FR3013329A1 - AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE - Google Patents

AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE Download PDF

Info

Publication number
FR3013329A1
FR3013329A1 FR1361221A FR1361221A FR3013329A1 FR 3013329 A1 FR3013329 A1 FR 3013329A1 FR 1361221 A FR1361221 A FR 1361221A FR 1361221 A FR1361221 A FR 1361221A FR 3013329 A1 FR3013329 A1 FR 3013329A1
Authority
FR
France
Prior art keywords
hot air
front lip
piccolo tube
honeycomb structure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1361221A
Other languages
French (fr)
Other versions
FR3013329B1 (en
Inventor
Pierre Caruel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Original Assignee
Aircelle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle SA filed Critical Aircelle SA
Priority to FR1361221A priority Critical patent/FR3013329B1/en
Priority to EP14809931.0A priority patent/EP3068692B1/en
Priority to CN201480062173.4A priority patent/CN105764794B/en
Priority to PCT/FR2014/052914 priority patent/WO2015071609A1/en
Publication of FR3013329A1 publication Critical patent/FR3013329A1/en
Priority to US15/153,172 priority patent/US10532820B2/en
Application granted granted Critical
Publication of FR3013329B1 publication Critical patent/FR3013329B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/02De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
    • B64D15/04Hot gas application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0206Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising noise reduction means, e.g. acoustic liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0233Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising de-icing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0286Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for turbofan engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Le dispositif de dégivrage de l'invention comporte un tube piccolo (43) intégré à la cloison avant (37) de limitation du volume intérieur de la lèvre avant (36) perforée. Le tube piccolo (43) est en contact avec une structure alvéolaire de réduction de bruit (44) dotée de perforations et de canaux de circulation d'air chaud délivré par le tube piccolo (43), l'air chaud de dégivrage diffusant à travers les perforations et canaux de la structure alvéolaire (44), sur les perforations en regard de la lèvre avant (36).The deicing device of the invention comprises a piccolo tube (43) integrated in the front wall (37) for limiting the internal volume of the front lip (36) perforated. The piccolo tube (43) is in contact with a cellular noise reduction structure (44) provided with perforations and hot air circulation channels delivered by the piccolo tube (43), the hot defrosting air diffusing through the perforations and channels of the honeycomb structure (44), on the perforations facing the front lip (36).

Description

La présente invention concerne un dispositif de dégivrage d'entrée d'air de nacelle d'un moteur d'aéronef. Elle concerne aussi un procédé de fabrication d'un tel dispositif de dégivrage ainsi qu'une nacelle de moteur d'aéronef équipé d'un tel dispositif de dégivrage.The present invention relates to a nacelle air inlet defrosting device of an aircraft engine. It also relates to a method of manufacturing such a deicing device and an aircraft engine nacelle equipped with such a deicing device.

Dans l'état de la technique, on a déjà résolu le problème technique soulevé par la formation de givre sur l'entrée d'air d'une nacelle d'un moteur d'aéronef. Le problème technique est soulevé par la présence d'un bord d'attaque de l'aéronef placé dans une veine d'air humide de sorte que la pression produite par la pénétration du bord d'attaque dans la veine d'air induit le dépôt de givre qui encombre progressivement le bord d'attaque. Une solution a notamment été décrite pour le dégivrage d'un bord d'attaque qu'il soit un bord d'aile ou d'empennage d'aéronef ou une lèvre d'entrée d'air de nacelle, mais dont l'intérieur est garni d'un matériau ou structure alvéolaire de réduction du bruit acoustique dans le document FR-A- 2.912.781. Dans ce document, il est décrit un revêtement pour le traitement acoustique rapporté au niveau d'une surface d'un aéronef, notamment au niveau d'un bord d'attaque tel qu'une entrée d'air d'une nacelle d'aéronef. Le revêtement comporte une couche acoustiquement résistive, au moins une structure alvéolaire et une couche réflectrice. La structure alvéolaire comporte une pluralité de conduits débouchant d'une part au niveau d'une première surface imaginaire, et d'autre part, au niveau d'une seconde surface imaginaire. Dans cet état de la technique, la structure alvéolaire comprend des découpes ou des orifices ménagés au niveau des parois latérales de certains conduits permettant de faire communiquer des conduits adjacents de manière à créer un réseau de conduits communicants isolants au moins un conduit ou un groupe de conduits non communicants, au moins un des conduits communicants étant relié à au moins une arrivée de gaz chaud. La réalisation des découpes et orifices dans les parois des alvéoles est délicate. Elle est coûteuse en temps d'usinage et elle ne permet pas la réalisation de structures alvéolaires de grandes dimensions. Par ailleurs, la distribution d'air chaud dans la structure alvéolaire n'est pas optimale ce qui conduit à augmenter la pression de distribution de l'air chaud et n'est pas toujours réalisable.In the state of the art, the technical problem raised by the formation of frost on the air intake of a nacelle of an aircraft engine has already been solved. The technical problem is raised by the presence of a leading edge of the aircraft placed in a vein of moist air so that the pressure produced by the penetration of the leading edge into the air vein induces the deposition of frost that gradually clutters the leading edge. In particular, a solution has been described for de-icing a leading edge whether it is an aircraft wing or tail flange or a nacelle air inlet lip, but whose interior is lined with a material or honeycomb structure for acoustic noise reduction in FR-A-2,912,781. In this document, a coating is described for acoustic treatment reported at the level of a surface of an aircraft, in particular at a leading edge such as an air intake of an aircraft nacelle. . The coating comprises an acoustically resistive layer, at least one honeycomb structure and a reflective layer. The cellular structure comprises a plurality of ducts opening on the one hand at a first imaginary surface, and secondly, at a second imaginary surface. In this state of the art, the honeycomb structure comprises cutouts or orifices provided at the side walls of certain ducts making it possible to communicate adjacent ducts so as to create a network of communicating conduits isolating at least one duct or a group of ducts. non-communicating conduits, at least one of the communicating conduits being connected to at least one hot gas inlet. The making of the cutouts and orifices in the walls of the cells is delicate. It is expensive in machining time and it does not allow the realization of large honeycomb structures. Moreover, the distribution of hot air in the honeycomb structure is not optimal which leads to increase the distribution pressure of the hot air and is not always feasible.

Dans un autre état de la technique (voir FR-A-2.981.049), le perçage de découpes ou orifices dans les parois des alvéoles pour constituer des conduits est remplacé par le rainurage de la face du matériau absorbant acoustique destinée à venir se poser sur la surface intérieure de la peau de la nacelle qui fait face, au niveau de l'entrée d'air de la nacelle et vers l'intérieur de la nacelle face aux aubes de la soufflante dans le cas d'un turboréacteur.In another state of the art (see FR-A-2.981.049), the drilling of cutouts or orifices in the walls of the cells to form ducts is replaced by the grooving of the face of the acoustic absorbent material intended to come to rest. on the inner surface of the skin of the nacelle that faces, at the air inlet of the nacelle and inwardly of the nacelle facing the blades of the fan in the case of a turbojet engine.

Cette peau est elle-même percée de perforations ou de microperforations qui sont en communication fluidique avec les rainures ainsi constituées. Dans cet état de la technique, un tube piccolo de forme annulaire est alimenté en air chaud par une conduite provenant d'un générateur ou d'une source d'air chaud, lorsqu'une opération de dégivrage est commandée. L'air chaud diffuse à travers le tube piccolo, lui-même perforé, et pénètre dans les rainures de la face intérieure de la structure alvéolaire, il peut ensuite diffuser à travers les perforations ou microperforations de la peau intérieure de l'entrée d'air de la nacelle. L'effet de dégivrage est ainsi produit sur l'entrée d'air de la nacelle. Dans cet autre état de la technique, le rainurage est une 15 amélioration pour le travail de la structure alvéolaire. Mais il n'est pas particulièrement adapté à la distribution primaire de l'air chaud par le tube piccolo. La présente invention apporte une solution aux inconvénients de l'état de la technique. En effet, la présente invention concerne un dispositif de 20 dégivrage pour une entrée d'air d'une nacelle de moteur d'aéronef. Le dispositif de dégivrage est du genre comportant un générateur ou une source d'air chaud connecté par au moins un conduit à un tube piccolo disposé en relation avec le volume intérieur d'une lèvre avant de la nacelle, la lèvre avant étant munie de perforations pour l'écoulement de l'air chaud de dégivrage. Au moins une 25 structure alvéolaire de réduction de bruit est disposée sur au moins une partie de la peau perforée de la lèvre d'entrée. La structure alvéolaire est du genre présentant une pluralité de conduits de circulation de l'air chaud diffusé par le tube piccolo. Selon la caractéristique principale de l'invention, le tube piccolo 30 présente un profil annulaire intégré à une cloison de limitation du volume intérieur de la lèvre d'entrée et doté d'une pluralité de perforations pour réaliser la diffusion de l'air chaud amené par un ou plusieurs conduits depuis le générateur ou la source d'air chaud à travers la dite cloison de limitation et en ce que la structure alvéolaire est au moins partiellement disposée entre une 35 partie du tube piccolo et une partie en regard de la face intérieure de la peau de limitation de la lèvre d'entrée d'air.This skin is itself pierced with perforations or microperforations which are in fluid communication with the grooves thus formed. In this state of the art, a ring-shaped piccolo tube is supplied with hot air by a pipe from a generator or a source of hot air, when a defrosting operation is controlled. The hot air diffuses through the piccolo tube, itself perforated, and penetrates into the grooves of the inner face of the alveolar structure, it can then diffuse through the perforations or microperforations of the inner skin of the entrance of air of the basket. The deicing effect is thus produced on the air intake of the nacelle. In this other state of the art grooving is an improvement for the work of the honeycomb structure. But it is not particularly adapted to the primary distribution of hot air by the piccolo tube. The present invention provides a solution to the disadvantages of the state of the art. Indeed, the present invention relates to a de-icing device for an air intake of an aircraft engine nacelle. The deicing device is of the kind comprising a generator or a source of hot air connected by at least one conduit to a piccolo tube arranged in relation to the interior volume of a front lip of the nacelle, the front lip being provided with perforations for the flow of hot defrost air. At least one alveolar noise reduction structure is provided on at least a portion of the perforated skin of the inlet lip. The honeycomb structure is of the kind having a plurality of hot air circulation ducts diffused by the piccolo tube. According to the main characteristic of the invention, the piccolo tube 30 has an annular profile integrated in a partition wall for limiting the internal volume of the inlet lip and provided with a plurality of perforations for effecting the diffusion of the hot air supplied. by one or more conduits from the generator or the source of hot air through said limiting partition and in that the honeycomb structure is at least partially disposed between a portion of the piccolo tube and a portion facing the inner face. skin limitation of the air inlet lip.

Selon des caractéristiques additionnelles : le profil du tube piccolo est déterminé en fonction de la forme de la lèvre avant et/ou de la cloison de limitation de façon à optimiser l'efficacité du dégivrage ; une partie en regard du tube piccolo sert de peau de limitation de la structure alvéolaire de réduction de bruit ; le tube piccolo est alimenté en air chaud de dégivrage par au moins un conduit d'air chaud connecté à travers une ouverture de la cloison de limitation au générateur ou à la source d'air chaud de dégivrage ; le générateur ou la source d'air chaud de dégivrage est disposé dans une zone de la nacelle en arrière d'une cloison intermédiaire en arrière de la cloison avant sur laquelle est intégré le tube piccolo et en ce que le conduit traverse des ouvertures de ladite cloison avant et de ladite cloison intermédiaire ; les canaux de circulation d'air chaud pratiqués dans la structure alvéolaire sont réalisés sur une partie au moins de la hauteur des alvéoles et débouchent sur un collecteur disposé du côté de la peau intérieure de la lèvre avant et à l'arrière de la structure alvéolaire et qui est connecté par au moins un tube de sortie débouchant sur une ouverture de la face extérieure de la lèvre avant et en ce que les canaux sont disposés dans des zones de la structure alvéolaire qui ne sont pas munies de perforations acoustiques, mais dégagent des points d'injection d'air de dégivrage sur les peaux intérieure et/ou extérieure de la structure alvéolaire. L'invention concerne aussi un procédé de fabrication d'un dispositif de dégivrage pour section d'entrée d'air d'une nacelle de moteur d'aéronef. Le procédé principalement consiste au moins à former une lèvre avant annulaire dotée de perforations nécessaires au traitement acoustique de la lèvre, à disposer une structure alvéolaire de réduction de bruit dotée de canaux de circulation de l'air chaud de dégivrage débouchant dans un collecteur d'air chaud excédentaire, à former un tube piccolo annulaire, percé de perforations de diffusion de l'air chaud de dégivrage fourni par un conduit d'air chaud provenant d'un générateur ou d'une source d'air chaud de dégivrage, le tube piccolo présentant un profil adapté à la forme de la lèvre avant et à la face extérieure de ladite structure alvéolaire, à fixer le tube piccolo par son bord intérieur à la face intérieure en regard de la lèvre avant, à former une cloison avant pour fermer le volume intérieur de la lèvre avant et partant du tube piccolo et à la fixer d'une part par ses bords extérieur et intérieur par rivetage à la face en regard de la lèvre avant, et d'autre part aux bords adaptés en regard du tube piccolo. Selon une caractéristique additionnelle, le procédé de fabrication 5 consiste à former les canaux de circulation d'air de dégivrage et/ou le collecteur d'air chaud excédentaire dans lequel les canaux débouchent dans la structure alvéolaire par usinage au moins partiel de groupes d'alvéoles ou encore par collage partiel des feuilles empilées de réalisation des alvéoles de façon à, par expansion de l'empilement de feuilles réaliser au moins un canal 10 de passage d'air de largeur déterminée. L'invention concerne enfin une nacelle de moteur d'aéronef. La nacelle comporte un dispositif de dégivrage pour sa section d'entrée d'air fabriqué selon le procédé de l'invention, et défini selon l'invention. D'autres caractéristiques et avantages de la présente invention 15 seront mieux compris à l'aide de la description et des dessins, parmi lesquels : - La figure 1 représente un dispositif de dégivrage selon l'état de la technique ; - La figure 2 représente un dispositif de dégivrage selon un mode de réalisation de l'invention ; 20 - La figure 3 représente un schéma expliquant le mode de fonctionnement du dispositif de dégivrage de la figure 2 : - La figure 4 représente un détail d'un autre dispositif de dégivrage selon un mode de réalisation de l'invention ; - Les figures 5a à 5c représentent trois étapes dans un procédé de 25 fabrication d'un dispositif de dégivrage selon l'invention ; - Les figures 6 et 7 représentent deux vues d'un premier mode de réalisation d'une structure alvéolaire utilisée dans le dispositif de dégivrage de l'invention ; - La figure 8 représente un deuxième mode de réalisation d'une 30 structure alvéolaire utilisée dans le dispositif de dégivrage de l'invention ; et - Les figures 9 à 11 représentent trois vues d'un troisième mode de réalisation d'une structure alvéolaire utilisée dans le dispositif de dégivrage de l'invention.According to additional features: the profile of the piccolo tube is determined according to the shape of the front lip and / or the limiting partition so as to optimize the efficiency of the defrosting; a part facing the piccolo tube serves as a limiting skin of the alveolar noise reduction structure; the piccolo tube is supplied with defrost hot air by at least one hot air duct connected through an opening of the limiting partition to the generator or defrost hot air source; the generator or the defrost hot air source is disposed in a zone of the nacelle behind an intermediate partition behind the front partition on which the piccolo tube is integrated and in that the duct passes through openings of said front partition and said intermediate partition; the hot air circulation channels made in the honeycomb structure are made on at least a portion of the height of the cells and open on a manifold disposed on the inner skin side of the front lip and at the rear of the honeycomb structure and which is connected by at least one outlet tube opening to an opening of the outer face of the front lip and that the channels are arranged in areas of the honeycomb structure which are not provided with acoustic perforations, but give off defrosting air injection points on the inner and / or outer skins of the honeycomb structure. The invention also relates to a method of manufacturing a deicing device for an air intake section of an aircraft engine nacelle. The method mainly consists at least of forming an annular front lip provided with perforations necessary for the acoustic treatment of the lip, to have a honeycomb noise reduction structure provided with channels for the circulation of hot defrosting air opening into a collector. excess hot air, forming an annular piccolo tube, pierced with diffusion perforations of the hot defrosting air supplied by a hot air duct from a generator or a source of defrosting hot air, the tube piccolo having a profile adapted to the shape of the front lip and the outer face of said honeycomb structure, to fix the piccolo tube by its inner edge to the inner face facing the front lip, to form a front wall to close the interior volume of the front lip and starting from the piccolo tube and to fix it on the one hand by its outer and inner edges by riveting to the opposite side of the lip e before, and secondly to the appropriate edges facing the piccolo tube. According to an additional feature, the manufacturing method 5 consists in forming the defrosting air circulation channels and / or the excess hot air collector in which the channels open into the honeycomb structure by at least partial machining of groups of or by partially bonding the stacked sheets for producing the cells so that, by expansion of the stack of sheets, at least one air passage channel 10 of determined width is produced. The invention finally relates to an aircraft engine nacelle. The nacelle comprises a defrosting device for its air intake section manufactured according to the method of the invention, and defined according to the invention. Other features and advantages of the present invention will be better understood from the description and the drawings, among which: FIG. 1 represents a deicing device according to the state of the art; FIG. 2 represents a deicing device according to one embodiment of the invention; FIG. 3 represents a diagram explaining the operating mode of the deicing device of FIG. 2: FIG. 4 represents a detail of another deicing device according to one embodiment of the invention; FIGS. 5a to 5c show three steps in a method of manufacturing a deicing device according to the invention; FIGS. 6 and 7 show two views of a first embodiment of a honeycomb structure used in the deicing device of the invention; FIG. 8 shows a second embodiment of a honeycomb structure used in the deicing device of the invention; and FIGS. 9 to 11 show three views of a third embodiment of a honeycomb structure used in the deicing device of the invention.

A la figure 1, on a représenté un dispositif de dégivrage selon l'état de la technique. On a représenté une section de la partie avant, celle qui entre d'abord dans la veine d'air, de la nacelle du moteur d'aéronef. Dans la suite, du fait qu'on a représenté seulement une section de 5 la section d'entrée d'air de la nacelle, en position supérieure, on écrira que la section d'entrée est dirigée vers l'avant de la nacelle. La section représentée est une section supérieure relativement à un axe de symétrie ou axe longitudinal de la nacelle, autour duquel la section représentée tourne pour générer les diverses formes annulaires décrites. Les indications de 10 « supérieur » ou « d'inférieur » font référence à des parties représentées sur la seule section représentée en position haute, soit respectivement à la face « extérieure » et « intérieure » de la section d'entrée. La nacelle présente une symétrie axiale autour d'un axe central disposé (et non représenté) sous la face inférieure au dessin de la section 15 d'entrée dessinée. La section d'entrée de la nacelle entoure la soufflante d'un turboréacteur (non représenté) ou tout autre disposition d'entrée d'un moteur d'aéronef. Elle joue un rôle essentiel dans l'approvisionnement en air du moteur d'aéronef, de sorte que, ainsi qu'il a été indiqué plus haut, la formation de givre a tendance à réduire la surface d'entrée d'air, ce qui restreint le débit 20 d'air et partant la puissance du moteur. La section d'entrée d'air de la nacelle comporte un capot extérieur 1 qui se raccorde à une lèvre avant 3 en forme de « C » qui se raccorde elle-même sur la partie inférieure du dessin à une peau intérieure (non référencée) de la nacelle qui, dans le cas d'un turboréacteur, fait face à la soufflante. Le 25 capot extérieur 1, la lèvre avant 3 et la peau intérieure sont dotés au moins partiellement de structures alvéolaires, comme la structure alvéolaire 4 qui est disposée sur la face intérieure de la lèvre avant 3, dans sa partie inférieure au dessin, face à l'axe longitudinal de la nacelle. Une cloison avant 2 est disposée entre la partie extérieure de la 30 lèvre avant 3 et la partie intérieure de la lèvre avant 3, sensiblement à leurs raccordement respectifs avec le capot extérieur 1 d'une part et la peau intérieure non référencée à la partie intérieure de la section d'entrée de la nacelle. La cloison avant 2 présente un perçage à travers lequel est montée l'ouverture 9 d'un conduit d'air chaud de dégivrage. Deux panneaux thermiques 35 10 et 11 sont disposés de part et d'autre de la cloison avant 2 de façon à assurer un isolement thermique de l'air chaud soufflé relativement au matériau de la cloison avant 2. Un troisième panneau thermique 12 est fixé par des moyens convenables (non représentés) en face de l'ouverture 9 du conduit d'air chaud 5 de dégivrage, à l'intérieur du volume limité par la lèvre avant 3 et la cloison avant 2. Le montage du troisième panneau thermique et son profil sont calculés de manière à assurer une diffusion déterminée de l'air chaud de dégivrage dans tout le volume limité par la lèvre avant 3 et la cloison avant 2. L'air chaud soufflé est expulsé vers l'extérieur par des perforations et des 10 microperforations pratiquées sur la peau de la lèvre avant 3 et sur la structure alvéolaire 4 de sorte que l'air chaud de dégivrage s'expulse selon les flèches représentées au dessin. L'air chaud délivré par l'ouverture 9 de la conduite d'air chaud est délivré par un générateur d'air chaud 6-9 disposé en aval de la cloison avant 2 15 et qui est alimenté en air chaud primaire par une source d'air chaud comme l'air circulant au voisinage du moteur d'aéronef proprement dit ou extrait d'un compresseur du moteur. Cet air primaire chaud 5 est prélevé par des moyens connus et collecté dans une conduite d'entrée d'air chaud primaire 6 pour entrer sur un régulateur d'air chaud 7, dont une tubulure de sortie présente un 20 ajutage 8 qui limite le débit d'air chaud reconditionné à destination de l'ouverture 9 de la conduite d'air chaud connectée au volume intérieur de la lèvre avant 2. Préférentiellement, une boucle de contrôle est installée pour commander le régulateur qui peut être composé d'au moins une électrovanne à 25 débit contrôlé. L'électrovanne servant de régulateur 7 est commandée d'une part par un signal de commande de dégivrage (non représenté), produit par un organe de commande disposé au niveau du poste de pilotage de l'aéronef et/ou par un organe de sécurité détectant l'apparition de givre dans la section d'entrée de la nacelle, et d'autre part, par un signal 15 d'ouverture variable de 30 l'électrovanne 6 produit par un capteur de pression 13 disposé au voisinage de l'ouverture 9 de la conduite d'air chaud. Pour remédier aux inconvénients décrits plus haut et d'autres encore, la présente invention propose plusieurs dispositions avantageuses. Tout d'abord, dans un premier mode de réalisation, représenté à l'aide de la 35 figure 2, le générateur d'air chaud décrit dans l'état de la technique (voir Figure 1) est reculé en arrière de la nacelle au-delà de la cloison avant 37 et d'une cloison intermédiaire 38. Une telle disposition reculée permet de réduire l'encombrement du volume annulaire intérieur de la nacelle en une zone importante et de plus, rapproche le générateur d'air chaud d'une zone de la nacelle plus facilement accessible en maintenance.In Figure 1, there is shown a deicing device according to the state of the art. There is shown a section of the front part, the one that first enters the air stream, the nacelle of the aircraft engine. In the following, since only one section of the air intake section of the nacelle is shown in the upper position, it will be written that the inlet section is directed towards the front of the nacelle. The section shown is an upper section relative to an axis of symmetry or longitudinal axis of the nacelle, around which the section shown rotates to generate the various annular forms described. The "upper" or "lower" indications refer to parts shown on the only section shown in the up position, ie, respectively to the "outer" and "inside" faces of the inlet section. The nacelle has axial symmetry around a central axis disposed (and not shown) under the underside of the drawing of the drawn inlet section. The inlet section of the nacelle surrounds the blower of a turbojet engine (not shown) or any other input arrangement of an aircraft engine. It plays a vital role in the air supply of the aircraft engine, so that, as noted above, frost formation tends to reduce the air intake surface, which restricts the flow of air and hence the power of the engine. The air intake section of the nacelle comprises an outer cover 1 which connects to a front lip 3 in the shape of a "C" which connects itself to the lower part of the drawing to an inner skin (not referenced) of the nacelle which, in the case of a turbojet, faces the blower. The outer cover 1, the front lip 3 and the inner skin are at least partially provided with honeycomb structures, such as the honeycomb structure 4 which is arranged on the inner face of the front lip 3, in its lower part in the drawing, facing the longitudinal axis of the nacelle. A front partition 2 is disposed between the outer portion of the front lip 3 and the inner portion of the front lip 3, substantially at their respective connections with the outer cover 1 on the one hand and the inner skin not referenced to the inner part. the entry section of the nacelle. The front partition 2 has a bore through which is mounted the opening 9 of a defrosting hot air duct. Two thermal panels 35 and 11 are arranged on either side of the front partition 2 so as to ensure thermal insulation of the hot air blown relative to the material of the front partition 2. A third thermal panel 12 is fixed by suitable means (not shown) in front of the opening 9 of the defrosting hot air duct 5, inside the volume limited by the front lip 3 and the front partition 2. The mounting of the third thermal panel and its profile are calculated to ensure a specific diffusion of hot defrosting air throughout the volume limited by the front lip 3 and the front wall 2. The hot air blown is expelled outwards by perforations and 10 microperforations performed on the skin of the front lip 3 and the honeycomb structure 4 so that the hot defrosting air is expelled according to the arrows shown in the drawing. The hot air delivered through the opening 9 of the hot air duct is delivered by a hot air generator 6-9 disposed downstream of the front wall 2 and which is supplied with primary hot air by a heat source. hot air as the air circulating in the vicinity of the aircraft engine itself or extracted from a compressor of the engine. This hot primary air 5 is taken by known means and collected in a primary hot air inlet pipe 6 to enter a hot air regulator 7, an outlet pipe of which has a nozzle 8 which limits the flow rate. reconditioned hot air to the opening 9 of the hot air duct connected to the inner volume of the front lip 2. Preferably, a control loop is installed to control the regulator which can be composed of at least one controlled flow solenoid valve. The solenoid valve acting as regulator 7 is controlled on the one hand by a defrost control signal (not shown), produced by a control member disposed at the cockpit of the aircraft and / or by a safety organ detecting the appearance of frost in the input section of the nacelle, and secondly, by a variable opening signal of the solenoid valve 6 produced by a pressure sensor 13 disposed in the vicinity of the opening 9 of the hot air line. To overcome the disadvantages described above and others, the present invention provides several advantageous arrangements. Firstly, in a first embodiment, shown with reference to FIG. 2, the hot air generator described in the state of the art (see FIG. 1) is moved backward from the nacelle to the the rear partition 37 and an intermediate partition 38. Such a rearward arrangement reduces the bulk of the annular volume inside the nacelle in a large area and further brings the furnace of a hot air nacelle area more easily accessible for maintenance.

A cette fin, le conduit d'air chaud 40 est porté entre la cloison avant 37 montée sur l'arrière de la lèvre avant 36 et la cloison intermédiaire 38 montée entre le capot 35 et la peau intérieure de nacelle. La cloison avant 37 est une cloison de limitation du volume intérieur de la lèvre avant 36 dans lequel l'air chaud de dégivrage sera diffusé. Le conduit d'air chaud 40 est monté par ses deux extrémités sur des ouvertures correspondantes des cloisons avant 37 et intermédiaire 38. Sur la cloison 38, l'ouverture 42 du conduit d'air chaud 40 est dotée d'une collerette 41 d'appui et d'étanchéité. L'extrémité avant (à gauche au dessin) du conduit d'air chaud 40 traverse la cloison avant 37 et débite à travers un tube piccolo 43 disposé dans la partie basse (la plus proche de l'axe longitudinal de nacelle - non représenté) du volume intérieur de la lèvre avant 36. Le tube piccolo 43 est doté de perforations dont le nombre, la répartition et la section sont déterminés par construction. La section du tube piccolo est adaptée en fonction des caractéristiques thermodynamiques comprenant les débits, les pressions du flux d'air chaud diffusé à travers le tube piccolo et de la géométrie intérieure de la lèvre avant afin de produire un profil déterminé de débits d'air chaud au niveau des perforations et microperforations (non référencées) pratiquées à travers la lèvre avant 36. Un tel profil déterminé de pressions et de débits d'air chaud est 25 prévu de manière à rendre optimal l'effet de dégivrage au niveau de la section d'entrée de la nacelle. Dans le mode de réalisation exemplifié à l'aide de la figure 2, la section du tube piccolo 43 reproduit sensiblement le profil intérieur de la cloison avant 37 ainsi qu'il sera détaillé plus loin. 30 Dans un mode de réalisation, la face intérieure de la lèvre avant 36 est revêtue d'une structure alvéolaire 44 de réduction de bruit. Comme dans l'état de la technique décrit à l'aide de la figure 1, la structure alvéolaire 44 est disposée sur la partie intérieure, du côté de l'axe longitudinal de la nacelle (non représenté) de la section d'entrée de la nacelle. La structure alvéolaire 35 présente ainsi une peau inférieure au dessin en contact avec la surface intérieure de la lèvre avant 36 et une peu supérieure en contact avec la surface inférieure du tube piccolo 43. Il est prévu que la surface inférieure du tube piccolo 43 serve de peau supérieure à la structure alvéolaire 44 de réduction de bruit. La peau supérieure de la structure alvéolaire 44 de réduction de 5 bruit est elle-même dotée de perforations permettant le passage de flux d'air chaud issu du tube piccolo. D'autres dispositions seront détaillées plus loin. A la figure 3, on a représenté la disposition de la figure 2 pour expliquer son fonctionnement. Le tube piccolo 43 est formé à partir d'une feuille métallique, de préférence en aluminium, titane ou alliage de nickel en fonction 10 de la température maximale de l'air de dégivrage. Elle présente une partie supérieure 47 qui vient en raccordement avec la surface en regard de la cloison avant 37. La partie inférieure de la tôle, ou feuille, formant le tube piccolo 43 vient ensuite parallèlement à la structure alvéolaire 44 de réduction de bruit solidaire de la face intérieure de la partie inférieure de la lèvre avant 15 36. L'air chaud provenant du conduit d'air chaud 40 passe par une ouverture 46 pratiquée dans la cloison avant 37, emplit le volume intérieur du tube piccolo 43 et diffuse à travers des perforations selon les flèches indiquées à la figure 3 à travers les alvéoles 45 de la structure alvéolaire 44. Dans un autre mode de réalisation, l'air chaud est évacué de la 20 structure alvéolaire 44 par les perforations (non représentées) de la lèvre 36. On comprend de ce qui précède que le tube piccolo 43 forme un anneau disposé contre et intégré à la cloison avant 37 à l'intérieur du volume de la lèvre avant 36, autour de l'axe longitudinal de la nacelle (non représenté dans la section présentée aux dessins). De même, un seul conduit 40 d'air 25 chaud est représenté. Plusieurs conduits analogues au conduit 40 peuvent être disposés en fonction des besoins autour de l'axe longitudinal de la nacelle de façon à fournir un approvisionnement satisfaisant en air chaud. A la figure 4, on a représenté un autre mode de réalisation du dispositif de dégivrage selon l'invention. La vue est celle d'une section 30 partiellement vue dans l'espace de la partie supérieure de la nacelle, coupée sensiblement par un plan vertical passant par l'axe longitudinal de la nacelle (non représenté). Les mêmes éléments que ceux des figures 3 et 4 portent les mêmes numéros de référence. La lèvre avant 36 a été représentée avec la cloison avant 37 et 35 partiellement la structure alvéolaire 44. La partie arrière de la structure alvéolaire 44 comporte une chambre annulaire 50 vide qui sert de collecteur à l'air chaud insufflé depuis le tube piccolo 43 à travers la structure alvéolaire 44. Un tube collecteur 51 permet de rejeter à l'extérieur par un orifice 52 pratiqué sur la face supérieure de la lèvre avant 36 cet air chaud, auquel une extrémité haute du tube de sortie 51 est connecté.For this purpose, the hot air duct 40 is carried between the front wall 37 mounted on the rear of the front lip 36 and the intermediate partition 38 mounted between the hood 35 and the inner nacelle skin. The front wall 37 is a limiting wall of the interior volume of the front lip 36 in which the hot defrosting air will be diffused. The hot air duct 40 is mounted at both ends on corresponding openings in the front and intermediate partitions 38 and 37. On the partition 38, the opening 42 of the hot air duct 40 is provided with a collar 41 of support and sealing. The front end (left in the drawing) of the hot air duct 40 passes through the front partition 37 and delivers through a piccolo tube 43 disposed in the lower part (closest to the longitudinal axis of the nacelle - not shown) the inner volume of the front lip 36. The piccolo tube 43 is provided with perforations whose number, distribution and section are determined by construction. The section of the piccolo tube is adapted according to the thermodynamic characteristics including the flows, the pressures of the hot air flow diffused through the piccolo tube and the internal geometry of the front lip in order to produce a determined profile of airflows. at the perforations and microperforations (not referenced) made through the front lip 36. Such a determined profile of pressures and flows of hot air is provided so as to optimize the deicing effect at the sectional level. entrance to the basket. In the embodiment exemplified with reference to FIG. 2, the section of the piccolo tube 43 substantially reproduces the inner profile of the front partition 37 as will be detailed below. In one embodiment, the inner face of the front lip 36 is coated with a honeycomb structure 44 for reducing noise. As in the state of the art described with reference to FIG. 1, the honeycomb structure 44 is disposed on the inner part, on the side of the longitudinal axis of the nacelle (not shown) of the inlet section of FIG. Platform. The honeycomb structure 35 thus has a skin which is smaller than the design in contact with the inner surface of the front lip 36 and a little higher in contact with the lower surface of the piccolo tube 43. It is envisaged that the lower surface of the piccolo tube 43 serves as skin superior to the alveolar structure 44 of noise reduction. The upper skin of the alveolar noise reduction structure 44 itself is provided with perforations allowing the passage of hot air flow from the piccolo tube. Other provisions will be detailed below. In Figure 3, there is shown the arrangement of Figure 2 to explain its operation. The piccolo tube 43 is formed from a metal sheet, preferably of aluminum, titanium or nickel alloy depending on the maximum temperature of the defrosting air. It has an upper part 47 which connects with the surface facing the front partition 37. The lower part of the sheet, or sheet, forming the piccolo tube 43 then comes parallel to the cellular noise reduction structure 44 integral with the inner face of the lower portion of the front lip 36. The hot air from the hot air duct 40 passes through an opening 46 formed in the front partition 37, fills the interior volume of the piccolo tube 43 and diffuses through perforations according to the arrows shown in FIG. 3 through the cells 45 of the honeycomb structure 44. In another embodiment, the hot air is removed from the honeycomb structure 44 by the perforations (not shown) of the lip 36. It is understood from the foregoing that the piccolo tube 43 forms a ring disposed against and integrated with the front wall 37 within the volume of the front lip 36 around the front wall. longitudinal axis of the nacelle (not shown in the section shown in the drawings). Likewise, only one hot air duct 40 is shown. Several conduits similar to the conduit 40 may be arranged as needed around the longitudinal axis of the nacelle so as to provide a satisfactory supply of hot air. In Figure 4, there is shown another embodiment of the deicing device according to the invention. The view is that of a section partially seen in the space of the upper part of the nacelle, cut substantially by a vertical plane passing through the longitudinal axis of the nacelle (not shown). The same elements as those of Figures 3 and 4 have the same reference numbers. The front lip 36 has been shown with the front wall 37 and partially the honeycomb structure 44. The rear portion of the honeycomb structure 44 has an empty annular chamber 50 which serves as a collector for the hot air blown from the piccolo tube 43 to Through the honeycomb structure 44. A collector tube 51 allows discharge to the outside through an orifice 52 formed on the upper face of the lip before 36 this hot air, at which an upper end of the outlet tube 51 is connected.

L'autre extrémité, ou extrémité basse, du tube 51 est en communication à travers la cloison avant 37 et le pied ou bord inférieur 49 du tube piccolo 43 avec la chambre annulaire ou collecteur 50. On a aussi représenté une perforation 53 sur la partie supérieure de la lèvre avant, composée de deux moitiés d'une même ouverture circulaire 10 qui mettent en communication le volume intérieur de la lèvre avant avec l'air extérieur. Aux figures 5a à Sc, on a représenté plusieurs étapes d'un procédé de fabrication d'un dispositif de dégivrage pour section d'entrée d'une nacelle de moteur d'aéronef selon l'invention.The other end, or low end, of the tube 51 is in communication through the front wall 37 and the foot or lower edge 49 of the piccolo tube 43 with the annular chamber or collector 50. There is also shown a perforation 53 on the part upper lip of the front lip, composed of two halves of the same circular opening 10 which put into communication the interior volume of the front lip with the outside air. FIGS. 5a to Sc show several steps of a method of manufacturing a deicing device for an inlet section of an aircraft engine nacelle according to the invention.

15 A la figure 5a, on a représenté une étape initiale à partir de laquelle une lèvre avant 36 est formée. Pour simplifier, seule la section supérieure de la lèvre avant est représentée et la forme complète est obtenue sensiblement par rotation autour de l'axe longitudinal (non représenté) de la nacelle. La lèvre avant 36 est formée par tout moyen connu selon le matériau utilisé, et 20 notamment par tournage ou emboutissage d'une tôle d'aluminium ou de titane. A la figure 5b, on a représenté une étape ultérieure du procédé de fabrication à l'issue de laquelle la structure alvéolaire 44 a été brasée, ou soudée ou collée sur la face intérieure 55 de la lèvre avant 36. Puis, après formage du tube piccolo 43, ce dernier, doté de ses perforations est solidarisé 25 de la peau supérieure 56 de la structure alvéolaire 44. Par ailleurs, le bord intérieur 57 du tube piccolo 43 est fixé à la face intérieure 55 de la lèvre avant 36. Le formage du tube piccolo 43 peut être réalisé par différents procédés comprenant le tournage, l'emboutissage, la déformation super-30 plastique et le formage à chaud. A la figure Sc, on a représenté une étape ultérieure du procédé de fabrication de l'invention. Après formage de la cloison avant 37 ou cloison de limitation du volume intérieur de la lèvre avant 36, cette dernière est montée à l'intérieur de la lèvre avant 36 par l'arrière (à droite au dessin). Un rebord plié 35 de la cloison avant 37 est ensuite riveté en 58 sur la peau supérieure de la lèvre avant 36. Le bord supérieur du tube piccolo 43 est ensuite riveté en 59 sur la cloison avant. Un rebord inférieur (au dessin) de la cloison avant 37 est riveté en 60 sur la peau inférieure de la lèvre avant 36 de sorte qu'l reste à monter les autres équipements du dispositif de dégivrage, notamment le ou les conduits d'air chaud et le générateur d'air chaud lorsque la lèvre avant 36 ainsi équipée est montée sur le reste de la nacelle. A la figure 6, on a représenté un mode de réalisation d'une structure alvéolaire utilisable avec le tube piccolo de l'invention. La figure 6 représente une coupe des alvéoles de la structure alvéolaire 44 par un plan parallèle aux faces supérieure et inférieure de la structure quand elle est montée dans la lèvre avant, sur la section supérieure représentée aux figures précédentes. De façon à réaliser un canal de passage de l'air chaud entre la peau supérieure (non représentée) en haut de la figure 6 et la peau inférieure (non représentée) en bas de la figure 6, une ou plusieurs rangées d'alvéoles hexagonales ont été au moins partiellement supprimées, par usinage total ou partiel. Il en résulte qu'un canal 71 est ainsi formé entre deux groupes 70 et 72 d'alvéoles qui ont été intégralement conservées. Les peaux supérieure et inférieure de la structure alvéolaire sont alors percées de perforations ou micro-perforations seulement au droit des canaux comme le canal 71 tandis qu'elles sont laissées intactes au niveau des alvéoles conservées. Cependant, la peau inférieure est traitée acoustiquement au droit des groupes d'alvéoles conservées par des microperforations adaptées. On note aussi que la peau supérieure de la structure alvéolaire est réalisée par une partie correspondante du tube piccolo 43 et que la peau inférieure de la structure alvéolaire 43 est réalisée par une partie de la peau inférieure 45 de la lèvre avant 36. A la figure 7, on a représenté en perspective une plaque d'alvéoles coupée au niveau de la peau supérieure de sorte que les canaux 75 et 76 sont constitués par des alvéoles qui ont été partiellement usinées comme l'alvéole 77 comparée à l'alvéole voisine 78 qui a été conservée et sert de bord de limitation du canal 75. Plusieurs canaux de circulation d'air chaud sont constitués. A la figure 8, on a représenté un autre mode de réalisation dans lequel les alvéoles usinées sont alignées pour former des canaux 84, 85 de circulation d'air chaud selon des diagonales. La flèche marquée « AVANT » désigne la direction du bord d'attaque de la lèvre avant quand la structure alvéolaire a été montée. Les points alignés au niveau des canaux 84, 85 de circulation d'air chaud comme les points 80 et 81 représentent les perforations pratiquées sur la peau externe et qui se trouvent donc en relation avec l'air chaud du tube piccolo. La densité et le diamètre des perforations 80, 81 sont déterminés de façon à varier selon la distance de la perforation au bord d'attaque pour ajuster les échanges thermiques en fonction des zones à dégivrer. Les canaux 84, 85 de circulation d'air chaud insufflé par les perforations 80, 81 depuis le tube piccolo sont inclinés par rapport à la direction radiale quand la structure alvéolaire est installée dans la lèvre avant de la nacelle. Ils débouchent sur un collecteur de sortie 86, qui a été représenté notamment à la figure 4 sous la référence 50. Une extrémité du collecteur 86 débouche dans un tube de sortie 87 qui a été déjà décrit avec le tube 51 à la figure 4. Les quatre canaux représentés à la figure 8 sont formés par 15 usinage ou autrement en enlevant des alvéoles ou des parties d'alvéoles entre les groupes d'alvéoles limitant les canaux et portant les références 88 à 91. A la figure 9, on a représenté un autre mode de réalisation de la structure alvéolaire dans lequel des canaux obliques de circulation d'air chaud sont percés par un autre moyen. Un collecteur 86 analogue au canal 86 de la 20 figure 8 ou au collecteur 50 de la figure 4 est prévu avec le même tube 87 de sortie d'air chaud, analogue au tube de sortie 51 de la figure 4. Des canaux 100 à 103 sont pratiqués lors de la fabrication des alvéoles. Ainsi qu'il est connu, les alvéoles sont d'abord produites à partir d'un empilement de feuilles métalliques qui portent des zones collées alternant de 25 feuille en feuille dans l'empilement. Ainsi, une zone collée dans l'empilement n'est jamais superposée avec une autre zone collée immédiatement voisine. Puis, l'empilement subit une opération d'expansion de sorte que les zones collées restent plaquées deux à deux. Pour réaliser un canal entre deux groupes d'alvéoles, l'invention 30 prévoit de ne pas réaliser de collage entre deux feuilles de l'empilement préalable des feuilles métalliques de réalisation de la structure alvéolaire. La technique sera mieux comprise à l'aide des figures suivantes 10 et 11. Mais, on voit qu'il est ainsi possible de réaliser des canaux obliques comme les canaux 100 à 103 entre l'avant de la structure alvéolaire dirigée vers le bord d'attaque 35 de la lèvre avant ou de la nacelle, mais aussi de réaliser des largeurs de canaux variable en fonction des débits d'air chaud que l'on veut ramener vers le collecteur 86 et le tube de sortie 87. A la figure 10, on a représenté deux feuilles 107 et 108 de l'empilement de feuilles métalliques utilisée pour réaliser la structure alvéolaire.In Fig. 5a, there is shown an initial step from which a front lip 36 is formed. For simplicity, only the upper section of the front lip is shown and the complete shape is obtained substantially by rotation around the longitudinal axis (not shown) of the nacelle. The front lip 36 is formed by any known means depending on the material used, and in particular by turning or stamping a sheet of aluminum or titanium. FIG. 5b shows a subsequent step of the manufacturing process at the end of which the honeycomb structure 44 has been brazed, or welded or glued to the inside face 55 of the front lip 36. Then, after forming the tube piccolo 43, the latter, with its perforations is secured to the upper skin 56 of the honeycomb structure 44. Furthermore, the inner edge 57 of the piccolo tube 43 is fixed to the inner face 55 of the front lip 36. The forming Piccolo tube 43 may be made by various methods including turning, stamping, super-plastic deformation and hot forming. In Figure Sc, there is shown a subsequent step of the manufacturing method of the invention. After forming the front wall 37 or limiting partition of the inner volume of the front lip 36, the latter is mounted inside the front lip 36 from the rear (right in the drawing). A folded flange 35 of the front wall 37 is then riveted at 58 to the upper skin of the front lip 36. The upper edge of the piccolo tube 43 is then riveted at 59 to the front wall. A lower flange (in the drawing) of the front partition 37 is riveted at 60 on the lower skin of the front lip 36 so that the other equipment of the de-icing device, in particular the hot air duct or ducts, remains to be fitted. and the hot air generator when the front lip 36 thus equipped is mounted on the rest of the nacelle. In Figure 6, there is shown an embodiment of a honeycomb structure usable with the piccolo tube of the invention. Figure 6 shows a section of the cells of the honeycomb structure 44 by a plane parallel to the upper and lower faces of the structure when it is mounted in the front lip, on the upper section shown in the previous figures. In order to create a channel for the passage of hot air between the upper skin (not shown) at the top of FIG. 6 and the lower skin (not shown) at the bottom of FIG. 6, one or more rows of hexagonal cells. have been at least partially removed, by total or partial machining. As a result, a channel 71 is thus formed between two groups 70 and 72 of cells which have been fully preserved. The upper and lower skins of the honeycomb structure are then pierced with perforations or micro-perforations only to the right of the channels as the channel 71 while they are left intact in the cells kept. However, the lower skin is treated acoustically to the right of the cell groups preserved by adapted microperforations. It is also noted that the upper skin of the honeycomb structure is made by a corresponding portion of the piccolo tube 43 and that the lower skin of the honeycomb structure 43 is made by a portion of the lower skin 45 of the front lip 36. In FIG. 7, there is shown in perspective a plate of cells cut at the level of the upper skin so that the channels 75 and 76 are formed by cells which have been partially machined as the cell 77 compared to the neighboring cell 78 which has been retained and serves as the limiting edge of channel 75. Several hot air circulation channels are formed. In Figure 8, there is shown another embodiment in which the machined cells are aligned to form channels 84, 85 of hot air circulation along diagonals. The arrow marked "FRONT" indicates the direction of the leading edge of the front lip when the honeycomb structure has been mounted. The points aligned at the channels 84, 85 of hot air circulation as the points 80 and 81 represent the perforations made on the outer skin and which are therefore in relation to the hot air of the piccolo tube. The density and the diameter of the perforations 80, 81 are determined so as to vary according to the distance of the perforation at the leading edge to adjust the heat exchanges as a function of the zones to be de-iced. The channels 84, 85 for hot air circulation blown through the perforations 80, 81 from the piccolo tube are inclined relative to the radial direction when the honeycomb structure is installed in the front lip of the nacelle. They open on an outlet manifold 86, which has been shown in particular in FIG. 4 under the reference 50. One end of the manifold 86 opens into an outlet tube 87 which has already been described with the tube 51 in FIG. Four channels shown in FIG. 8 are formed by machining or otherwise by removing cavities or cell parts between the channel-limiting cell groups and bearing the numbers 88 through 91. In FIG. another embodiment of the honeycomb structure in which oblique channels for hot air circulation are pierced by another means. A manifold 86 similar to channel 86 of FIG. 8 or manifold 50 of FIG. 4 is provided with the same hot air outlet tube 87, analogous to the outlet tube 51 of FIG. 4. Channels 100 to 103 are practiced during the manufacture of the cells. As is known, the cells are first produced from a stack of metal foils which have alternating bonded sheet-like areas in the stack. Thus, a glued area in the stack is never superimposed with another glued area immediately adjacent. Then, the stack undergoes an expansion operation so that the glued areas remain plated two by two. To achieve a channel between two groups of cells, the invention provides not to achieve bonding between two sheets of the prior stack of metal sheets for producing the honeycomb structure. The technique will be better understood with the aid of the following figures 10 and 11. However, it can be seen that it is thus possible to produce oblique channels such as the channels 100 to 103 between the front of the honeycomb structure directed towards the edge. etching 35 of the front lip or the nacelle, but also to achieve variable channel widths depending on the flow of hot air that is to be returned to the manifold 86 and the outlet tube 87. In Figure 10 two sheets 107 and 108 of the sheet metal stack used to make the honeycomb structure are shown.

5 Une zone collée 106 entre les deux feuilles 107 et 108 est ménagée et une expansion de l'empilement est exécutée. Les ou rubans de part et d'autre de la zone collée 106 prennent alors une angulation, de sorte que le nid d'abeille de section hexagonal se forme. En répétant le motif composé d'une zone collée et d'une zone libre sur toute la longueur de l'empilement et en multipliant les 10 feuilles de l'empilement avec un décalage du motif sur les différentes feuilles de l'empilement, on produit ainsi la partie classique en nid d'abeille de la structure alvéolaire de réduction de bruit. A la figure 11, pour réaliser des canaux de circulation d'air chaud délivré par le tube piccolo de l'invention, on a représenté deux feuilles 109 et 15 110 dans l'empilement de feuilles métalliques dans une zone où on désire produire un conduit ou canal d'air chaud dans la structure alvéolaire. La zone collée représentée en hachure est interrompue, de sorte que lors de l'expansion représentée dans la direction de la flèche 112, il se forme un volet 111 qui ouvre le conduit ou canal entre les deux feuilles 109 et 110. Le degré 20 d'ouverture du canal ou conduit, ainsi que la largeur du canal peuvent être adaptés en ménageant la longueur et/ou la largeur de la zone collée conservée. Ainsi, on constate que les caractéristiques de l'invention permettent : 25 une augmentation de l'efficacité d'échange entre l'air chaud issu du générateur d'air chaud et les surfaces givrées par rapport à la simple circulation d'air chaud prévue dans l'état de la technique, les sections de passage d'air pouvant être optimisées pour maximiser les échanges thermiques ; 30 - une réduction du débit d'air chaud pour une efficacité de dégivrage donnée par rapport à l'efficacité des dispositifs de dégivrage de l'état de la technique ; - une réduction de masse des composants du dispositif de dégivrage de l'invention par intégration du tube piccolo à la structure alvéolaire dont il 35 sert de peau supérieure ; - une possibilité de dégivrer avec de l'air plus froid et un plus fort débit puisque le tube piccolo permet d'augmenter les échanges et donc de fonctionner avec des pressions et des températures plus faibles ; - la réalisation de la lèvre avant, de la structure alvéolaire de réduction de bruit et/ou de la cloison avant en aluminium, ce qui conduit à une réduction des coûts par rapport à des solutions classiques en titane ; - la structure alvéolaire de réduction de bruit peut aussi être collée sur la face intérieure de la lèvre avant au lieu d'être brasée, ce qui évite un échauffement lors de la fabrication.10A glued area 106 between the two sheets 107 and 108 is formed and an expansion of the stack is performed. The or ribbons on either side of the glued zone 106 then take an angulation, so that the honeycomb hexagonal section is formed. By repeating the pattern composed of a glued zone and a free zone over the entire length of the stack and by multiplying the sheets of the stack with a shift of the pattern on the different sheets of the stack, one produces thus the classic honeycomb part of the honeycomb noise reduction structure. In FIG. 11, for producing hot air circulation ducts delivered by the piccolo tube of the invention, two sheets 109 and 110 are shown in the stack of metal sheets in an area where it is desired to produce a duct. or hot air channel in the honeycomb structure. The glued zone shown in hatching is interrupted, so that during the expansion shown in the direction of the arrow 112, a flap 111 is formed which opens the duct or channel between the two sheets 109 and 110. The degree 20 The opening of the channel or duct, as well as the width of the channel can be adapted by leaving the length and / or width of the glued area preserved. Thus, it can be seen that the characteristics of the invention make it possible: to increase the exchange efficiency between the hot air coming from the hot air generator and the frosted surfaces with respect to the simple circulation of hot air in the state of the art, the air passage sections can be optimized to maximize heat exchange; A reduction in the hot air flow rate for a given deicing efficiency compared to the efficiency of the deicing devices of the state of the art; a reduction in the mass of the components of the deicing device of the invention by integrating the piccolo tube with the cellular structure of which it serves as the upper skin; - A possibility to defrost with colder air and a higher flow rate since the piccolo tube can increase exchanges and therefore operate with lower pressures and temperatures; - The realization of the front lip, the alveolar noise reduction structure and / or the aluminum front wall, which leads to a reduction in costs compared to conventional titanium solutions; - The honeycomb noise reduction structure can also be glued on the inner face of the front lip instead of being brazed, which avoids heating during manufacture.

Claims (9)

REVENDICATIONS1. Dispositif de dégivrage pour entrée d'air de nacelle de moteur d'aéronef, du genre comportant un générateur d'air chaud connecté par au moins un conduit à un tube piccolo disposé en relation avec le volume intérieur d'une lèvre avant de la nacelle, la lèvre avant étant munie de perforations pour l'écoulement de l'air chaud de dégivrage et au moins une structure alvéolaire de réduction de bruit disposée sur au moins une partie de la peau perforée de la lèvre d'entrée, la structure alvéolaire étant du genre présentant une pluralité de canaux de circulation de l'air chaud diffusé par le tube piccolo, caractérisé en ce que le tube piccolo (43) présente un profil annulaire intégré à une cloison de limitation (37) du volume intérieur de la lèvre avant (36) et qu'il est doté d'une pluralité de perforations pour réaliser la diffusion de l'air chaud amené par un ou plusieurs conduits(40) depuis le générateur d'air chaud à travers la dite cloison de limitation (37) et en ce que la structure alvéolaire (44) est au moins partiellement disposée entre une partie du tube piccolo (43) et une partie (45) en regard de la face intérieure de la peau de limitation de la lèvre avant (36).REVENDICATIONS1. Defrosting device for aircraft engine nacelle air intake, of the type comprising a hot air generator connected by at least one conduit to a piccolo tube disposed in relation to the interior volume of a front lip of the nacelle , the front lip being provided with perforations for the flow of hot defrosting air and at least one alveolar noise reduction structure disposed on at least a portion of the perforated skin of the inlet lip, the honeycomb structure being of the kind having a plurality of channels for circulating hot air diffused by the piccolo tube, characterized in that the piccolo tube (43) has an annular profile integrated with a limiting partition (37) of the interior volume of the front lip (36) and is provided with a plurality of perforations for effecting the diffusion of hot air supplied by one or more conduits (40) from the furnace through said limiting partition. (37) and in that the honeycomb structure (44) is at least partially disposed between a portion of the piccolo tube (43) and a portion (45) facing the inner face of the front lip limiting skin ( 36). 2. Dispositif de dégivrage selon la revendication 1, caractérisé en ce que le profil du tube piccolo (43) est déterminé en fonction de la forme de la 20 lèvre avant (36) et/ou de la cloison de limitation (37) de façon à optimiser l'efficacité du dégivrage.2. De-icing device according to claim 1, characterized in that the profile of the piccolo tube (43) is determined as a function of the shape of the front lip (36) and / or the limiting partition (37) so optimize the efficiency of defrosting. 3. Dispositif de dégivrage selon la revendication 1 ou 2, caractérisé en ce que une partie en regard du tube piccolo (43) sert de peau de limitation de la structure alvéolaire de réduction de bruit (44). 253. Defrosting device according to claim 1 or 2, characterized in that a portion facing the piccolo tube (43) serves as a limiting skin of the alveolar noise reduction structure (44). 25 4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube piccolo (43) est alimenté en air chaud de dégivrage par au moins un conduit d'air chaud (44) connecté à travers une ouverture (46) de la cloison de limitation (36) au générateur d'air chaud de dégivrage. 304. Device according to any one of the preceding claims, characterized in that the piccolo tube (43) is supplied with defrost hot air by at least one hot air duct (44) connected through an opening (46) of the limiting partition (36) to the defrost hot air generator. 30 5. Dispositif selon la revendication 4, caractérisé en ce que le générateur d'air chaud de dégivrage est disposé dans une zone de la nacelle en arrière d'une cloison intermédiaire (38) en arrière de la cloison avant (36) sur laquelle est intégré le tube piccolo (43) et en ce que le conduit (40) traverse des ouvertures (36, 42) de ladite cloison avant (37) et de ladite cloison 35 intermédiaire (38).5. Device according to claim 4, characterized in that the defrost hot air generator is disposed in an area of the nacelle behind an intermediate partition (38) behind the front partition (36) on which is integrated the piccolo tube (43) and in that the duct (40) passes through openings (36, 42) of said front partition (37) and said intermediate partition (38). 6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les canaux d'air chaud (71 ; 75, 76; 100-103) pratiqués dans la structure alvéolaire (44) sont réalisés sur une partie au moins de la hauteur des alvéoles et débouchent sur un collecteur (50; 86) disposé du côté 5 de la peau inférieure (45) de la lèvre avant (36) et à l'arrière de la structure alvéolaire (43) et qui est connecté par au moins un tube de sortie (51 ; 87) débouchant sur une ouverture de la face supérieure de la lèvre avant et en ce que les canaux sont disposés dans des zones de la structure alvéolaire qui ne sont pas munies de perforations acoustiques, mais dégagent des points 10 d'injection (80) d'air de dégivrage sur la peau supérieure de la structure alvéolaire (43).6. Device according to one of the preceding claims, characterized in that the hot air ducts (71; 75; 76; 100-103) formed in the honeycomb structure (44) are formed on at least a part of the height. cells and open on a collector (50; 86) disposed on the side 5 of the lower skin (45) of the front lip (36) and behind the honeycomb structure (43) and which is connected by at least one outlet tube (51; 87) opening to an opening of the upper face of the front lip and in that the channels are arranged in areas of the honeycomb structure which are not provided with acoustic perforations, but emit dots 10 d injecting (80) defrosting air onto the upper skin of the honeycomb structure (43). 7. Procédé de fabrication d'un dispositif de dégivrage pour section d'entrée d'air d'une nacelle de moteur d'aéronef, caractérisé en ce qu'il consiste au moins à former une lèvre avant annulaire (36) dotée de 15 perforations acoustiques, à disposer une structure alvéolaire de réduction de bruit (44) dotée de canaux de circulation de l'air chaud de dégivrage débouchant dans un collecteur d'air chaud (50; 87), à former un tube piccolo annulaire (43), percé de perforations de diffusion de l'air chaud de dégivrage fourni par un conduit d'air chaud (40) provenant d'un générateur d'air chaud de 20 dégivrage, le tube piccolo (43) présentant un profil adapté à la forme de la lèvre avant (36) et à la face supérieure de ladite structure alvéolaire (44), à fixer le tube piccolo (43) par son bord inférieur (57) à la face inférieure en regard de la lèvre avant (36), à former une cloison avant (37) pour fermer le volume intérieur de la lèvre avant (36) et partant du tube piccolo (43) et à la fixer d'une 25 part par ses bords supérieur et inférieur par rivetage (58, 60) à la face en regard de la lèvre avant (36), et d'autre part aux bords adaptés (59, 60) en regard du tube piccolo (43).7. A method of manufacturing a de-icing device for an air intake section of an aircraft engine nacelle, characterized in that it consists at least of forming an annular front lip (36) with 15 acoustic perforations, having a honeycomb noise reduction structure (44) provided with hot defrost air circulation channels opening into a hot air collector (50; 87), forming an annular piccolo tube (43) , pierced with diffusion perforations of the hot defrosting air provided by a hot air duct (40) from a defrosting hot air generator, the piccolo tube (43) having a profile adapted to the shape of the front lip (36) and to the upper face of said honeycomb structure (44), to fix the piccolo tube (43) by its lower edge (57) to the lower face opposite the front lip (36), to forming a front partition (37) to close the interior volume of the front lip (36) and thereby of the piccolo tube (43) and to fix it on the one hand by its upper and lower edges by riveting (58, 60) to the opposite face of the front lip (36), and on the other hand to the adapted edges ( 59, 60) facing the piccolo tube (43). 8. Procédé de fabrication selon la revendication précédente, caractérisé en ce qu'il consiste à former les canaux de circulation d'air de 30 dégivrage (71 ; 75; 100) et/ou le collecteur (50; 86) d'air chaud excédentaire dans lequel les canaux débouchent dans la structure alvéolaire (44) par usinage au moins partiel de groupes d'alvéoles (77) ou encore par collage partiel (106, 111) des feuilles (109, 110) empilées de réalisation des alvéoles de façon à, par expansion (112) de l'empilement de feuilles (109, 110), réaliser 35 au moins un canal (100) de circulation d'air chaud de dégivrage de largeur déterminée et/ou le collecteur (86) d'air chaud excédentaire.8. Manufacturing process according to the preceding claim, characterized in that it consists in forming the defrost air circulation channels (71; 75; 100) and / or the collector (50; 86) of hot air in which the channels open into the honeycomb structure (44) by at least partial machining of groups of cells (77) or by partial gluing (106, 111) of the stacked sheets (109, 110) of the cells by expanding (112) the stack of sheets (109, 110), providing at least one defrost hot air flow channel (100) of determined width and / or the air collector (86). excess heat. 9. Nacelle de moteur d'aéronef caractérisée en ce qu'elle comporte un dispositif de dégivrage pour sa section d'entrée d'air fabriqué selon le procédé des revendications 7 ou 8, et selon l'une des revendications 1 à 6.9. Aircraft engine nacelle characterized in that it comprises a de-icing device for its air intake section manufactured according to the method of claims 7 or 8, and according to one of claims 1 to 6.
FR1361221A 2013-11-15 2013-11-15 AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE Active FR3013329B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1361221A FR3013329B1 (en) 2013-11-15 2013-11-15 AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE
EP14809931.0A EP3068692B1 (en) 2013-11-15 2014-11-14 De-icing device for an air intake of nacelle of an aircraft engine, method of making such a de-icing device and nacelle of aircraft engine equipped with such a de-icing device
CN201480062173.4A CN105764794B (en) 2013-11-15 2014-11-14 The deicer and its manufacture method of aircraft engine nacelle entrance, and aircraft engine nacelle
PCT/FR2014/052914 WO2015071609A1 (en) 2013-11-15 2014-11-14 Device for de-icing the inlet of a nacelle of an aircraft engine, method for producing such a de-icing device, and aircraft engine nacelle provided with such a de-icing device
US15/153,172 US10532820B2 (en) 2013-11-15 2016-05-12 Device for de-icing the inlet of a nacelle of an aircraft engine, method for producing such a de-icing device, and aircraft engine nacelle provided with such a de-icing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1361221A FR3013329B1 (en) 2013-11-15 2013-11-15 AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE

Publications (2)

Publication Number Publication Date
FR3013329A1 true FR3013329A1 (en) 2015-05-22
FR3013329B1 FR3013329B1 (en) 2017-08-11

Family

ID=50102000

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1361221A Active FR3013329B1 (en) 2013-11-15 2013-11-15 AIRCRAFT AIR ENTRY DEFROSTING DEVICE OF AN AIRCRAFT ENGINE, METHOD OF MANUFACTURING SUCH A DEFROSTING DEVICE, AND AIRCRAFT ENGINE NACELLE EQUIPPED WITH SUCH A DEFROSTING DEVICE

Country Status (5)

Country Link
US (1) US10532820B2 (en)
EP (1) EP3068692B1 (en)
CN (1) CN105764794B (en)
FR (1) FR3013329B1 (en)
WO (1) WO2015071609A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762146B (en) * 2016-12-19 2018-05-15 北京航空航天大学 A kind of hot air anti-icing structure of engine guide vane
US10569888B2 (en) * 2016-12-20 2020-02-25 Airbus Operations Gmbh Leading edge ice-protection system
FR3060650B1 (en) 2016-12-20 2019-05-31 Airbus Operations AIR INTAKE STRUCTURE FOR AN AIRCRAFT NACELLE
IT201700067602A1 (en) * 2017-06-19 2018-12-19 Leonardo Spa AIR INTAKE FOR ENGINE GONDOLA FOR A AIRCRAFT AND ITS PROCEDURE FOR THE REALIZATION.
FR3074776B1 (en) 2017-12-13 2020-02-28 Safran Nacelles NACELLE AIR INTAKE LIP FOR TURBOJET
FR3077800B1 (en) * 2018-02-12 2020-09-25 Safran Nacelles DEFROSTING AND ACOUSTIC TREATMENT DEVICE FOR AN AIR INLET LIP OF A TURBOREACTOR NACELLE
FR3078107B1 (en) * 2018-02-19 2020-07-31 Safran Aircraft Engines TURBOMACHINE NACELLE WITH ACOUSTICALLY POROUS WALLS
US20200011245A1 (en) * 2018-07-05 2020-01-09 Rohr, Inc. Segregated anti-ice duct chamber
FR3085437B1 (en) * 2018-09-05 2020-11-20 Airbus Operations Sas AIR INTAKE STRUCTURE OF AN AIRCRAFT NACELLE
US11084600B2 (en) 2018-10-03 2021-08-10 Rohr, Inc. Nacelle inlet with reinforcement structure
EP3632791B1 (en) * 2018-10-03 2022-04-20 Rohr, Inc. Nacelle inlet with reinforcement structure
FR3089252B1 (en) 2018-12-04 2022-06-24 Safran Nacelles Device and method for de-icing an air inlet of a nacelle of an aircraft turbojet engine
CN110422311B (en) * 2019-07-25 2024-03-19 南京航空航天大学 Stratospheric airship equipment compartment temperature control system
FR3100842A1 (en) * 2019-09-12 2021-03-19 Airbus Operations Air inlet, nacelle, propulsion assembly and grooved lip aircraft
US11577843B2 (en) * 2019-11-05 2023-02-14 Rohr, Inc. Thermal anti-icing system with non-circular piccolo tube
FR3103520B1 (en) 2019-11-27 2022-07-29 Safran Nacelles Air inlet and method for deicing an air inlet of a nacelle of an aircraft turbojet engine
US11326519B2 (en) * 2020-02-25 2022-05-10 General Electric Company Frame for a heat engine
US11808161B2 (en) 2022-04-11 2023-11-07 General Electric Company Flow control mechanism for nacelle of turbofan engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0376371A2 (en) * 1988-12-30 1990-07-04 The Boeing Company Thermal anti-icing system for aircraft
US5088277A (en) * 1988-10-03 1992-02-18 General Electric Company Aircraft engine inlet cowl anti-icing system
EP1318283A1 (en) * 2001-12-06 2003-06-11 Hurel-Hispano De-icing device for aircraft outer skin
US20110133025A1 (en) * 2008-07-30 2011-06-09 Aircelle Acoustic attenuation panel for aircraft for engine nacelle
EP2607655A2 (en) * 2011-12-20 2013-06-26 Rolls-Royce plc Intake liner for a gas turbine engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088227A (en) 1991-01-28 1992-02-18 Toner Jeffrey T Simulated frog fishing lure
US6267328B1 (en) * 1999-10-21 2001-07-31 Rohr, Inc. Hot air injection for swirling rotational anti-icing system
US6354538B1 (en) * 1999-10-25 2002-03-12 Rohr, Inc. Passive control of hot air injection for swirling rotational type anti-icing system
FR2912781B1 (en) 2007-02-20 2009-04-10 Airbus France Sas COATING FOR ACOUSTIC TREATMENT INCORPORATING THE FUNCTION OF TREATING FROST WITH HOT AIR
FR2981049B1 (en) 2011-10-07 2014-04-11 Aircelle Sa METHOD FOR MANUFACTURING AN ACOUSTIC ABSORPTION PANEL
ITTO20121152A1 (en) * 2012-12-27 2014-06-28 Alenia Aermacchi Spa MOTOR GONDOLA FOR AN AIRCRAFT, EQUIPPED WITH AN INTEGRATED PROTECTION SYSTEM FOR ANTI-ICE AND ACOUSTIC ABSORPTION.
US10486821B2 (en) * 2015-07-07 2019-11-26 The Boeing Company Jet engine anti-icing and noise-attenuating air inlets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088277A (en) * 1988-10-03 1992-02-18 General Electric Company Aircraft engine inlet cowl anti-icing system
EP0376371A2 (en) * 1988-12-30 1990-07-04 The Boeing Company Thermal anti-icing system for aircraft
EP1318283A1 (en) * 2001-12-06 2003-06-11 Hurel-Hispano De-icing device for aircraft outer skin
US20110133025A1 (en) * 2008-07-30 2011-06-09 Aircelle Acoustic attenuation panel for aircraft for engine nacelle
EP2607655A2 (en) * 2011-12-20 2013-06-26 Rolls-Royce plc Intake liner for a gas turbine engine

Also Published As

Publication number Publication date
CN105764794A (en) 2016-07-13
US10532820B2 (en) 2020-01-14
FR3013329B1 (en) 2017-08-11
EP3068692B1 (en) 2017-03-01
EP3068692A1 (en) 2016-09-21
CN105764794B (en) 2018-03-13
US20160257418A1 (en) 2016-09-08
WO2015071609A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
EP3068692B1 (en) De-icing device for an air intake of nacelle of an aircraft engine, method of making such a de-icing device and nacelle of aircraft engine equipped with such a de-icing device
CA2371335C (en) Procedure for de-icing a jet engine air inlet cowl and device for applying the said procedure
EP2152583B1 (en) Coating for acoustic treatment including a hot-air de-icing function
CA2371326C (en) Procedure for de-icing a jet engine air inlet cowl by means of forced circulation of a fluid, and device for applying the said procedure
CA2621195C (en) Turbofan provided with a pre-cooler
EP0032646B1 (en) Turbine guide vane
EP2763892B1 (en) Method of manufacturing a sound absorbing panel
EP2580121B1 (en) Turbojet engine nacelle
FR2697495A1 (en) Aircraft turbine engine nacelle arrangement with laminar flow control.
EP3519679B1 (en) Turbine blade comprising a cooling channel
EP2537754B1 (en) Method for producing an acoustic treatment panel including channels adjacent to a cellular structure
FR2912781A1 (en) Acoustic covering i.e. acoustic panel, for aircraft, has cellular structure with orifices arranged at walls of duct to allow duct to communicate with adjacent duct to create network of communicating ducts isolating non communicating ducts
EP3529463B1 (en) Turbine engine blade with optimised cooling
WO2016005711A1 (en) Front lip of a turbofan engine nacelle comprising hot-air bores upstream from acoustic panels
BE1014570A4 (en) Method of manufacturing a structure and structure obtained fluted thereby.
FR2890696A1 (en) TURBOMOTEUR WITH ATTENUATED JET NOISE
EP3319875A1 (en) System for dual management of anti-icing and boundary layer suction on an aerofoil of an aircraft, including a function of collecting the anti-icing air
EP3959138A1 (en) Nacelle air intake and nacelle comprising such an air intake
EP3921528A1 (en) Air intake of an aircraft turbojet engine nacelle comprising ventilation orifices for a de-icing flow of hot air
EP3921527A1 (en) Air intake of an aircraft turbojet engine nacelle comprising ventilation orifices for a de-icing flow of hot air
EP3724076B1 (en) Air inflow lip for turbojet nacelle
FR3032943A1 (en) NACELLE FOR A DOUBLE FLOW AIRCRAFT AIRCRAFT

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

CD Change of name or company name

Owner name: SAFRAN NACELLES, FR

Effective date: 20180125

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10