FR3015319A1 - METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS - Google Patents

METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS Download PDF

Info

Publication number
FR3015319A1
FR3015319A1 FR1303041A FR1303041A FR3015319A1 FR 3015319 A1 FR3015319 A1 FR 3015319A1 FR 1303041 A FR1303041 A FR 1303041A FR 1303041 A FR1303041 A FR 1303041A FR 3015319 A1 FR3015319 A1 FR 3015319A1
Authority
FR
France
Prior art keywords
brazing
weight
alloy
elements
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1303041A
Other languages
French (fr)
Other versions
FR3015319B1 (en
Inventor
Olivier Mailliart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR1303041A priority Critical patent/FR3015319B1/en
Priority to PCT/FR2014/053452 priority patent/WO2015092317A1/en
Publication of FR3015319A1 publication Critical patent/FR3015319A1/en
Application granted granted Critical
Publication of FR3015319B1 publication Critical patent/FR3015319B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ceramic Products (AREA)

Abstract

Procédé d'assemblage d'au moins deux éléments par brasage, le premier élément étant en hafnie yttriée ou en thorine yttriée, le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, ledit procédé comportant les étapes successives suivantes : - mettre en contact les deux éléments avec un alliage de brasage FeNiTi, - faire fondre l'alliage de brasage FeNiTi pour former un joint de brasage.A method of assembling at least two elements by brazing, the first element being yttriée hafnie or thoracine ytrtriée, the second element being yttriée hafnie, ytrtria thorine or metal alloy, said method comprising the following successive steps: - bringing the two elements into contact with a FeNiTi brazing alloy, - melting the FeNiTi brazing alloy to form a brazing joint.

Description

Procédé d'assemblage d'au moins deux éléments par brasage, assemblage comprenant au moins deux éléments et un joint de brasage obtenu par ledit procédé.A method of assembling at least two elements by brazing, an assembly comprising at least two elements and a solder joint obtained by said method.

Domaine technique de l'invention L'invention est relative à un procédé d'assemblage d'au moins deux éléments par brasage, ainsi qu'à un assemblage comprenant au moins deux éléments et un joint de brasage obtenu par ledit procédé. État de la technique Le sodium liquide est un excellent fluide caloporteur, il est utilisé notamment dans les réacteurs nucléaires à neutrons rapides. Cependant, la présence d'oxygène dans les structures métalliques contenant du sodium augmente fortement leurs cinétiques de corrosion. Il est donc nécessaire de mesurer la teneur en oxygène dissous dans les bains de sodium 20 fondus. La thorine yttriée et l'hafnie yttriée sont de bons conducteurs ioniques et peuvent être utilisées comme électrolytes pour la réalisation de sondes à oxygène pour équiper les réacteurs nucléaires à neutrons rapides refroidis au sodium liquide. 25 Un des enjeux consiste donc à intégrer la partie fonctionnelle en céramique (électrolyte) de la sonde dans une structure métallique. Il s'agit notamment d'assembler une ou plusieurs pièces en matériaux à base d'hafnie yttriée ou de thorine yttriée entre elles ou avec une ou plusieurs pièces métalliques. Il est indispensable que les éléments céramiques et métalliques conservent leur 30 intégrité à l'issue de l'opération d'assemblage et la jonction réalisée doit être parfaitement hermétique.TECHNICAL FIELD OF THE INVENTION The invention relates to a method of assembling at least two elements by brazing, as well as to an assembly comprising at least two elements and a solder joint obtained by said method. State of the art Liquid sodium is an excellent heat transfer fluid, it is used in particular in fast neutron nuclear reactors. However, the presence of oxygen in metal structures containing sodium greatly increases their corrosion kinetics. It is therefore necessary to measure the dissolved oxygen content in the molten sodium baths. Ytrtria thoria and yttria are good ionic conductors and can be used as electrolytes for oxygen probes to equip liquid sodium cooled fast neutron reactors. One of the challenges therefore consists in integrating the ceramic functional part (electrolyte) of the probe into a metal structure. This involves in particular to assemble one or more pieces made of materials containing yttrie hafnia or thorium ytrtriée them or with one or more metal parts. It is essential that the ceramic and metal elements retain their integrity at the end of the assembly operation and the junction made must be perfectly hermetic.

Le brasage est une technique d'assemblage permettant de garantir une bonne étanchéité au niveau de l'assemblage. Cette technique consiste à faire fondre un métal ou alliage d'apport, la brasure, entre les pièces à assembler. Après refroidissement, la brasure solidifiée assure la cohésion de l'ensemble.Brazing is an assembly technique to ensure a good seal at the assembly. This technique consists of melting a metal or solder alloy, the solder, between the parts to be assembled. After cooling, the solidified solder ensures the cohesion of the assembly.

Le brevet FR2325928 (1976) décrit, par exemple, la réalisation d'un dispositif électrochimique destiné à mesurer la concentration en oxygène d'un métal alcalin liquide. L'électrode est réalisée par assemblage de thorine yttriée avec un tube en acier inoxydable ou en nickel par brasage. Le matériau de brasage est constitué d'un mélange de 70% en poids de gallium et de 30% en poids de nickel. Cependant, l'assemblage obtenu est sensible aux chocs thermiques et une portion non négligeable des sondes ainsi assemblées se casse après un temps d'utilisation très court compte tenu de la durée de vie prévue pour ce type d'équipement.Patent FR2325928 (1976) describes, for example, the production of an electrochemical device for measuring the oxygen concentration of a liquid alkali metal. The electrode is made by assembling thorium ytria with a tube of stainless steel or nickel by soldering. The brazing material consists of a mixture of 70% by weight of gallium and 30% by weight of nickel. However, the assembly obtained is sensitive to thermal shocks and a significant portion of the assembled probes breaks after a very short time of use given the expected life of this type of equipment.

L'article « Oxygen determination in liquid sodium with a continuuous electrochemical measuring probe » de J. Jung (Journal of Nuclear Materials, 56, 213-220 (1975)) décrit également l'assemblage d'un tube en acier avec de la thorine yttriée. Le joint de brasure est réalisé grâce à un alliage Cu-2Ni qui nécessite de réaliser une pré-métallisation de la céramique avec un procédé Mo/Mn suivie d'une métallisation au nickel. L'article « Development of electrochemical oxygen meter for liquid sodium » de D. Jakes (Solid State lonics, 13, 165-173 (1984)) met en évidence que cette couche de métallisation, utilisée pour favoriser le mouillage d'une autre brasure (Nicrobraz), a été infiltrée en profondeur entrainant la dégradation de l'électrolyte. « Studies in Solid State lonics » (Report - rte2, January 1987) de D. Jakeà" et J. Rosenkranz décrit une sonde à oxygène réalisée par un procédé de brasage entre de la thorine yttriée et un alliage de Ni48-Fe-Cri. La brasure utilisée est un verre non silicaté de formule CaO.A1203.Ba0 + 1%massique de TiO2. L'utilisation de joint en verre est cependant déconseillée du fait de leur grande fragilité notamment vis-à-vis du cyclage thermique et d'une mauvaise tenue face à l'attaque chimique du sodium liquide.The article "Oxygen determination in liquid sodium with a continuous electrochemical measuring probe" by J. Jung (Journal of Nuclear Materials, 56, 213-220 (1975)) also describes the assembly of a steel tube with thorine yttria. The solder joint is made using a Cu-2Ni alloy which requires pre-metallization of the ceramic with a Mo / Mn process followed by nickel metallization. The article "Development of electrochemical oxygen meter for liquid sodium" by D. Jakes (Solid State Electronics, 13, 165-173 (1984)) shows that this metallization layer, used to promote the wetting of another solder (Nicrobraz), was infiltrated in depth causing degradation of the electrolyte. "Studies in Solid State Electronics" (Report, January 1987) by D. Jake "and J. Rosenkranz describes an oxygen probe made by a brazing process between ytrtria thoria and a Ni48-Fe-Crc alloy. The solder used is a non-silicate glass of formula CaO.A1203.Ba0 + 1% by weight of TiO2 However, the use of glass gasket is disadvised because of their great fragility especially with respect to thermal cycling and poor resistance to the chemical attack of liquid sodium.

Objet de l'invention L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer un procédé de brasage permettant d'obtenir une jonction présentant une bonne durabilité dans le sodium liquide.OBJECT OF THE INVENTION The object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a brazing process which makes it possible to obtain a junction having good durability in liquid sodium.

Cet objet est atteint par un procédé d'assemblage d'au moins deux éléments par brasage, le premier élément étant en hafnie yttriée ou en thorine yttriée, le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, ledit procédé comportant les étapes successives suivantes : - mettre en contact les deux éléments avec un alliage de brasage FeNiTi, - faire fondre l'alliage de brasage FeNiTi pour former un joint de brasage.This object is achieved by a method of assembling at least two elements by brazing, the first element being in ytriated hafnia or ytrtria thorium, the second element being yttriée hafnie, yttrie thorine or metal alloy, said method comprising the following successive steps: - bringing the two elements into contact with a FeNiTi solder alloy, - melting the FeNiTi solder alloy to form a brazing joint.

Cet objet est également atteint par un assemblage comprenant : - au moins deux éléments : le premier élément étant en hafnie yttriée ou en thorine yttriée et le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, - et le joint de brasage obtenu selon le procédé d'assemblage.This object is also achieved by an assembly comprising: at least two elements: the first element being made of ytriated hafnia or ytriated thorium and the second element being made of yttried hafnia, yttria thorium or metal alloy, and the solder joint; obtained according to the assembly method.

Description sommaire des dessins D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : les figures 1 et 2 représentent, de manière schématique, en coupe, différentes étapes d'un procédé d'assemblage par brasage réactif en configuration dite « sandwich », les figures 3 et 4 représentent, de manière schématique, en coupe, différentes étapes d'un procédé d'assemblage par brasage réactif en configuration dite capillaire, la figure 5 représente, de manière schématique, en trois dimensions, deux cylindres disposés pour être assemblés par brasage réactif en configuration dite capillaire, les figures 6 et 7 représentent des clichés, obtenus par microscopie électronique à balayage, au niveau d'un joint de brasage d'un assemblage hafnie yttriée / alliage FeNi.BRIEF DESCRIPTION OF THE DRAWINGS Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given as non-restrictive examples and represented in the accompanying drawings, in which: FIGS. 1 and 2 are schematically, in section, different stages of a process of assembly by reactive brazing in "sandwich" configuration, FIGS. 3 and 4 show schematically, in section, various steps of a process of reactive brazing assembly in the so-called capillary configuration, FIG. 5 schematically shows, in three dimensions, two cylinders arranged to be assembled by reactive brazing in the so-called capillary configuration, FIGS. 6 and 7 represent clichés, obtained by electron microscopy with scanning, at a solder joint of a yttrie hafnie / FeNi alloy assembly.

Description d'un mode de réalisation préférentiel de l'invention Le procédé est un procédé d'assemblage d'au moins deux éléments par 20 brasage. Le premier élément est en hafnie yttriée ou en thorine yttriée. Le deuxième élément est en hafnie yttriée, en thorine yttriée ou en alliage métallique. Plusieurs configurations sont envisageables : 25 - un élément en hafnie yttriée peut être assemblé avec un élément en hafnie yttriée, en thorine yttriée ou en alliage métallique, - un élément en thorine yttriée peut être assemblé avec un élément en hafnie yttriée, en thorine yttriée ou en alliage métallique.DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION The method is a method of assembling at least two elements by brazing. The first element is in yttried hafnia or in ytered thorium. The second element is in yttried hafnia, in yttria thorium or in metallic alloy. Several configurations are conceivable: - an element made of yarned hafnnie can be assembled with an element made of ytered hemfnia, yttrie thorium or metallic alloy, - a thoracic element ytrtrie can be assembled with a yttriée hafnie element, ytrtria thorine or in metal alloy.

Par I' « élément est en » hafnie yttriée, on entend un matériau composé d'au moins 50% massique de Hf02-Y203, et de préférence au moins 90% massique de Hf02-Y203 et, encore plus préférentiellement, au moins 95% de Hf02-Y203. Par l' « élément est en » thorine yttriée, on entend un matériau composé d'au moins 50% massique de Th02-Y203, et de préférence au moins 90% massique de Th02-Y203 et, encore plus préférentiellement, au moins 95% de Th02-Y203. Les pourcentages restant peuvent correspondre à un ou plusieurs autres oxydes entrant dans la composition de la céramique. Ces éléments permettent de modifier les propriétés des céramiques (conductivité ionique, tenue mécanique,...). La céramique peut également être renforcée par des particules d'autres matériaux, par des fibres d'A1203 par exemple. Préférentiellement, l'hafnie yttriée comprend de 0,5% à 15% massique d'oxyde d'yttrium.By the element is yttrie hafnie means a material composed of at least 50% by weight of Hf02-Y203, and preferably at least 90% by weight of Hf02-Y203 and, even more preferably, at least 95% by weight. HfO2-Y2O3. By the "element is in" ytered thorium is meant a material composed of at least 50% by weight of Th02-Y203, and preferably at least 90% by weight of Th02-Y203 and, still more preferably, at least 95% by weight. from Th02-Y203. The remaining percentages may correspond to one or more other oxides used in the composition of the ceramic. These elements make it possible to modify the properties of ceramics (ionic conductivity, mechanical strength, etc.). The ceramic may also be reinforced by particles of other materials, for example by A1203 fibers. Preferably, the yttria hafnia comprises from 0.5% to 15% by mass of yttrium oxide.

Préférentiellement, la thorine yttriée comprend de 0,5% à 15% massique d'oxyde d'yttrium. Dans le cas d'un assemblage entre deux éléments en thorine yttriée ou entre deux éléments en hafnie yttriée, ceux-ci peuvent contenir des pourcentages massiques d'oxyde d'yttrium différents ou identiques. L'alliage métallique peut être un alliage binaire. Préférentiellement, l'alliage métallique binaire comprend : - 40% à 70% massique de fer, - 30% à 60% massique de nickel. L'alliage métallique peut être un alliage ternaire. Préférentiellement, l'alliage métallique ternaire comprend : - 40% à 70% massique de fer, - 20% à 60% massique de nickel, - un troisième élément choisi parmi Ti, Co, Cr, Mo, Mn, V, Si, Nb, S, C ou Al. Le troisième élément permet de modifier certaines propriétés du matériau (résistance mécanique, coefficient de dilatation thermique, etc).Preferably, the yttria thorium comprises from 0.5% to 15% by mass of yttrium oxide. In the case of an assembly between two elements ytrtried thorium or between two yttrie hafnie elements, they may contain different percentages of yttrium oxide different or identical. The metal alloy may be a binary alloy. Preferably, the binary metal alloy comprises: - 40% to 70% by weight of iron, - 30% to 60% by mass of nickel. The metal alloy can be a ternary alloy. Preferably, the ternary metal alloy comprises: - 40% to 70% by weight of iron, - 20% to 60% by weight of nickel, - a third element chosen from Ti, Co, Cr, Mo, Mn, V, Si, Nb , S, C or Al. The third element makes it possible to modify certain properties of the material (mechanical resistance, coefficient of thermal expansion, etc.).

La somme des pourcentages massiques de ces différents composants dans l'alliage est égale à 100%. La présence d'impureté dans l'alliage est envisageable.The sum of the mass percentages of these various components in the alloy is equal to 100%. The presence of impurity in the alloy is conceivable.

Préférentiellement, l'alliage est un alliage Fe55Ni45 (en pourcentage massique). Le procédé d'assemblage d'au moins deux des éléments décrits précédemment par brasage comporte les étapes successives suivantes : - mettre en contact les deux éléments avec un alliage de brasage FeNiTi, - faire fondre l'alliage de brasage FeNiTi en le chauffant à une température de brasage supérieure à la température de fusion de l'alliage de brasage pour former un joint de brasage. Par un alliage de brasage FeNiTi, on entend un alliage ternaire composé de fer, de nickel et de titane, appelé aussi alliage Fe-Ni-Ti. L'hafnie et la thorine sont des céramiques particulièrement stables et très difficiles à réduire en comparaison d'autres céramiques comme A1203 ou Zr02. La demanderesse a découvert de manière inattendue que le titane réagit avec ces céramiques pour former une couche d'accroche à base d'oxyde de titane. La couche d'accroche, aussi appelée couche réactionnelle, se forme à l'interface entre la brasure et l'hafnie ou la thorine et permet d'obtenir un joint de brasage formant une jonction mécaniquement forte entre les deux éléments à assembler.Preferably, the alloy is a Fe55Ni45 alloy (as a percentage by weight). The method for assembling at least two of the elements described previously by soldering comprises the following successive steps: bringing the two elements into contact with a FeNiTi solder alloy; melting the FeNiTi solder alloy by heating it to a solder; brazing temperature greater than the melting temperature of the solder alloy to form a solder joint. By FeNiTi brazing alloy is meant a ternary alloy composed of iron, nickel and titanium, also called Fe-Ni-Ti alloy. Hafnia and thoria are particularly stable ceramics and very difficult to reduce in comparison with other ceramics such as A1203 or Zr02. The Applicant has unexpectedly discovered that titanium reacts with these ceramics to form a titanium oxide-based tie layer. The bonding layer, also called the reaction layer, is formed at the interface between the solder and the hafnia or thorium and provides a solder joint forming a mechanically strong junction between the two elements to be assembled.

Par jonction mécaniquement forte, on entend un assemblage dont la tenue mécanique est du même ordre de grandeur que celle des matériaux massifs assemblés. La rupture d'un tel assemblage se produira au sein des matériaux assemblés, la rupture est dite cohésive, et non pas au niveau des interfaces, cas d'une rupture dite adhésive.By mechanically strong junction is meant an assembly whose mechanical strength is of the same order of magnitude as that of the assembled bulk materials. The rupture of such an assembly will occur within the assembled materials, the rupture is said to be cohesive, and not at the level of the interfaces, in the case of a so-called adhesive rupture.

Le point de fusion de l'eutectique FeNiTi utilisé est à 1113°C par exemple. L'utilisation de l'alliage FeNiTi permet d'avoir un point de fusion relativement bas, due à l'existence d'un eutectique, et de limiter la réactivité vis-à-vis de l'alliage FeNi avec lequel la céramique est assemblée. Un brasage à température modérée permet de limiter les contraintes 10 thermomécaniques au refroidissement après le cycle d'assemblage. L'assemblage réalisé pourra être utilisé jusqu'à des températures de l'ordre de 1060°C. Préférentiellement, l'alliage de brasage comprend : 15 - 20% à 70% atomique de fer, - 15% à 75% atomique de titane, - 10% à 65% atomique de nickel Encore plus préférentiellement, l'alliage de brasage comprend : 20 - 33% à 44 % atomique de fer, - 18% à 28 % atomique de titane, - 33% à 44 % atomique de nickel L'alliage de brasage comprend : 25 - 38,5 % atomique de fer (± 2% atomique), - 23 % atomique de titane (± 2% atomique), - 38,5 % atomique de nickel (± 2% atomique). L'alliage de brasage peut être sous la forme d'une poudre, d'un fil, d'une feuille 30 ou d'un empilement de feuilles.The melting point of the FeNiTi eutectic used is 1113 ° C., for example. The use of the FeNiTi alloy makes it possible to have a relatively low melting point, due to the existence of a eutectic, and to limit the reactivity with respect to the FeNi alloy with which the ceramic is assembled. . Brazing at a moderate temperature makes it possible to limit the thermomechanical stresses to cooling after the assembly cycle. The assembly can be used up to temperatures of the order of 1060 ° C. Preferably, the brazing alloy comprises: 15 - 20% to 70% by weight of iron, - 15% to 75% by weight of titanium, - 10% to 65% by weight of nickel. More preferably, the brazing alloy comprises: 20 - 33% to 44% by weight of iron, - 18% to 28% by weight of titanium, - 33% to 44% by weight of nickel The brazing alloy comprises: 25 - 38.5% by weight of iron (± 2%) atomic), - 23 atomic% of titanium (± 2 atomic%), - 38.5 atomic% of nickel (± 2 atomic%). The brazing alloy may be in the form of a powder, a wire, a sheet or a stack of sheets.

L'alliage de brasage, sous forme de poudre, peut aussi être mélangé avec un liant afin de former une pâte. Le procédé d'assemblage des deux éléments par brasage comprend une étape 5 permettant de mettre en contact les deux éléments avec l'alliage de brasage FeNiTi. Par exemple, les différents éléments peuvent être positionnés en configuration dite sandwich. 10 Comme représenté sur les figures 1 et 2, en configuration sandwich, les faces du premier élément 1 et du deuxième élément 2 à assembler sont mises face à face. La composition de brasure 3 est placée entre les faces des éléments 1 et 2. Les faces à braser sont ensuite mises en contact. Le traitement thermique, réalisé au-dessus du point de fusion de la composition 15 de brasure, permet de faire fondre cette dernière qui après refroidissement forme un joint de brasage 4 liant mécaniquement les deux éléments 1 et 2. Les éléments peuvent également être mis en contact en configuration dite capillaire. 20 Comme représenté sur les figures 3 et 4, en configuration capillaire, les éléments 1 et 2 à assembler sont mis en contact sans avoir mis de composition de brasure entre elles. La composition de brasure 3 peut être disposée sous la forme d'un réservoir en périphérie du joint à braser. 25 Le traitement thermique, réalisé au-dessus du point de fusion de la composition de brasure, permet de faire fondre la brasure conduisant à l'infiltration de la brasure dans le joint par capillarité et donc à la formation du joint de brasage 4. Le brasage utilisé dans ce procédé est un brasage réactif. 30 L'ensemble, formé des pièces à assembler et de la composition de brasure, est soumis à un cycle thermique. Le cycle thermique est composé d'une montée en température jusqu'à la température de brasage, d'un palier à la température de brasage de l'ordre de la dizaine de minutes (5 - 15 minutes) puis d'une rampe de refroidissement jusqu'à une température inférieure à la température de fusion de la brasure. De préférence, le refroidissement est réalisé jusqu'à la température ambiante. Par température ambiante, on entend une température de l'ordre de 20-25°C. La température de brasage est inférieure aux températures de fusion des matériaux à assembler et elle est supérieure à la température de fusion de l'alliage de brasage. Dans le cas d'un système FeNiTi, la température de brasage est comprise entre 1120°C et 1400°C. Lors du cycle thermique, une couche réactionnelle, par exemple de type TiOx, est formée à l'interface entre la composition de brasure et les éléments à assembler, créant ainsi une liaison forte entre les pièces à assembler. Le brasage est réalisé sous vide secondaire ou sous gaz neutre. Le procédé d'assemblage va maintenant être décrit au moyen de l'exemple suivant, donné, bien entendu, à titre illustratif et non limitatif. Exemple : Assemblage d'un élément en Hf02-Y203 et d'un élément en FeNi par brasage réactif en configuration capillaire. Alliage de brasage : Fe-Ni-Ti. 25 Brasure du système FeNiTi. Comme représenté sur les figures 6 et 7, dans cet exemple, un tube d'hafnie yttriée 1 a été brasé sur un tube d'alliage FeNi (Fe55Ni45) 2. L'échelle de la figure 6 correspond à 100pm et celle de la figure 7 à 20pm. 30 La composition de la brasure visée est l'eutectique de composition suivante % mass. % at. Fe 39,0 38,5 Ti 20,0 23,0 Ni 41,0 38,5 La brasure a été élaborée à partir de fer, de nickel et de titane purs qui ont été fondus dans un creuset en alumine sous vide secondaire à 1200°C. Le lingot obtenu est en Fe-Ni-Ti. La composition de l'alliage de brasage élaboré a été contrôlée par Microscopie Electronique à Balayage (MEB ou SEM pour Scanning Electron Microscopy) et plus particulièrement par analyse dispersive en énergie (ou EDX pour Energy Dispersive X-ray analysis). %mass. %at. Fe 41,4 41 Ni 40,4 38 Ti 18,2 21 La température de fusion de l'eutectique est de 1113°C. Le lingot a été broyé afin d'obtenir une poudre qui a été mélangée avec un liant pour obtenir une pâte de brasure. La pâte de brasure ainsi obtenue est disposée au niveau de la zone 5 de la figure 5. La température de brasage est de l'ordre de 1200°C. L'ensemble est soumis à cette température pendant une durée de 20 minutes. A la sortie du four, les éléments 1 et 2 sont bien assemblés par l'intermédiaire 20 du joint de brasage 4. Lors du cycle thermique, une couche réactionnelle 6 (figure 7), en TiOx, est formée à l'interface entre la composition de brasure et l'élément 1 en hafnie yttriée, créant ainsi une liaison forte entre les différentes pièces. 25 L'étanchéité à l'hélium de l'assemblage ainsi réalisé a été testée.The brazing alloy, in powder form, can also be mixed with a binder to form a paste. The method of assembling the two elements by soldering comprises a step 5 for bringing the two elements into contact with the FeNiTi brazing alloy. For example, the various elements can be positioned in the so-called sandwich configuration. As shown in FIGS. 1 and 2, in the sandwich configuration, the faces of the first element 1 and the second element 2 to be assembled are brought face to face. The solder composition 3 is placed between the faces of the elements 1 and 2. The faces to be brazed are then brought into contact. The heat treatment, carried out above the melting point of the solder composition, melts the solder composition which after cooling forms a brazing joint 4 mechanically bonding the two elements 1 and 2. The elements can also be contact in so-called capillary configuration. As shown in FIGS. 3 and 4, in the capillary configuration, the elements 1 and 2 to be assembled are brought into contact without having put a solder composition between them. The solder composition 3 may be disposed in the form of a reservoir at the periphery of the solder joint. The heat treatment, carried out above the melting point of the solder composition, melts the solder leading to the infiltration of the solder into the joint by capillarity and thus to the formation of the solder joint 4. The Brazing used in this process is reactive brazing. The assembly formed of the parts to be assembled and the solder composition is subjected to a thermal cycle. The thermal cycle consists of a rise in temperature up to the brazing temperature, a bearing at the brazing temperature of the order of ten minutes (5 - 15 minutes) and then a cooling ramp to a temperature below the melting temperature of the solder. Preferably, the cooling is carried out to room temperature. By ambient temperature is meant a temperature of the order of 20-25 ° C. The brazing temperature is lower than the melting temperatures of the materials to be assembled and is greater than the melting temperature of the solder alloy. In the case of a FeNiTi system, the brazing temperature is between 1120 ° C. and 1400 ° C. During the thermal cycle, a reaction layer, for example of TiOx type, is formed at the interface between the solder composition and the elements to be assembled, thus creating a strong connection between the parts to be assembled. The brazing is carried out under secondary vacuum or under neutral gas. The assembly process will now be described by means of the following example, given, of course, by way of illustration and not limitation. Example: Assembly of a Hf02-Y203 element and a FeNi element by reactive brazing in capillary configuration. Brazing alloy: Fe-Ni-Ti. FeNiTi System Solder. As shown in FIGS. 6 and 7, in this example, a tethered hafnid tube 1 has been brazed to a FeNi alloy tube (Fe55Ni45) 2. The scale of FIG. 6 corresponds to 100 μm and that of FIG. 7 to 20pm. The composition of the target solder is the eutectic of the following composition% mass. % at. Fe 39.0 38.5 Ti 20.0 23.0 Ni 41.0 38.5 The solder was made from pure iron, nickel and titanium which was melted in a vacuum alumina crucible secondary to 1200 ° C. The ingot obtained is Fe-Ni-Ti. The composition of the brazing alloy developed was checked by scanning electron microscopy (SEM or Scanning Electron Microscopy SEM) and more particularly by energy dispersive analysis (or EDX for Energy Dispersive X-ray analysis). % Mass. At%. Fe 41.4 41 Ni 40.4 38 Ti 18.2 The melting temperature of the eutectic is 1113 ° C. The ingot was milled to obtain a powder which was mixed with a binder to obtain a solder paste. The solder paste thus obtained is disposed at zone 5 in FIG. 5. The brazing temperature is of the order of 1200 ° C. The whole is subjected to this temperature for a period of 20 minutes. At the furnace outlet, the elements 1 and 2 are well assembled via solder joint 4. During the thermal cycle, a TiOx reaction layer 6 (FIG. 7) is formed at the interface between the Solder composition and element 1 in yttrie hafnie, thus creating a strong connection between the different parts. The helium tightness of the assembly thus produced was tested.

L'assemblage a été positionné côté tube métallique sur une platine de support permettant de faire le vide dans l'échantillon et bouché côté tube en céramique par un bouchon en silicone. Un système de pompage permet d'atteindre le vide primaire dans la cavité de l'assemblage. Une fois le niveau de vide souhaité atteint, de l'hélium est soufflé sur les différentes parties de l'assemblage (tubes, joint de brasage, etc). Un détecteur d'hélium monté en sortie du dispositif, sous la platine de support, permet de mesurer le niveau de vide ainsi que le taux de fuite au niveau de l'assemblage. Un niveau de vide de 1.10-3 mbar est atteint et un taux de fuite de 1.1010 mbar.1/s a été mesuré. Le procédé permet d'obtenir un assemblage comprenant : - au moins deux éléments : le premier élément étant en hafnie yttriée ou en thorine yttriée et le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, - et un joint de brasage obtenu selon le procédé précédemment décrit. Les pièces sont mécaniquement solidaires l'une de l'autre grâce au joint de brasage.The assembly was positioned on the metal tube side on a support plate for evacuating the sample and plugged on the ceramic tube side with a silicone plug. A pumping system makes it possible to reach the primary vacuum in the cavity of the assembly. Once the desired vacuum level is reached, helium is blown on the different parts of the assembly (tubes, solder joint, etc.). A helium detector mounted at the output of the device, under the support plate, makes it possible to measure the level of vacuum as well as the leakage rate at the assembly. A vacuum level of 1.10-3 mbar is reached and a leak rate of 1.1010 mbar.1 / s has been measured. The method makes it possible to obtain an assembly comprising: at least two elements: the first element being made of ytriated hafnia or ytriated thorium and the second element being made of yttried hafnia, yttria thorium or metal alloy, and a solder joint; obtained according to the method described above. The parts are mechanically secured to each other through the solder joint.

Le procédé d'assemblage décrit ci-dessus est particulièrement adapté pour la réalisation de sondes électrochimiques à oxygène, et plus particulièrement pour la réalisation de sondes électrochimiques à oxygène destinées à être utilisées dans du sodium liquide. Les éléments à assembler sont, préférentiellement, un premier élément en céramique choisi parmi l'hafnie yttriée et la thorine yttriée et un deuxième élément en alliage métallique, en hafnie yttriée ou en thorine yttriée. L'hafnie yttriée et la thorine yttriée présentent une bonne conductivité ionique par rapport à d'autres céramiques. L'assemblage présente, avantageusement, une bonne étanchéité à haute 30 température.The assembly method described above is particularly suitable for producing oxygen electrochemical probes, and more particularly for producing electrochemical oxygen probes for use in liquid sodium. The elements to be assembled are, preferably, a first ceramic element selected from yttrie hafnia and ytria thorina and a second element metal alloy, yttrie hafnie or ytrtria thorina. Yttried hafnia and yttria thoria show good ionic conductivity compared with other ceramics. The assembly advantageously has a good seal at high temperature.

La sonde électrochimique comporte par exemple : un électrolyte en hafnie yttriée ou en thorine yttriée, un tube en alliage métallique sur lequel est brasé l'électrolyte, l'électrolyte étant inséré dans le tube en alliage métallique ou bien placé en configuration bout à bout avec le tube, un joint de brasage, disposé entre l'électrolyte et le tube en alliage métallique, obtenu par le procédé d'assemblage. L'alliage métallique sur lequel la céramique est brasée joue le rôle de couche intercalaire pouvant contribuer à diminuer une partie des contraintes sur la céramique, favorisant ainsi la tenue mécanique du dispositif. L'alliage de brasage utilisé dans le procédé présente une bonne résistance à l'oxydation. Le coût de l'alliage n'est pas excessif et le procédé est industrialisable.The electrochemical probe comprises, for example: a yttried or yttried hafnied electrolyte, a metal alloy tube on which the electrolyte is brazed, the electrolyte being inserted into the metal alloy tube or placed in end-to-end configuration with the tube, a solder joint, disposed between the electrolyte and the metal alloy tube, obtained by the assembly method. The metal alloy on which the ceramic is brazed plays the role of interlayer can contribute to reducing some of the stresses on the ceramic, thus promoting the mechanical strength of the device. The brazing alloy used in the process has a good resistance to oxidation. The cost of the alloy is not excessive and the process is industrializable.

Claims (13)

REVENDICATIONS1. Procédé d'assemblage d'au moins deux éléments par brasage, le premier élément étant en hafnie yttriée ou en thorine yttriée, le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, ledit procédé comportant les étapes successives suivantes : - mettre en contact les deux éléments avec un alliage de brasage FeNiTi, - faire fondre l'alliage de brasage FeNiTi pour former un joint de brasage.REVENDICATIONS1. A method of assembling at least two elements by brazing, the first element being yttriée hafnie or thoracine ytrtriée, the second element being yttriée hafnie, ytrtria thorine or metal alloy, said method comprising the following successive steps: - bringing the two elements into contact with a FeNiTi brazing alloy, - melting the FeNiTi brazing alloy to form a brazing joint. 2. Procédé selon la revendication 1, caractérisée en ce que l'alliage de brasage comporte : - 20% à 70% atomique de fer, - 15% à 75% atomique de titane, - 10% à 65% atomique de nickel.2. Method according to claim 1, characterized in that the solder alloy comprises: - 20% to 70% by weight of iron, - 15% to 75% by weight of titanium, - 10% to 65% by weight of nickel. 3. Procédé selon la revendication 2, caractérisée en ce que l'alliage de brasage comporte : - 33% à 44 % atomique de fer, - 18% à 28 % atomique de titane, - 33% à 44 % atomique de nickel.3. Method according to claim 2, characterized in that the solder alloy comprises: - 33% to 44% by weight of iron, - 18% to 28% by weight of titanium, - 33% to 44% by weight of nickel. 4. Procédé selon la revendication 3, caractérisée en ce que l'alliage de brasage comporte : - 38,5 ± 2% atomique de fer, - 23 ± 2% atomique de titane, - 38,5 ± 2% atomique de nickel.4. Method according to claim 3, characterized in that the brazing alloy comprises: - 38.5 ± 2 at% of iron, - 23 ± 2 atomic% of titanium, - 38.5 ± 2 atomic% of nickel. 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'hafnie yttriée comprend de 0,5% à 15% massique d'oxyde d'yttrium.5. Method according to one of claims 1 to 4, characterized in that the yttrie hafnie comprises from 0.5% to 15% by weight of yttrium oxide. 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la thorine yttriée comprend de 0,5% à 15% massique d'oxyde d'yttrium.6. Method according to one of claims 1 to 5, characterized in that the ytrtrium thorium comprises from 0.5% to 15% by weight of yttrium oxide. 7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que 5 l'alliage métallique comprend : 40% à 70% massique de fer, 20% à 60% massique de nickel, un troisième élément choisi parmi Ti, Co, Cr, Mo, Mn, V, Si, Nb, S, C ou Al.7. Method according to one of claims 1 to 6, characterized in that the metal alloy comprises: 40% to 70% by weight of iron, 20% to 60% by weight of nickel, a third element selected from Ti, Co , Cr, Mo, Mn, V, Si, Nb, S, C or Al. 8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'alliage métallique comprend : - 40% à 70% massique de fer, - 30% à 60% massique de nickel. 158. Method according to one of claims 1 to 6, characterized in that the metal alloy comprises: - 40% to 70% by weight of iron, - 30% to 60% by weight of nickel. 15 9. Procédé selon la revendication 8, caractérisé en ce que l'alliage métallique est un alliage Fe55Ni45.9. The method of claim 8, characterized in that the metal alloy is a Fe55Ni45 alloy. 10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le 20 brasage est réalisé sous vide secondaire ou sous gaz neutre.10. Method according to one of claims 1 to 9, characterized in that the brazing is carried out under secondary vacuum or under neutral gas. 11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la température de brasage est comprise entre 1120°C et 1400°C. 2511. Method according to one of claims 1 to 10, characterized in that the brazing temperature is between 1120 ° C and 1400 ° C. 25 12. Assemblage comprenant : - au moins deux éléments : le premier élément étant en hafnie yttriée ou en thorine yttriée et le deuxième élément étant en hafnie yttriée, en thorine yttriée ou en alliage métallique, - et un joint de brasage obtenu selon le procédé de l'une quelconque des 30 revendications 1 à 11.12. Assembly comprising: - at least two elements: the first element being ytrtriated hafnia or thoracit ytrtriée and the second element being yttrie hafnie, ytrtria thorine or metal alloy, and a solder joint obtained by the method of any one of claims 1 to 11. 13. Sonde électrochimique comportant : - un électrolyte en hafnie yttriée ou en thorine yttriée, - un tube en alliage métallique dans lequel est inséré l'électrolyte, - un joint de brasage, disposé entre l'électrolyte et le tube en alliage métallique, 5 obtenu selon le procédé de l'une quelconque des revendications 1 à 12.13. An electrochemical probe comprising: an electrolyte made of yttried hafnia or ytriated thorium; a metal alloy tube into which the electrolyte is inserted; a brazing joint disposed between the electrolyte and the metal alloy tube; obtained according to the process of any one of claims 1 to 12.
FR1303041A 2013-12-20 2013-12-20 METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS Active FR3015319B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1303041A FR3015319B1 (en) 2013-12-20 2013-12-20 METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS
PCT/FR2014/053452 WO2015092317A1 (en) 2013-12-20 2014-12-19 Process for assembling at least two elements by brazing, assembly comprising at least two elements and a brazing joint obtained by said process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1303041A FR3015319B1 (en) 2013-12-20 2013-12-20 METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS

Publications (2)

Publication Number Publication Date
FR3015319A1 true FR3015319A1 (en) 2015-06-26
FR3015319B1 FR3015319B1 (en) 2016-01-22

Family

ID=50288164

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1303041A Active FR3015319B1 (en) 2013-12-20 2013-12-20 METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS

Country Status (2)

Country Link
FR (1) FR3015319B1 (en)
WO (1) WO2015092317A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096915B1 (en) * 2019-06-07 2021-07-09 Commissariat Energie Atomique Assembly process of a ceramic part with a metal part
FR3111707B1 (en) 2020-06-17 2022-10-07 Commissariat Energie Atomique Potentiometric oxygen probe, for measuring the oxygen concentration of a liquid metal, Application to the measurement of oxygen in liquid sodium of a nuclear reactor of the RNR-Na type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439858A (en) * 1963-09-26 1969-04-22 Japan Atomic Energy Res Inst Brazing composition for carbonaceous materials
DE2350485A1 (en) * 1973-10-08 1975-04-17 Interatom Oxygen activity in gases and metal and salt melts - is measured by a ceramic solid electrolyte immersed in the fluid
US4139421A (en) * 1977-04-04 1979-02-13 General Electric Company Method of determining oxygen content

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325928A1 (en) 1975-09-26 1977-04-22 Gen Electric Oxygen determn. in liq. sodium used as a coolant - in fast breeder nuclear reactors, using solid electrolyte in contact with sodium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439858A (en) * 1963-09-26 1969-04-22 Japan Atomic Energy Res Inst Brazing composition for carbonaceous materials
DE2350485A1 (en) * 1973-10-08 1975-04-17 Interatom Oxygen activity in gases and metal and salt melts - is measured by a ceramic solid electrolyte immersed in the fluid
US4139421A (en) * 1977-04-04 1979-02-13 General Electric Company Method of determining oxygen content

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. JAYARAMAN ET AL: "Development of yttria-doped thoria solid electrolyte for use in liquid sodium systems", IONICS, vol. 13, no. 5, 8 August 2007 (2007-08-08), pages 299 - 303, XP055133303, ISSN: 0947-7047, DOI: 10.1007/s11581-007-0113-z *

Also Published As

Publication number Publication date
FR3015319B1 (en) 2016-01-22
WO2015092317A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
Kim et al. Effects of CuO content on the wetting behavior and mechanical properties of a Ag–CuO braze for ceramic joining
Chou et al. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect
KR101466417B1 (en) Diffusion barriers in modified air brazes
JP4486820B2 (en) Method for joining ceramic and metal parts
US20160354869A1 (en) Metallic compositions useful for brazing, and related processes and devices
Smeacetto et al. Novel Glass‐Ceramic Composition as Sealant for SOFC s
US20130260285A1 (en) Brazing material for bonding in atmosphere, bonded article, and current collecting material
Kim et al. Novel metal-ceramic joining for planar SOFCs
US8511535B1 (en) Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere
Chou et al. Novel alkaline earth silicate sealing glass for SOFC: Part II. Sealing and interfacial microstructure
US9112193B2 (en) Sealing arrangement for high-temperature fuel cell stack
Le et al. Effective Ag–CuO sealant for planar solid oxide fuel cells
Si et al. A novel Ag based sealant for solid oxide cells with a fully tunable thermal expansion
WO2013130192A1 (en) Braze compositions, and related articles and methods
Pönicke et al. Aging behavior of reactive air brazed seals for SOFC
Bobzin et al. Characterization of reactive air brazed ceramic/metal joints with unadapted thermal expansion behavior
Li et al. Effect of interconnect pre‐oxidation on high‐temperature wettability and mechanical properties of glass seals in SOFC
JP2006327888A (en) Brazed structure of ceramic and metal
Cao et al. Microstructure evolution and mechanical properties of Co coated AISI 441 ferritic stainless steel/YSZ reactive air brazed joint
Wang et al. Interfacial characterization and mechanical properties of reactive air brazed ZrO2 ceramic joints with Ag–CuO–Al2TiO5 composite filler metal
FR3015319A1 (en) METHOD FOR ASSEMBLING AT LEAST TWO ELEMENTS BY BRAZING, ASSEMBLY COMPRISING AT LEAST TWO ELEMENTS AND A BRAZING SEAL OBTAINED BY SAID PROCESS
Zhou et al. Reactive air brazing of 3YSZ ceramic to aluminized Crofer22H stainless steel using Ag–CuO fillers
Chatzimichail et al. Interfacial properties of (Ag+ CuO) brazes used as sealing materials in SOFC stacks
Wang et al. Silver particle interlayer with high dislocation density for improving the joining of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3-δ electrolyte and AISI 441 interconnect
Weil et al. Air brazing: A new method of ceramic-ceramic and ceramic-metal joining

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11