondins 230 peuvent alors s'étendre de façon oblique, ou du moins avoir une composante horizontale. Toujours selon l'exemple des figures 6 à 8, les rondins 230 reliant une même barre 204 longitudinale à deux blocs 100a,100b ou 100a',100b' anodique peuvent être agencés par paire. Les deux rondins 230 d'une même paire sont alignés selon une direction sensiblement longitudinale Y de la cuve 1 d'électrolyse. Autrement dit, les deux rondins 230 d'une même paire peuvent s'étendre dans un plan sensiblement perpendiculaire à une direction sensiblement transversale X de la cuve 1 d'électrolyse. Selon un autre aspect, l'invention concerne une usine d'électrolyse, notamment une aluminerie, comprenant une cuve 1 d'électrolyse telle que décrite précédemment. Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n'ayant été donné qu'à titre d'exemple. Des modifications sont possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.Each log 230 may for example extend in a substantially vertical direction only. According to the example of FIGS. 6 to 8, the anode assembly comprises two adjacent anode blocks 100a, 100a 'or 100b, 100b' in a longitudinal direction Y of the electrolysis tank 1, and these two blocks 100a, 100a 'or 100b, 100b 'anodic are supported by the same longitudinal bar 204. As can be seen in FIG. 8, the logs 230 can then extend obliquely, or at least have a horizontal component. Still according to the example of Figures 6 to 8, the logs 230 connecting a single longitudinal bar 204 longitudinal two blocks 100a, 100b or 100a ', 100b' anode can be arranged in pairs. The two logs 230 of the same pair are aligned in a substantially longitudinal direction Y of the electrolysis tank 1. In other words, the two logs 230 of the same pair can extend in a plane substantially perpendicular to a substantially transverse direction X of the electrolysis tank 1. In another aspect, the invention relates to an electrolysis plant, in particular an aluminum smelter, comprising an electrolysis tank 1 as described above. Of course, the invention is not limited to the embodiment described above, this embodiment having been given as an example. Modifications are possible, particularly from the point of view of the constitution of the various elements or by the substitution of technical equivalents, without departing from the scope of protection of the invention.

Claims (22)

REVENDICATIONS1. Cuve (1) d'électrolyse, destinée à la production d'aluminium par électrolyse, dans laquelle la cuve (1) d'électrolyse comprend un caisson (2) présentant deux côtés (18) longitudinaux opposés, un ensemble anodique, mobile uniquement en translation verticale par rapport au caisson (2), l'ensemble anodique comprenant au moins un bloc (100) anodique et un support (200) anodique transversal s'étendant de façon sensiblement transversale aux côtés (18) longitudinaux du caisson (2) et auquel est suspendu ledit au moins un bloc (100) anodique, le support (200) anodique transversal comprenant deux portions (202) de connexion à partir desquelles est destiné à être alimenté le support (200) anodique transversal en courant d'électrolyse, la cuve (1) d'électrolyse comprenant en outre des conducteurs (20) électriques de connexion connectés électriquement aux deux portions (202) de connexion du support (200) anodique transversal, caractérisée en ce que les deux portions (202) de connexion sont distantes selon une direction sensiblement transversale de la cuve (1) d'électrolyse.REVENDICATIONS1. Electrolytic cell (1) for the production of aluminum by electrolysis, in which the electrolytic cell (1) comprises a box (2) having two opposite longitudinal sides (18), an anode assembly vertical translation with respect to the box (2), the anode assembly comprising at least one anode block (100) and a transverse anodic support (200) extending substantially transversely to the longitudinal sides (18) of the box (2) and to which said at least one anode block (100) is suspended, the transverse anodic support (200) comprising two connection portions (202) from which the transverse anodic support (200) for the electrolysis current is to be fed, the electrolytic cell (1) further comprising electrical connection conductors (20) electrically connected to the two connecting portions (202) of the transverse anodic support (200), characterized in that the two portions (202) connection are distant in a substantially transverse direction of the tank (1) electrolysis. 2. Cuve (1) d'électrolyse selon la revendication 1, caractérisée en ce que les deux côtés (18) longitudinaux opposés sont sensiblement symétriques par rapport à un plan (P) médian longitudinal de la cuve (1) d'électrolyse, et en ce que les deux portions (202) de connexion sont agencées de part et d'autre du plan (P).2. Electrolytic cell (1) according to claim 1, characterized in that the two opposite longitudinal sides (18) are substantially symmetrical with respect to a longitudinal median plane (P) of the electrolytic cell (1), and in that the two connection portions (202) are arranged on either side of the plane (P). 3. Cuve (1) d'électrolyse selon la revendication 2, caractérisée en ce que le support (200) anodique transversal comporte deux portions d'extrémités, et en ce que les portions (202) de connexion sont disposées sur ces portions d'extrémités.3. Electrolytic cell (1) according to claim 2, characterized in that the transverse anodic support (200) comprises two end portions, and in that the connection portions (202) are arranged on these portions of ends. 4. Cuve (1) d'électrolyse selon l'une des revendications 1 à 3, caractérisée en ce que le support (200) anodique comprend une première structure (210), en un premier matériau électriquement conducteur, et une deuxième structure (220), en un deuxième matériau électriquement conducteur, le deuxième matériau présentant une conductivité électrique sensiblement supérieure à celle du premier matériau.4. Electrolytic cell (1) according to one of claims 1 to 3, characterized in that the anode carrier (200) comprises a first structure (210), a first electrically conductive material, and a second structure (220). ), in a second electrically conductive material, the second material having an electrical conductivity substantially greater than that of the first material. 5. Cuve (1) d'électrolyse selon la revendication 4, caractérisée en ce que la première structure (210) comprend une barre transversale (204) s'étendant sensiblement transversalement d'une portion (202) de connexion à l'autre portion (202) de connexion.5. Electrolytic cell (1) according to claim 4, characterized in that the first structure (210) comprises a transverse bar (204) extending substantially transversely from one portion (202) of connection to the other portion (202) connection. 6. Cuve (1) d'électrolyse selon la revendication 5, caractérisée en ce que la barre (204) s'étend d'un seul tenant entre les portions d'extrémité.6. Electrolytic cell (1) according to claim 5, characterized in that the bar (204) extends in one piece between the end portions. 7. Cuve (1) d'électrolyse selon l'une des revendications 4 à 6, caractérisée en ce que la deuxième structure (220) est fixée à la première structure (210) de sorte que la première structure (210) supporte mécaniquement la deuxième structure (220).7. Electrolytic cell (1) according to one of claims 4 to 6, characterized in that the second structure (220) is fixed to the first structure (210) so that the first structure (210) mechanically supports the second structure (220). 8. Cuve (1) d'électrolyse selon l'une des revendications 4 à 7, caractérisée en ce que la deuxième structure (220) forme au moins partiellement les portions (202) de connexion du support (200) anodique.8. Electrolytic cell (1) according to one of claims 4 to 7, characterized in that the second structure (220) at least partially forms the portions (202) of connection of the support (200) anode. 9. Cuve (1) d'électrolyse selon l'une des revendications 4 à 8, caractérisée en ce que la deuxième structure (220) comprend deux parties (220a,220b) distinctes formant chacune au moins partiellement l'une des deux portions (202) de connexion.9. Electrolytic cell (1) according to one of claims 4 to 8, characterized in that the second structure (220) comprises two distinct portions (220a, 220b) each forming at least partially one of the two portions ( 202) of connection. 10. Cuve d'électrolyse selon la revendication 9, caractérisée en ce que les deux parties (220a,220b) distinctes sont distantes selon la direction transversale de la cuve.10. electrolysis cell according to claim 9, characterized in that the two parts (220a, 220b) are separate distal in the transverse direction of the tank. 11. Cuve (1) d'électrolyse selon la revendication 10, caractérisée en ce que les deux côtés (18) longitudinaux opposés sont sensiblement symétriques par rapport à un plan (P) médian longitudinal de la cuve (1) d'électrolyse, et en ce que les deux parties (220a, 220b) distinctes sont agencées de part et d'autre du plan (P).11. Electrolytic cell (1) according to claim 10, characterized in that the two opposite longitudinal sides (18) are substantially symmetrical with respect to a longitudinal median plane (P) of the electrolytic cell (1), and in that the two distinct parts (220a, 220b) are arranged on either side of the plane (P). 12. Cuve (1) d'électrolyse selon la revendication 11, caractérisée en ce que les deux parties (220a,220b) distinctes sont sensiblement symétriques par rapport au plan (P).12. Electrolytic cell (1) according to claim 11, characterized in that the two parts (220a, 220b) are substantially symmetrical relative to the plane (P). 13. Cuve (1) d'électrolyse selon l'une des revendications 10 à 12, caractérisée en ce que le support anodique transversal comporte une pluralité de rondins (230) fixés sur la première structure (210) et destinés à être scellés dans des évidements formés dans une surface dudit au moins un bloc anodique (100), et en ce que la distance selon la direction transversale entre les deux parties distinctes est sensiblement équivalente à la distance entre deux rondins (230) adjacents.13. Tank (1) for electrolysis according to one of claims 10 to 12, characterized in that the transverse anodic support comprises a plurality of logs (230) fixed on the first structure (210) and intended to be sealed in recesses formed in a surface of said at least one anode block (100), and in that the distance in the transverse direction between the two distinct parts is substantially equivalent to the distance between two adjacent logs (230). 14. Cuve (1) d'électrolyse selon l'une des revendications 10 à 13, caractérisée en ce que le support anodique transversal comporte une pluralité de rondins (230) fixés sur la première structure (210) et en ce que chaque partie est fixée à la première structure uniquement au niveau de la fixation des rondins et d'une portion de connexion.14. Electrolytic cell (1) according to one of claims 10 to 13, characterized in that the transverse anodic support comprises a plurality of logs (230) fixed on the first structure (210) and in that each part is attached to the first structure only at the level of fixing the logs and a connecting portion. 15. Cuve (1) d'électrolyse selon l'une des revendications 9 à 14, caractérisée en ce que l'ensemble anodique comprend deux blocs (100a,100a') anodiques adjacents selon une direction transversale de la cuve (1) d'électrolyse, les deux blocs (100a,100a' ; 100b,100b') anodiques étant supportés par une même première structure (210) et disposés sous deux parties distinctes de la deuxième structure (220).15. Tank (1) for electrolysis according to one of claims 9 to 14, characterized in that the anode assembly comprises two adjacent blocks (100a, 100a ') anode in a transverse direction of the tank (1) of electrolysis, the two anodic blocks (100a, 100a ', 100b, 100b') being supported by the same first structure (210) and arranged in two distinct parts of the second structure (220). 16. Cuve (1) d'électrolyse selon l'une des revendications 1 à 15, caractérisée en ce que le support (200) anodique forme un anneau délimité par deux barres (204) transversales reliées l'une à l'autre à leurs extrémités, les barres (204) s'étendant de façonsensiblement parallèle entre elles et perpendiculaire aux côtés (18) longitudinaux du caisson (2).16. Tank (1) for electrolysis according to one of claims 1 to 15, characterized in that the support (200) anode form a ring delimited by two bars (204) transversely connected to each other at their ends, the bars (204) extending substantially parallel to each other and perpendicular to the longitudinal sides (18) of the box (2). 17. Cuve (1) d'électrolyse selon la revendication 16, caractérisée en ce que l'ensemble anodique comprend deux blocs (100a,100b) anodiques adjacents selon une direction longitudinale de la cuve (1) d'électrolyse, chaque bloc (100a,100b) anodique étant supporté par une barre (204) transversale distincte.17. Electrolytic cell (1) according to claim 16, characterized in that the anode assembly comprises two adjacent anode blocks (100a, 100b) in a longitudinal direction of the electrolytic cell (1), each block (100a). , 100b) being supported by a separate transverse bar (204). 18. Cuve (1) d'électrolyse selon l'une des revendications 4 à 15, dans laquelle, caractérisée en ce que la première structure (210) forme un anneau et en ce que la deuxième structure (220) est agencée à l'intérieur de l'anneau formé par la première structure (210).18. Electrolytic cell (1) according to one of claims 4 to 15, characterized in that the first structure (210) forms a ring and that the second structure (220) is arranged in the inside the ring formed by the first structure (210). 19. Cuve (1) d'électrolyse selon la revendication 18, caractérisée en ce que l'anneau présente des extrémités en forme de U, la deuxième structure (220) comporte deux parties présentant chacune une forme en U correspondante complémentaire de celle des extrémités de l'anneau, et en ce que, à température ambiante, la longueur de la paroi périphérique extérieure des portions curvilignes du U formé par chaque partie de la deuxième structure (220) est inférieure à la longueur de la paroi périphérique intérieure des portions curvilignes du U formé par l'extrémité correspondante de l'anneau.19. Electrolytic cell (1) according to claim 18, characterized in that the ring has U-shaped ends, the second structure (220) comprises two parts each having a complementary U shape complementary to that of the ends. of the ring, and in that, at ambient temperature, the length of the outer peripheral wall of the curvilinear portions of the U formed by each part of the second structure (220) is less than the length of the inner peripheral wall of the curvilinear portions. U formed by the corresponding end of the ring. 20. Cuve (1) d'électrolyse selon l'une des revendications 1 à 19, caractérisée en ce que l'ensemble anodique comprend une pluralité de rondins (230) s'étendant entre le support (200) anodique et ledit au moins un bloc (100) anodique et en ce que le support (200) anodique comprend une portion (250) coudée dans un plan vertical à chacune de ses extrémités de sorte que les portions (202) de connexion du support (200) anodique sont disposées au-dessus de la surface supérieure des rondins (230).20. Electrolytic cell (1) according to one of claims 1 to 19, characterized in that the anode assembly comprises a plurality of logs (230) extending between the support (200) anodic and said at least one anode block (100) and that the anode support (200) comprises a portion (250) bent in a vertical plane at each of its ends so that the connection portions (202) of the anodic support (200) are arranged at above the upper surface of the logs (230). 21. Cuve (1) d'électrolyse selon l'une des revendications 1 à 20, caractérisée en ce que l'ensemble anodique comprend une pluralité de rondins (230) s'étendant sensiblement verticalement entre le support (200) anodique et ledit au moins un bloc (100) anodique, et en ce que le rondin comporte une extrémité de scellement sensiblement horizontale scellée à l'intérieur du bloc (100) anodique.21. Electrolytic cell (1) according to one of claims 1 to 20, characterized in that the anode assembly comprises a plurality of logs (230) extending substantially vertically between the support (200) and said anodic least one block (100) anodic, and in that the log has a substantially horizontal sealing end sealed within the anode block (100). 22. Usine d'électrolyse, notamment aluminerie, comprenant une file de cuves (1) d'électrolyse selon l'une des revendications 1 à 21 agencées électriquement en série, caractérisée en ce que les cuves d'électrolyse sont disposées transversalement par rapport à la longueur de la file.22. Electrolysis plant, in particular aluminum smelter, comprising a row of electrolytic cells (1) according to one of claims 1 to 21 arranged electrically in series, characterized in that the electrolysis tanks are arranged transversely with respect to the length of the line.
FR1400170A 2013-08-09 2014-01-27 ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK. Expired - Fee Related FR3016899B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
FR1400170A FR3016899B1 (en) 2014-01-27 2014-01-27 ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK.
CN201480044964.4A CN105531400B (en) 2013-08-09 2014-07-30 It is intended to the electrolytic cell for producing aluminium and the aluminium smelting furnace including this electrolytic cell
PCT/CA2014/050721 WO2015017923A1 (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
US14/911,164 US10697074B2 (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
EP14834525.9A EP3030694B1 (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
EA201690340A EA034760B1 (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
BR112016001951A BR112016001951A2 (en) 2013-08-09 2014-07-30 electrolysis tank for aluminum production and electrolysis plant, comprising this tank
AU2014305612A AU2014305612B2 (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
CA2919544A CA2919544C (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
MYPI2016700417A MY178283A (en) 2013-08-09 2014-07-30 Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
DKPA201670125A DK178961B1 (en) 2013-08-09 2016-03-03 ELECTROLYTIC CELL INTENDED FOR PRODUCTION OF ALUMINUM AND ELECTROLYTIC MELTING COMPANY, INCLUDING THIS CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1400170A FR3016899B1 (en) 2014-01-27 2014-01-27 ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK.

Publications (2)

Publication Number Publication Date
FR3016899A1 true FR3016899A1 (en) 2015-07-31
FR3016899B1 FR3016899B1 (en) 2016-01-15

Family

ID=50473514

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1400170A Expired - Fee Related FR3016899B1 (en) 2013-08-09 2014-01-27 ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK.

Country Status (1)

Country Link
FR (1) FR3016899B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242916A (en) * 2018-12-20 2021-08-10 力拓艾尔坎国际有限公司 Anode assembly and electrolytic cell comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783419A (en) * 1953-04-18 1957-09-25 Vaw Ver Aluminium Werke Ag Plant for carrying out fusion electrolysis
US3575827A (en) * 1967-12-06 1971-04-20 Arthur F Johnson System for reduction of aluminum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783419A (en) * 1953-04-18 1957-09-25 Vaw Ver Aluminium Werke Ag Plant for carrying out fusion electrolysis
US3575827A (en) * 1967-12-06 1971-04-20 Arthur F Johnson System for reduction of aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242916A (en) * 2018-12-20 2021-08-10 力拓艾尔坎国际有限公司 Anode assembly and electrolytic cell comprising the same

Also Published As

Publication number Publication date
FR3016899B1 (en) 2016-01-15

Similar Documents

Publication Publication Date Title
EP3030694B1 (en) Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
EP3030696B1 (en) Electrolytic device and anode assembly intended for the production of aluminium, electrolytic cell and apparatus comprising such a device
FR2694945A1 (en) Very high intensity electrolytic cell superstructure for aluminum production.
FR2582677A1 (en) ELECTROLYSIS TANK SUPERSTRUCTURE WITH INTERMEDIATE GANTRY FOR THE PRODUCTION OF ALUMINUM
FR3016899A1 (en) ELECTROLYSIS TANK FOR ALUMINUM PRODUCTION AND ELECTROLYSIS PLANT COMPRISING THE TANK.
EP3030695A1 (en) Aluminium smelter comprising a compensating electric circuit
OA17792A (en) Electrolysis cell intended for the production of aluminum and an electrolysis plant comprising this cell
CA2808355C (en) Electrical connection device, for connecting between two successive cells of a series of cells for the production of aluminium
FR3032459B1 (en) ALUMINERY AND METHOD FOR COMPENSATING A MAGNETIC FIELD CREATED BY CIRCULATION OF THE ELECTROLYSIS CURRENT OF THIS ALUMINUM
FR2961829A1 (en) SHORT-CIRCUIT SHUTTER EXTRACTOR DEVICE FOR CIRCUIT-CURING AN ELECTROLYSIS CELL FOR ALUMINUM PRODUCTION
WO2016128827A1 (en) Electrolysis cell, aluminium smelter comprising said cell, and method for placing an anode assembly in said cell
CA3122500A1 (en) Anode assembly and electrolytic cell comprising said anode assembly
FR3032453A1 (en) ANODIC ASSEMBLY AND ELECTROLYSIS TANK FOR THE PRODUCTION OF LIQUID ALUMINUM COMPRISING THIS ANODIC ASSEMBLY, ALUMINUM COMPRISING THE TANK AND METHOD OF PLACING AN ANODIC ASSEMBLY IN THIS TANK
FR3032460A1 (en) ELECTROLYSIS TANK
FR3016900A1 (en) ELECTROLYSIS DEVICE AND ANODE ASSEMBLY FOR THE PRODUCTION OF ALUMINUM, ELECTROLYSIS CELL AND INSTALLATION COMPRISING SUCH A DEVICE.
FR3032452B1 (en) ELECTROLYSIS TANK FOR THE PRODUCTION OF LIQUID ALUMINUM AND ALUMINUM INCLUDING THE TANK
WO2015017925A1 (en) Electrolysis tank with slotted floor
WO2015110902A1 (en) Device for storing a load above an electrolytic cell
CA2952166C (en) Anode assembly
OA17791A (en) Electrolysis device and anode assembly intended for the production of aluminum, electrolysis cell and installation comprising such a device
FR3090699A1 (en) Anode assembly and associated manufacturing method
OA17793A (en) Aluminum plant including an electrical compensation circuit
OA17345A (en) Device for extracting short-circuiting shims intended for switching on an electrolysis cell for the production of aluminum.

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

ST Notification of lapse

Effective date: 20220905