FR2990209A1 - FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN - Google Patents

FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN Download PDF

Info

Publication number
FR2990209A1
FR2990209A1 FR1254074A FR1254074A FR2990209A1 FR 2990209 A1 FR2990209 A1 FR 2990209A1 FR 1254074 A FR1254074 A FR 1254074A FR 1254074 A FR1254074 A FR 1254074A FR 2990209 A1 FR2990209 A1 FR 2990209A1
Authority
FR
France
Prior art keywords
foam
composition
starch
polyolefin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1254074A
Other languages
French (fr)
Other versions
FR2990209B1 (en
Inventor
Jean Luc Monnet
Roger Lefebvre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Priority to FR1254074A priority Critical patent/FR2990209B1/en
Priority to EP13723895.2A priority patent/EP2844689A1/en
Priority to PCT/FR2013/050972 priority patent/WO2013164547A1/en
Publication of FR2990209A1 publication Critical patent/FR2990209A1/en
Application granted granted Critical
Publication of FR2990209B1 publication Critical patent/FR2990209B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment

Abstract

L'invention a pour objet une mousse présentant une densité inférieure à 300 kg/m obtenue à partir d'une composition comprenant : . une polyoléfine choisie parmi le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges ; . au moins une polyoléfine fonctionnalisée comprenant de 0,1 à 10 % en masse d'au moins un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement l'anhydride maléique ou le méthacrylate de glycidyle ; . de 2 à 40% en masse d'amidon par rapport au poids total de la composition ; . de 2 à 40% d'au moins un plastifiant de cet amidon par rapport au poids total de la composition. L'invention porte également sur un procédé de fabrication et les utilisations de ladite mousse.The subject of the invention is a foam having a density of less than 300 kg / m obtained from a composition comprising: a polyolefin selected from the group consisting of polyethylene and polypropylene and mixtures thereof; . at least one functionalized polyolefin comprising from 0.1 to 10% by weight of at least one functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes, preferentially maleic anhydride or glycidyl methacrylate; . from 2 to 40% by weight of starch relative to the total weight of the composition; . from 2 to 40% of at least one plasticizer of this starch relative to the total weight of the composition. The invention also relates to a method of manufacture and uses of said foam.

Description

Domaine de l'invention La présente invention concerne des mousses à base d'amidon thermoplastique et de polyoléfines, un procédé de préparation 5 de ces mousses et leurs utilisations. Etat de la technique Les mousses de polyoléfines sont utilisées dans de nombreux 10 domaines, tels que les domaines de l'emballage, du bâtiment, de l'automobile, du transport, et du sport. Ces mousses de polyoléfines, telles que celles comprenant du polyéthylène ou du polypropylène, présentent généralement l'avantage d'être peu coûteuses. 15 De manière schématique, les mousses sont fabriquées par un procédé de moussage dans lequel on fait fondre une polyoléfine dans un réacteur en présence d'un agent de moussage. Pendant le procédé, des bulles de gaz sont créées dans le polymère en fusion, ce qui va conduire à la formation d'une mousse lors du 20 refroidissement du polymère. La structure de la mousse va dépendre du polymère utilisé, de l'appareil de mise en oeuvre et des conditions du procédé utilisées, en particulier de l'agent de moussage sélectionné. Ce dernier peut être un agent de moussage chimique, qui va 25 dégager un gaz par décomposition thermique, ou un agent de moussage physique qui est un gaz ou un liquide formant un gaz lors de l'évaporation de l'agent. Les propriétés de ces mousses peuvent varier selon différents facteurs. Le facteur principal est la structure de la mousse, 30 en particulier sa densité et le diamètre moyen des cellules de la mousse. Les propriétés finales de ces mousses varieront très largement selon la structure obtenue. Ces mousses de polyoléfine présentent de bonnes propriétés mécaniques, une faible absorption d'eau liquide et une 35 perméabilité à la vapeur d'eau limitée. Lorsqu'elles sont de densité faible et que le diamètre des cellules la constituant est également faible, elles présentent également de bonnes propriétés isolantes, phoniquement et thermiquement, ainsi que de bonnes propriétés amortissantes aux chocs et aux vibrations. Elles ont également une très bonne flottabilité. Field of the Invention The present invention relates to thermoplastic starch and polyolefin based foams, a process for preparing these foams and their uses. State of the art Polyolefin foams are used in many fields, such as the fields of packaging, building, automotive, transportation, and sports. These polyolefin foams, such as those comprising polyethylene or polypropylene, generally have the advantage of being inexpensive. Schematically, the foams are made by a foaming process in which a polyolefin is melted in a reactor in the presence of a foaming agent. During the process, gas bubbles are created in the molten polymer, which will lead to foam formation upon cooling of the polymer. The structure of the foam will depend on the polymer used, the processing apparatus and the process conditions used, in particular the selected foaming agent. The latter may be a chemical foaming agent, which will release a gas by thermal decomposition, or a physical foaming agent which is a gas or a liquid forming a gas upon evaporation of the agent. The properties of these foams may vary depending on different factors. The main factor is the structure of the foam, especially its density and the average cell diameter of the foam. The final properties of these foams will vary widely depending on the structure obtained. These polyolefin foams have good mechanical properties, low liquid water absorption and limited water vapor permeability. When they are of low density and the diameter of the cells constituting it is also small, they also have good insulating properties, phonically and thermally, as well as good damping properties to shock and vibration. They also have a very good buoyancy.

Toutefois, ces mousses ont une résistance au feu insuffisante pour de nombreuses applications. Or, les composés ignifuges classiquement utilisés présentent l'inconvénient de dégrader fortement les propriétés de la composition, ce qui l'empêche d'être transformée dans des procédés de moussage standard, ceci en particulier lorsque ce procédé de moussage comprend une injection d'un gaz de moussage ou d'un liquide apte à former un gaz de moussage. On peut citer à cet égard le document EP 2085421 Al qui décrit des mousses de polyoléfines ignifugées améliorées. Cette mousse est réalisée à partir d'une composition comprenant des quantités d'additif ignifugeant assez faibles, ce qui permet de réaliser des mousses présentant des propriétés mécaniques satisfaisantes. Cependant, outre le fait que cette solution a l'inconvénient d'utiliser des nanotubes de carbone dont le coût est très élevé, le phosphore rouge utilisé a le défaut d'être naturellement très inflammable, du moins avant qu'il soit dilué dans la composition de polyoléfine ignifugée. De plus, bien que le caractère inflammable de la mousse soit amélioré, elle présente l'inconvénient de dégager des gaz toxiques et/ou corrosifs lors de sa combustion. Un autre problème des mousses de polyoléfine est que, lors de leur procédé de fabrication, la polyoléfine est mise à l'état 30 fondu en présence d'un gaz afin de former les cellules de la mousse. On souhaite généralement que le gaz compris dans ces cellules soit évacué avant de pouvoir utiliser les mousses formées, en particulier lorsque le gaz utilisé est un alcane tel que 35 l'isobutane. Il est alors nécessaire que la mousse soit entreposée avant utilisation pendant un temps de dégazage. Ceci est particulièrement vrai pour les mousses présentant une faible densité, par exemple inférieure ou égale à 300 kg/m3, puisque la mousse qu'il faudra dégazer comprend généralement de nombreuses cellules. De plus, pendant cette période de dégazage, les mousses présentent un risque d'inflammabilité élevé. However, these foams have insufficient fire resistance for many applications. However, the flame retardant compounds conventionally used have the disadvantage of severely degrading the properties of the composition, which prevents it from being converted into standard foaming processes, in particular when this foaming process comprises an injection of a foaming gas or a liquid capable of forming a foaming gas. In this respect, mention may be made of EP 2085421 A1, which describes improved flame retarded polyolefin foams. This foam is made from a composition comprising relatively low amounts of flame retardant additive, which makes it possible to produce foams having satisfactory mechanical properties. However, in addition to the fact that this solution has the disadvantage of using carbon nanotubes whose cost is very high, the red phosphorus used has the defect of being naturally highly flammable, at least before it is diluted in water. flame retardant polyolefin composition. In addition, although the flammability of the foam is improved, it has the disadvantage of releasing toxic and / or corrosive gases during combustion. Another problem with polyolefin foams is that, during their manufacturing process, the polyolefin is melt in the presence of a gas to form the cells of the foam. It is generally desired that the gas in these cells be removed before the formed foams can be used, particularly when the gas used is an alkane such as isobutane. It is then necessary that the foam is stored before use during a degassing time. This is particularly true for foams having a low density, for example less than or equal to 300 kg / m3, since the foam that will have to be degassed generally comprises many cells. In addition, during this period of degassing, the foams have a high risk of flammability.

Un autre inconvénient de ces mousses est que les polyoléfines les constituant sont souvent obtenues à partir de monomères obtenus de ressources fossiles. Pour développer de nouvelles mousses à partir de ressources renouvelables, des mousses réalisées à partir d'amidon thermoplastique ont été proposées. Cependant, il est connu que ces mousses présentent une résilience importante, c'est-à-dire que les propriétés de la mousse se dégradent au cours du temps, ce qui est rédhibitoire pour de nombreuses applications. il a déjà également été proposé de fabriquer des mousses à base d'amidon thermoplastique et de polyoléfine, comme par exemple dans le document EP2374846 Al. Bien que les propriétés mécaniques des mousses décrites dans ce document soient améliorées par rapport aux mousses constituées d'amidon thermoplastique, elles restent cependant encore très faibles. La Demanderesse a pu fabriquer une mousse comprenant de la matière d'origine végétale, ce qui permet de limiter ainsi l'utilisation de ressources fossiles. Another disadvantage of these foams is that the polyolefins constituting them are often obtained from monomers obtained from fossil resources. To develop new foams from renewable resources, foams made from thermoplastic starch have been proposed. However, it is known that these foams have a high resilience, that is to say that the properties of the foam are degraded over time, which is unacceptable for many applications. it has also already been proposed to manufacture thermoplastic starch and polyolefin foams, as for example in EP2374846 A1. Although the mechanical properties of the foams described in this document are improved compared to foams made of starch thermoplastic, they remain however very weak. The Applicant has been able to manufacture a foam comprising material of plant origin, which thus limits the use of fossil resources.

Cette mousse est réalisée à base d'une composition comprenant notamment de l'amidon thermoplastique et des polyoléfines. Elle présente de bonnes propriétés de résistance au feu, ceci tout en conservant les excellentes propriétés des mousses de polyoléfines. En particulier, malgré la présence d'amidon thermoplastique dans la composition, ces mousses présentent d'excellentes propriétés mécaniques. Sans être liée à une quelconque théorie, la Demanderesse explique ces meilleures propriétés par le choix de la composition particulière constituant la mousse, et en 35 particulier des polyoléfines sélectionnées. Elle a pu former, à l'aide de cette composition, une mousse qui présente une faible densité, tout en parvenant à conserver une distribution homogène des tailles de cellules. Il en découle des propriétés améliorées par rapport aux mousses à base d'amidon thermoplastique déjà connues puisque la mousse obtenue présente en outre les avantages déjà décrits des mousses de polyoléfines de faible densité. De plus, le comportement au feu de cette mousse est très bon, ceci même sans utiliser des additifs coûteux tels que les nanotubes de carbone. Par ailleurs, en cas de combustion de la mousse lors d'un incendie, cette mousse présente l'avantage de dégager de faibles quantités de gaz corrosifs ou toxiques. Un autre avantage est que cette mousse peut présenter une faible couleur. Elle est facilement colorable par les colorants classiquement utilisés dans le domaine des mousses polyoléfine. Cette mousse a pu être fabriquée par un procédé particulier, qui possède en outre l'avantage de pouvoir dégager peu d'odeur et de fumées. La Demanderesse a également pu constater que le temps de dégazage est diminué par rapport aux procédés équivalents utilisant exclusivement des polyoléfines, ce qui permet avantageusement de réduire le processus de production de mousses. Cela permet également de diminuer considérablement la période de temps pendant laquelle les mousses présentent un risque d'inflammabilité élevé. Résumé de l'invention L'invention a ainsi pour objet une mousse obtenue à partir d'une composition comprenant, par rapport au poids total de la composition : - une polyoléfine choisie parmi le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges ; - au moins une polyoléfine fonctionnalisée comprenant de 0,1 à 10 % en masse d'au moins un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement l'anhydride maléique ou le méthacrylate de glycidyle - de 2 à 40% en masse d'amidon ; - de 2 à 40% d'au moins un plastifiant de cet amidon ; ladite mousse présentant une densité inférieure à 300 kg/m?. La Demanderesse a constaté que cette mousse selon l'invention présente des propriétés mécaniques très similaires à celles des mousses de polyoléfine. This foam is made based on a composition comprising in particular thermoplastic starch and polyolefins. It has good fire resistance properties, while retaining the excellent properties of polyolefin foams. In particular, despite the presence of thermoplastic starch in the composition, these foams have excellent mechanical properties. Without being bound to any theory, the Applicant explains these best properties by the choice of the particular composition constituting the foam, and in particular selected polyolefins. It was able to form, using this composition, a foam which has a low density, while managing to maintain a uniform distribution of cell sizes. This results in improved properties compared to thermoplastic starch-based foams already known since the foam obtained also has the advantages already described of low density polyolefin foams. In addition, the fire behavior of this foam is very good, even without using expensive additives such as carbon nanotubes. Moreover, in case of combustion of the foam during a fire, this foam has the advantage of releasing small amounts of corrosive or toxic gases. Another advantage is that this foam may have a low color. It is easily dyeable by dyes conventionally used in the field of polyolefin foams. This foam could be made by a particular process, which also has the advantage of being able to release little odor and smoke. The Applicant has also been able to observe that the degassing time is decreased compared to equivalent processes using exclusively polyolefins, which advantageously makes it possible to reduce the process of producing foams. This also considerably reduces the time period during which foams have a high flammability risk. SUMMARY OF THE INVENTION The subject of the invention is thus a foam obtained from a composition comprising, relative to the total weight of the composition: a polyolefin chosen from the group comprising polyethylene and polypropylene and their mixtures; at least one functionalized polyolefin comprising from 0.1 to 10% by weight of at least one functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes, preferentially maleic anhydride or glycidyl methacrylate - from 2 to 40% by weight of starch; from 2 to 40% of at least one plasticizer of this starch; said foam having a density of less than 300 kg / m 2. The Applicant has found that this foam according to the invention has mechanical properties very similar to those of polyolefin foams.

De plus, contrairement à ce qui est décrit dans le document EP2374846 Al, la composition utilisée conformément à l'invention comprend une polyoléfine comprenant de 0,1 à 10 % en masse d'au moins un monomère fonctionnel choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement l'anhydride maléique ou le méthacrylate de glycidyle. Ces polyoléfines fonctionnelles peuvent présenter un coût relativement faible et la composition utile à l'invention présente de bonnes stabilités thermique et à la lumière, contrairement à une composition similaire qui comprendrait d'autres polyoléfines fonctionnelles, telles que les copolymères éthylène-acide acrylique ou éthylène-acétate de vinyle. En effet, ces derniers présentent différents inconvénients. Ces copolymères présentent un mauvais comportement au feu, qui se traduit par une très grande inflammabilité et le dégagement de gaz corrosifs en cas d'incendie tels que l'acide acétique. De plus, ces copolymères présentent une faible cristallinité et une faible température de transition vitreuse, conduisant à des propriétés mécaniques dégradées dès que la température d'utilisation du matériau augmente. Un autre inconvénient de ces copolymères est que leur stabilité thermique est très mauvaise, ce qui conduit à des réactions de dégradation lors de leur mise en forme. De plus, ces copolymères présentent une forte adhésion sur les métaux, qui peut poser des problèmes lors de la mise en oeuvre du procédé. In addition, contrary to what is described in document EP2374846 A1, the composition used according to the invention comprises a polyolefin comprising from 0.1 to 10% by weight of at least one functional monomer chosen from acid anhydrides. unsaturated carboxylic acids, unsaturated oxiranes and unsaturated silanes, preferentially maleic anhydride or glycidyl methacrylate. These functional polyolefins may have a relatively low cost and the composition useful for the invention has good thermal and light stabilities, unlike a similar composition which would include other functional polyolefins, such as ethylene-acrylic acid or ethylene copolymers. -vinyl acetate. Indeed, these have different disadvantages. These copolymers exhibit poor fire behavior, which results in a very high flammability and the release of corrosive gases in case of fire such as acetic acid. In addition, these copolymers have a low crystallinity and a low glass transition temperature, leading to degraded mechanical properties as soon as the temperature of use of the material increases. Another disadvantage of these copolymers is that their thermal stability is very poor, which leads to degradation reactions during their shaping. In addition, these copolymers have a strong adhesion to metals, which can cause problems during the implementation of the process.

La mousse selon l'invention présente ainsi des propriétés améliorées et en particulier, d'excellentes propriétés mécaniques, ces propriétés mécaniques étant conservées au cours du temps. The foam according to the invention thus has improved properties and in particular excellent mechanical properties, these mechanical properties being preserved over time.

Malgré la faible densité de la mousse, la mousse selon l'invention peut conserver un diamètre de cellules très faible. La Demanderesse a pu observer que ce diamètre de cellule restait faible même en présence de quantités importantes en amidon thermoplastique par exemple supérieures ou égales à 15%, voire atteignant 30% ou plus. Cela permet d'obtenir des propriétés mécaniques, isolantes et amortissantes bien supérieures aux mousses de l'art antérieur. Sans être liée à une quelconque théorie, la Demanderesse explique cette amélioration par le choix de la composition utile à l'invention, et tout particulièrement la sélection de la polyoléfine fonctionnelle ou fonctionnalisée La mousse selon l'invention a pu être fabriquée en utilisant un procédé particulier utilisant un agent de moussage physique. Despite the low density of the foam, the foam according to the invention can maintain a very small cell diameter. The Applicant has observed that this cell diameter remained low even in the presence of significant amounts of thermoplastic starch, for example greater than or equal to 15%, or even up to 30% or more. This makes it possible to obtain mechanical, insulating and damping properties that are much greater than the foams of the prior art. Without being bound to any theory, the Applicant explains this improvement by the choice of the composition that is useful for the invention, and more particularly the selection of the functional or functionalized polyolefin. The foam according to the invention could be manufactured using a process. particular using a physical foaming agent.

Un autre objet de l'invention porte ainsi sur un procédé de fabrication d'une mousse selon l'invention comprenant les étapes suivantes : a. introduction de la composition ou des constituants de la composition dans une extrudeuse ; b. chauffage et mélangeage pour fondre la composition et l'homogénéiser ; c. injection d'un gaz de moussage ou d'un liquide apte à former un gaz de moussage dans l'extrudeuse ; d. homogénéisation du mélange de la composition et du gaz de 30 moussage e. refroidissement partiel du mélange et homogénéisation ; f. extrusion à travers une filière de ce mélange provoquant la formation de la mousse en sortie de filière. Comme expliqué précédemment, la mousse ainsi formée présente 35 d'excellentes propriétés. Another object of the invention thus relates to a method of manufacturing a foam according to the invention comprising the following steps: a. introducing the composition or constituents of the composition into an extruder; b. heating and mixing to melt the composition and homogenize it; vs. injecting a foaming gas or a liquid capable of forming a foaming gas in the extruder; d. homogenizing the mixture of the composition and the foaming gas e. partial cooling of the mixture and homogenization; f. extrusion through a die of this mixture causing the formation of the foam at the die outlet. As previously explained, the foam thus formed has excellent properties.

Un autre avantage de ce procédé est que la mousse est préparée à partir d'un procédé n'utilisant pas d'agents gonflants chimiques, qui sont des produits très coûteux. Un autre inconvénient des procédés utilisant des agents 5 gonflants chimiques est qu'il est nécessaire lors du procédé de fabrication de la mousse que la température de la composition dépasse la température de dégradation de l'agent solide. Or, cette température de dégradation peut être assez élevée, ce qui peut conduire à une dégradation de l'amidon thermoplastique 10 compris dans la composition. Dans le cas où on diminue la température lors du procédé afin de ne pas dégrader l'amidon, l'agent ne se transforme pas et la formation de la mousse ne se fait pas. 15 L'invention va maintenant être décrite en détail dans la description qui suit. Description détaillée de l'invention 20 La mousse selon l'invention est réalisée à base d'une composition comprenant - une polyoléfine choisie parmi le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges ; 25 - au moins une polyoléfine fonctionnalisée comprenant de 0,1 à 10 % en masse d'au moins un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement 30 l'anhydride maléique ou le méthacrylate de glycidyle - de l'amidon ; - et au moins un plastifiant de cet amidon. 35 La polyoléfine utile à la fabrication de la composition utilisée conformément à l'invention est choisie dans le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges. Selon l'invention, cette polyoléfine est une « polyoléfine non fonctionnalisée », c'est-à-dire qu'elle ne comprend pas de monomère fonctionnel. Another advantage of this process is that the foam is prepared from a process which does not use chemical blowing agents, which are very expensive products. Another disadvantage of processes using chemical blowing agents is that it is necessary during the foam manufacturing process that the temperature of the composition exceeds the degradation temperature of the solid agent. However, this degradation temperature can be quite high, which can lead to degradation of the thermoplastic starch included in the composition. In the case where the temperature is lowered during the process so as not to degrade the starch, the agent does not change and the formation of the foam is not done. The invention will now be described in detail in the description which follows. DETAILED DESCRIPTION OF THE INVENTION The foam according to the invention is based on a composition comprising: a polyolefin selected from the group comprising polyethylene and polypropylene and mixtures thereof; At least one functionalized polyolefin comprising from 0.1 to 10% by weight of at least one functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes, preferentially anhydride; maleic or glycidyl methacrylate - starch; and at least one plasticizer of this starch. The polyolefin useful in the manufacture of the composition used according to the invention is selected from the group consisting of polyethylene and polypropylene and mixtures thereof. According to the invention, this polyolefin is a "non-functionalized polyolefin", that is to say that it does not comprise any functional monomer.

Le polyéthylène peut être linéaire ou ramifié. Le polyéthylène peut être un polyéthylène obtenu par polymérisation radicalaire ou obtenu par voie catalytique. A titre d'exemple de polyéthylène obtenu par voie catalytique, on peut citer les polyéthylènes obtenus par catalyse Ziegler Natta, en particulier catalyse métallocène. Ce polyéthylène peut être un homopolymère d'éthylène ou un copolymère d'éthylène et d'une autre alpha-oléfine, cette dernière pouvant être choisie parmi le propylène, le 1-butène, le 1-hexène, le 1-octène et le 1- décène. Lorsque le polyéthylène est un copolymère, il comprend au moins 50% en moles d'éthylène. Avantageusement, ce polyéthylène a une densité comprise entre 0,905 et 0,940. Le polypropylène est quant à lui un homopolymère du propylène ou un copolymère du propylène et d'un autre monomère. Lorsque c'est un copolymère, on préfère qu'il comprenne au moins 50% en moles de propylène. De préférence, le polypropylène est un polypropylène branché, notamment choisis parmi les polypropylènes à tenue en fondu élevée, bien connus sous la dénomination anglaise High Melt Strength PolyPropylène (HMS-PP). Ils sont généralement produits par irradiation ou par extrusion réactive du polypropylène obtenu après l'étape de polymérisation. Ces polypropylènes peuvent être des produits de la gamme DAPLOY® fabriqués par Borealis2 ou des produits de la gamme PROFAX® fabriqués par Lyondell-Basell®. Selon l'invention, l'expression « lorsqu'un polymère comprend un monomère », signifie que le polymère comprend un motif susceptible d'être obtenu par polymérisation ou greffage de ce monomère. Il est également précisé que lorsqu'un polymère comprend un monomère, cela signifie qu'il comprend au moins un monomère de cette nature chimique. A titre d'exemple, lorsqu'un polymère comprend de l'anhydride maléique, cela signifie que le polymère comprend au moins un motif susceptible d'être obtenu par polymérisation ou greffage d'anhydride maléique. The polyethylene may be linear or branched. The polyethylene may be a polyethylene obtained by radical polymerization or obtained catalytically. By way of example of polyethylene obtained catalytically, mention may be made of polyethylenes obtained by Ziegler Natta catalysis, in particular metallocene catalysis. This polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and another alpha-olefin, the latter being selected from propylene, 1-butene, 1-hexene, 1-octene and 1-hexene. - decene. When the polyethylene is a copolymer, it comprises at least 50 mol% of ethylene. Advantageously, this polyethylene has a density of between 0.905 and 0.940. Polypropylene is a homopolymer of propylene or a copolymer of propylene and another monomer. When it is a copolymer, it is preferred that it comprises at least 50 mol% of propylene. Preferably, the polypropylene is a branched polypropylene, especially chosen from polypropylenes with high melt resistance, well known under the name High Melt Strength PolyPropylene (HMS-PP). They are generally produced by irradiation or by reactive extrusion of the polypropylene obtained after the polymerization step. These polypropylenes can be products of the DAPLOY® range manufactured by Borealis2 or products of the PROFAX® range manufactured by Lyondell-Basell®. According to the invention, the expression "when a polymer comprises a monomer" means that the polymer comprises a pattern that can be obtained by polymerization or grafting of this monomer. It is also specified that when a polymer comprises a monomer, it means that it comprises at least one monomer of this chemical nature. By way of example, when a polymer comprises maleic anhydride, this means that the polymer comprises at least one unit that can be obtained by polymerization or grafting of maleic anhydride.

La polyoléfine fonctionnalisée utile à l'invention comprend de 0,1 à 10 % en masse d'au moins un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés. La quantité en monomère (X) va avantageusement de 0,2 à 5% en masse de la polyoléfine fonctionnalisée, de préférence de 0,4 à 3%. La quantité en monomère fonctionnel dans la polyoléfine peut être mesurée classiquement par infrarouge. Dans le cas où différents monomères fonctionnels (X) choisis parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés sont compris dans la polyoléfine, la quantité de monomère fonctionnel (X) représente la somme des quantités de monomères fonctionnels (X) compris dans la polyoléfine. The functionalized polyolefin useful in the invention comprises from 0.1 to 10% by weight of at least one functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes. The amount of monomer (X) is preferably from 0.2 to 5% by weight of the functionalized polyolefin, preferably from 0.4 to 3%. The amount of functional monomer in the polyolefin can be measured conventionally by infrared. In the case where different functional monomers (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes are included in the polyolefin, the amount of functional monomer (X) represents the sum of the amounts of functional monomers ( X) included in the polyolefin.

Cette polyoléfine peut comprendre également au moins un monomère fonctionnel additionnel, différent de (X). Ce monomère fonctionnel additionnel peut être choisi parmi les acrylates d'alkyles, les méthacrylates d'alkyle et les diènes. De préférence, la polyoléfine fonctionnalisée ne comprend pas d'ester vinylique, d'acide acrylique et méthacrylique. Selon une variante, le monomère fonctionnel (X) est copolymérisé dans la polyoléfine fonctionnalisée, par exemple en faisant réagir le monomère fonctionnel (X) avec les autres monomères, comme l'éthylène et/ou le propylène, pour former le polymère. La polymérisation peut se faire par voie radicalaire. Le procédé de polymérisation radicalaire peut être réalisé classiquement dans un réacteur autoclave ou tubulaire. La polymérisation par polymérisation en réacteur autoclave ou tubulaire des différents monomères (alpha-oléfine, comonomère comprenant le monomère fonctionnel (X)) est connue de l'homme du métier. This polyolefin may also comprise at least one additional functional monomer, different from (X). This additional functional monomer may be chosen from alkyl acrylates, alkyl methacrylates and dienes. Preferably, the functionalized polyolefin does not include vinyl ester, acrylic acid and methacrylic acid. According to one variant, the functional monomer (X) is copolymerized in the functionalized polyolefin, for example by reacting the functional monomer (X) with the other monomers, such as ethylene and / or propylene, to form the polymer. The polymerization can be done by a radical route. The radical polymerization process can be carried out conventionally in an autoclave or tubular reactor. The polymerization by autoclave or tubular reactor polymerization of the various monomers (alpha-olefin, comonomer comprising the functional monomer (X)) is known to those skilled in the art.

Selon une autre variante avantageuse, le monomère fonctionnel (X) peut être greffé sur un polyéthylène ou un polypropylène pour former la polyoléfine fonctionnelle ou fonctionnalisée. According to another advantageous variant, the functional monomer (X) may be grafted onto a polyethylene or a polypropylene to form the functional or functionalized polyolefin.

Dans ce cas, on réalise généralement cette opération de greffage du monomère fonctionnel en introduisant dans un réacteur le polyéthylène ou le polypropylène, le monomère fonctionnel (X) et un amorceur, ce dernier étant généralement un peroxyde organique. De même, le greffage est une opération connue en soi. La polyoléfine à greffer par le monomère fonctionnel peut être tout polyéthylène ou polypropylène déjà décrit. La polyoléfine fonctionnalisée contenant le monomère fonctionnel (X) est conforme à l'invention si plusieurs 15 monomères fonctionnels différents sont copolymérisés ou/et greffés. On ne sortirait pas du cadre de l'invention si la polyoléfine fonctionnalisée est constitué d'un mélange de polyoléfines fonctionnalisées. 20 La somme des quantités de polyoléfine et de polyoléfine fonctionnalisée va avantageusement de 25 à 95% en masse de la composition, de préférence de 45 à 90%, tout préférentiellement de 55% à 85%. 25 Le ratio massique polyoléfine/polyoléfine fonctionnalisée peut aller de 10/90 à 99/1, avantageusement de 45/55 à 98/2, préférentiellement de 70/30 à 95/5. 30 L'amidon compris dans la composition utilisée conformément à l'invention peut être de tout type. Si l'on souhaite obtenir une mousse de plus bas coût, l'amidon préférentiellement utilisé pour la fabrication de la composition est un amidon granulaire, de préférence un amidon natif. 35 On entend ici par « amidon granulaire », un amidon natif ou modifié physiquement, chimiquement ou par voie enzymatique, ayant conservé, au sein des granules d'amidon, une structure semi-cristalline similaire à celle mise en évidence dans les grains d'amidon présents naturellement dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales, les graines de légumineuses, les tubercules de pomme de terre ou de manioc, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin est essentiellement dû aux macromolécules d'amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon granulaire, placé sous lumière polarisée, présente une croix noire caractéristique, dite croix de Malte, typique de l'état granulaire. In this case, this grafting operation of the functional monomer is generally carried out by introducing into a reactor polyethylene or polypropylene, the functional monomer (X) and an initiator, the latter generally being an organic peroxide. Similarly, grafting is an operation known per se. The polyolefin to be grafted with the functional monomer may be any polyethylene or polypropylene already described. The functionalized polyolefin containing the functional monomer (X) is according to the invention if several different functional monomers are copolymerized and / or grafted. It would not be departing from the scope of the invention if the functionalized polyolefin consists of a mixture of functionalized polyolefins. The sum of the amounts of polyolefin and functionalized polyolefin is preferably from 25 to 95% by weight of the composition, preferably from 45 to 90%, most preferably from 55% to 85%. The functionalized polyolefin / polyolefin mass ratio may range from 10/90 to 99/1, advantageously from 45/55 to 98/2, and preferably from 70/30 to 95/5. The starch included in the composition used according to the invention may be of any type. If it is desired to obtain a foam of lower cost, the starch preferentially used for the manufacture of the composition is a granular starch, preferably a native starch. Here, the term "granular starch" means a starch native or physically modified, chemically or enzymatically, having retained, within the starch granules, a semi-crystalline structure similar to that evidenced in the grains of starch naturally present in reserve organs and tissues of higher plants, particularly in cereal seeds, legume seeds, potato or cassava tubers, roots, bulbs, stems and fruits. This semi-crystalline state is essentially due to macromolecules of amylopectin, one of the two main constituents of starch. In the native state, the starch grains have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment that it has undergone. Granular starch, placed under polarized light, has a characteristic black cross, so-called Maltese cross, typical of the granular state.

Selon l'invention, l'amidon granulaire peut provenir de toutes origines botaniques, y compris un amidon granulaire riche en amylose ou, inversement, riche en amylopectine (waxy). Il peut s'agir d'amidon natif de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, et de mélanges de tels amidons. Selon une variante, l'amidon granulaire est un amidon hydrolysé par voie acide, oxydante ou enzymatique, ou un amidon oxydé. Il peut s'agir d'un amidon communément appelé amidon fluidifié ou 25 d'une dextrine blanche. Selon une autre variante, il peut s'agir également d'un amidon modifié par voie physico-chimique mais ayant essentiellement conservé la structure de l'amidon natif de départ, comme notamment les amidons estérifiés et/ou éthérifiés, en 30 particulier modifiés par acétylation, hydroxypropylation, cationisation, réticulation, phosphatation, ou succinylation, ou les amidons traités en milieu aqueux à basse température (en anglais « annealing »). De préférence, l'amidon granulaire est un amidon natif, hydrolysé, oxydé ou modifié, en particulier de 35 maïs, de blé ou de pois. According to the invention, the granular starch can come from all botanical origins, including a granular starch rich in amylose or conversely, rich in amylopectin (waxy). It may be starch native to cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava, or legumes such as peas and soybeans, and mixtures of such starches. According to one variant, the granular starch is an acid hydrolyzed, oxidizing or enzymatic starch, or an oxidized starch. It may be a starch commonly referred to as a fluidized starch or a white dextrin. According to another variant, it may also be a starch modified physico-chemically but having essentially retained the structure of the native starch starch, such as in particular the esterified and / or etherified starches, in particular modified by acetylation, hydroxypropylation, cationization, crosslinking, phosphatation, or succinylation, or starches treated in aqueous medium at low temperature (in English "annealing"). Preferably, the granular starch is a native, hydrolysed, oxidized or modified starch, in particular corn, wheat or pea.

L'amidon granulaire présente généralement un taux de solubles à 20°C dans l'eau déminéralisée, inférieur à 5 % en masse. Il est de préférence quasiment insoluble dans l'eau froide. Granular starch generally has a degree of soluble at 20 ° C in demineralized water, less than 5% by weight. It is preferably almost insoluble in cold water.

Selon une seconde variante, l'amidon sélectionné comme amidon utile à la fabrication de la composition utilisée conformément à l'invention est un amidon hydrosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon, hydrosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon hydrosoluble peut être introduit en remplacement partiel ou total de l'amidon granulaire. On entend au sens de l'invention par « amidon hydrosoluble», tout composant amylacé présentant à 20°C et sous agitation mécanique pendant 24 heures, une fraction soluble dans de l'eau déminéralisée au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon hydrosoluble peut être totalement soluble dans l'eau déminéralisée (fraction soluble = 100 %). De tels amidons hydrosolubles peuvent être obtenus par prégélatinisation sur tambour, par prégélatinisation sur extrudeuse, par atomisation d'une suspension ou d'une solution amylacée, par précipitation par un non-solvant, par cuisson hydro-thermique, par fonctionnalisation chimique ou autre. Il s'agit en particulier d'un amidon prégélatinisé, extrudé ou atomisé, d'une dextrine hautement transformée (appelée aussi dextrine jaune), d'une maltodextrine, d'un amidon fonctionnalisé ou d'un mélange quelconque des ces produits. According to a second variant, the starch selected as starch useful in the manufacture of the composition used in accordance with the invention is a water-soluble starch, which may also come from all botanical origins, including a starch, which is water-soluble, rich in amylose or, conversely, , rich in amylopectin (waxy). This water-soluble starch can be introduced as a partial or total replacement of the granular starch. For the purposes of the invention, the term "water-soluble starch" means any starchy component which, at 20 ° C. and with mechanical stirring for 24 hours, has a soluble fraction in demineralized water of at least 5% by weight. This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight. Of course, the water-soluble starch can be totally soluble in demineralized water (soluble fraction = 100%). Such water-soluble starches can be obtained by pregelatinization on a drum, by pregelatinization on an extruder, by spraying a suspension or a starch solution, by precipitation with a non-solvent, by hydro-thermal cooking, by chemical functionalization or the like. It is in particular a pregelatinized, extruded or atomized starch, a highly converted dextrin (also called yellow dextrin), a maltodextrin, a functionalized starch or any mixture of these products.

Les amidons prégélatinisés peuvent être obtenus par traitement hydro-thermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cocker, cuisson sur tambour, cuisson dans des systèmes de malaxeur/extrudeur puis séchage par exemple en étuve, par air chaud sur lit fluidisé, sur tambour rotatif, par atomisation, par extrusion ou par lyophilisation. De tels amidons présentent généralement une solubilité dans l'eau déminéralisée à 20°C supérieure à 5 % et plus généralement comprise entre 10 et 100 % et un taux de cristallinité en amidon inférieur à 15%, généralement inférieur à 5% et le plus souvent inférieur à 1%, voire nul. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLOCD. Les dextrines hautement transformées peuvent être préparées à partir d'amidons natifs ou modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou de dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYSCD A 053 ou TACKIDEXCD C 072 fabriqués et commercialisés par la Demanderesse. De telles dextrines présentent dans l'eau déminéralisée à 20°C, une solubilité comprise généralement entre 10 et 95 % et une cristallinité en amidon inférieure à 15% et généralement inférieure à 5%. Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent (DE) compris entre 0,5 et 40, de préférence entre 0,5 et 20 et mieux encore entre 0,5 et 12. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEXCD et présentent une solubilité dans l'eau déminéralisée à 20°C, généralement supérieure à 90%, voire proche de 100% et une cristallinité en amidon inférieure généralement inférieure à 5% et d'ordinaire quasiment nulle. Les amidons fonctionnalisés peuvent être obtenus à partir d'un amidon natif ou modifié. La haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour lui conférer une solubilité dans l'eau. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%. The pregelatinized starches may be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cocked cooking, cooking on a drum, cooking in kneader / extruder systems then drying for example in an oven, by hot air on a fluidized bed, on a rotating drum, by atomization, by extrusion or by lyophilization. Such starches generally have a solubility in demineralized water at 20 ° C. of greater than 5% and more generally of between 10 and 100% and a starch crystallinity level of less than 15%, generally less than 5% and most often less than 1%, or even none. By way of example, mention may be made of the products manufactured and marketed by the Applicant under the brand name PREGEFLOCD. Highly processed dextrins can be prepared from native or modified starches by dextrinification in a weakly acidic acid medium. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made of the STABILYSCD A 053 or TACKIDEXCD C 072 products manufactured and marketed by the Applicant. Such dextrins have demineralized water at 20 ° C, a solubility generally between 10 and 95% and a starch crystallinity of less than 15% and generally less than 5%. Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium. They may in particular have an equivalent dextrose (DE) of between 0.5 and 40, preferably between 0.5 and 20 and better still between 0.5 and 12. Such maltodextrins are for example manufactured and marketed by the Applicant under the trade name GLUCIDEXCD and have a solubility in demineralized water at 20 ° C, generally greater than 90% or even close to 100% and a crystallinity in lower starch generally less than 5% and usually almost zero. The functionalized starches can be obtained from a native or modified starch. The high functionalization may for example be carried out by esterification or etherification at a sufficiently high level to confer a solubility in water. Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.

La fonctionnalisation peut s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation en phase colle, cationisation en phase sèche ou phase colle, anionisation en phase sèche ou phase colle par phosphatation ou succinylation. Ces amidons hautement fonctionnalisés hydrosolubles peuvent présenter un degré de substitution compris entre 0,01 et 3, et mieux encore compris entre 0,05 et 1. De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon, sont d'origine renouvelable. Selon une autre variante avantageuse, l'amidon hydrosoluble est un amidon hydrosoluble de maïs, de blé ou de pois ou un dérivé, 10 hydrosoluble, de ceux ci. De plus, il présente avantageusement une faible teneur en eau, généralement inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2,5 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids. 15 Selon une troisième variante, le composant amylacé sélectionné pour la préparation de la composition utilisée conformément à l'invention est un amidon organomodifié, de préférence organosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon organomodifié, de préférence 20 organosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon organosoluble peut être introduit en remplacement partiel ou total de l'amidon granulaire ou de l'amidon hydrosoluble. On entend au sens de l'invention par « amidon organomodifié», 25 tout composant amylacé autre qu'un amidon granulaire ou un amidon hydrosoluble selon les définitions données ci-avant. De préférence, cet amidon organomodifié est quasiment amorphe, c'est à dire présente un taux de cristallinité en amidon inférieur à 5 %, généralement inférieur à 1% et notamment nul. 30 II est aussi de préférence « organosoluble » , c'est à dire présente à 20°C, une fraction soluble dans un solvant choisi parmi l'éthanol, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, 35 les esters dibasiques, le diméthylsulfoxide (DMSO), le diméthylisosorbide, le triacétate de glycérol, le diacétate d'isosorbide, le dioléate d'isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon organosoluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus (fraction soluble = 100 %). L'amidon organomodifié peut être utilisé selon l'invention sous forme solide, y compris présentant une teneur en eau peu élevée, à savoir inférieure à 10 % en poids. Elle peut notamment être inférieure à 5 %, en particulier inférieure à 2,5 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids. L'amidon organomodifié utilisable dans la composition utilisée conformément à l'invention, peut être préparé par une haute fonctionnalisation des amidons natifs ou modifiés tels que ceux présentés ci-avant. Cette haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour le rendre essentiellement amorphe et pour lui conférer une insolubilité dans l'eau et de préférence une solubilité dans l'un des solvants organiques ci-dessus. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%. La haute fonctionnalisation peut s'obtenir en particulier par acétylation en phase solvant par anhydride acétique, greffage par exemple en phase solvant ou par extrusion réactive, d'anhydrides d'acides, d'anhydrides mixtes, de chlorures d'acides gras, d'oligomères de caprolactones ou de lactides, hydroxypropylation et réticulation en phase colle, cationisation et réticulation en phase sèche ou en phase colle, anionisation par phosphatation ou succinylation et réticulation en phase sèche ou en phase colle , silyilation, télomérisation au butadiène. Ces amidons hautement fonctionnalisés organomodifiés, de préférence organosolubles, peuvent être en particulier des acétates d'amidons, de dextrines ou de maltodextrines ou des esters gras de ces matières amylacées (amidons, dextrines, maltodextrines) avec des chaines grasses de 4 à 22 carbones, l'ensemble de ces produits présentant de préférence un degré de substitution (DS) compris entre 0,5 et 3,0, de préférence compris entre 0,8 et 2,8 et notamment compris entre 1,0 et 2,7. The functionalization can be obtained in particular by aqueous phase acetylation of acetic anhydride, mixed anhydrides, glutamate hydroxypropylation, dry phase cationization or glue phase, anionization in the dry phase or glue phase by phosphatation or succinylation. These water-soluble, highly functionalized starches may have a degree of substitution of between 0.01 and 3, and more preferably between 0.05 and 1. Preferably, the reagents for modification or functionalization of starch are of renewable origin. . According to another advantageous variant, the water-soluble starch is a water-soluble starch of corn, wheat or pea or a water-soluble derivative thereof. In addition, it advantageously has a low water content, generally less than 10%, preferably less than 5%, in particular less than 2.5% by weight and ideally less than 0.5%, or even less than 0.2. % in weight. According to a third variant, the starchy component selected for the preparation of the composition used according to the invention is an organomodified starch, preferably organosoluble, which may also come from all botanical origins, including an organomodified starch, preferably an organosoluble starch, rich in amyloidosis or, conversely, rich in amylopectin (waxy). This organosoluble starch may be introduced as partial or total replacement of the granular starch or of the water-soluble starch. For the purposes of the invention, the term "organomodified starch" means any starchy component other than a granular starch or a water-soluble starch according to the definitions given above. Preferably, this organomodified starch is almost amorphous, that is to say has a starch crystallinity level of less than 5%, generally less than 1% and especially zero. It is also preferably "organosoluble", that is to say present at 20 ° C, a fraction soluble in a solvent selected from ethanol, ethyl acetate, propyl acetate, ethyl acetate and the like. butyl, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, dioleate isosorbide and methyl esters of vegetable oils, at least equal to 5% by weight. This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight. Of course, the organosoluble starch may be totally soluble in one or more of the solvents indicated above (soluble fraction = 100%). The organomodified starch may be used according to the invention in solid form, including having a low water content, ie less than 10% by weight. It may especially be less than 5%, in particular less than 2.5% by weight and ideally less than 0.5%, or even less than 0.2% by weight. The organomodified starch that can be used in the composition used according to the invention can be prepared by high functionalization of native or modified starches such as those presented above. This high functionalization can for example be carried out by esterification or etherification at a sufficiently high level to make it essentially amorphous and to confer on it an insolubility in water and preferably a solubility in one of the above organic solvents. Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%. The high functionalization can be obtained in particular by acetylation in the solvent phase by acetic anhydride, grafting for example in the solvent phase or by reactive extrusion, of acid anhydrides, mixed anhydrides, fatty acid chlorides, oligomers of caprolactones or lactides, hydroxypropylation and crosslinking in the glue phase, cationization and crosslinking in the dry phase or in the glue phase, anionization by phosphatation or succinylation and crosslinking in the dry phase or in the glue phase, silyilation, butadiene telomerization. These organomodified, preferably organosoluble, highly functionalized starches can be, in particular, acetates of starches, dextrins or maltodextrins or fatty esters of these starchy materials (starches, dextrins, maltodextrins) with fatty chains of 4 to 22 carbons, all of these products preferably having a degree of substitution (DS) between 0.5 and 3.0, preferably between 0.8 and 2.8 and in particular between 1.0 and 2.7.

II peut s'agir, par exemple, d'hexanoates, d'octanoates, de décanoates, de laurates, de palmitates, d'oléates et de stéarates d'amidons, de dextrines ou de maltodextrines, en particulier présentant un DS compris entre 0,8 et 2,8. Selon une autre variante avantageuse, l'amidon organomodifié 10 est un amidon organomodifié de maïs, de blé ou de pois ou un dérivé, organomodifié, de ceux ci. La composition comprend, par rapport à sa masse totale, de 2 à 40% en masse d'amidon. De préférence, la composition comprend de 3 à 20% d'amidon. 15 La composition comprend en outre un plastifiant de l'amidon, qui a pour fonction de déstructurer l'amidon. Ce plastifiant peut être de tout type, notamment de l'eau, des polyols ou l'urée, et est avantageusement choisi parmi le glycérol, le 20 sorbitol, le mannitol, le maltitol, des oligomères de ces polyols, le polyéthylène glycol, l'urée ou un mélange de ces plastifiants. La composition comprend, par rapport à sa masse totale, de 2 à 40% d'au moins un plastifiant de cet amidon. De préférence, la 25 composition comprend de 3 à 20% de plastifiant. Il est précisé que les constituants de la composition, notamment l'amidon, peuvent comprendre naturellement de l'eau. La composition comprend préférentiellement une quantité d'eau inférieure à 5% de sa masse totale. 30 Avantageusement, la somme des masses d'amidon et de plastifiant de l'amidon est supérieure à 10% en masse par rapport à la masse totale de la composition, préférentiellement supérieure à 15%. Avantageusement, la somme des masses d'amidon et de 35 plastifiant de l'amidon est inférieure à 50% en masse par rapport à la masse totale de la composition, préférentiellement inférieure à 40%. It may be, for example, hexanoates, octanoates, decanoates, laurates, palmitates, oleates and stearates of starches, dextrins or maltodextrins, in particular having a DS between 0 , 8 and 2.8. According to another advantageous variant, the organomodified starch is an organomodified starch of corn, wheat or pea or an organomodified derivative thereof. The composition comprises, relative to its total mass, from 2 to 40% by weight of starch. Preferably, the composition comprises from 3 to 20% starch. The composition further comprises a starch plasticizer, which has the function of destructuring the starch. This plasticizer may be of any type, in particular water, polyols or urea, and is advantageously chosen from glycerol, sorbitol, mannitol, maltitol, oligomers of these polyols, polyethylene glycol urea or a mixture of these plasticizers. The composition comprises, relative to its total mass, from 2 to 40% of at least one plasticizer of this starch. Preferably, the composition comprises from 3 to 20% plasticizer. It is specified that the constituents of the composition, in particular starch, may naturally comprise water. The composition preferably comprises a quantity of water less than 5% of its total mass. Advantageously, the sum of the starch and plasticizer masses of the starch is greater than 10% by weight relative to the total mass of the composition, preferably greater than 15%. Advantageously, the sum of the starch and plasticizer masses of the starch is less than 50% by weight relative to the total mass of the composition, preferably less than 40%.

On préfère que le rapport massique amidon / plastifiant de l'amidon soit compris entre 1/9 et 9/1, de préférence 2/1 et 1/2. It is preferred that the starch / plasticizer mass ratio of the starch be between 1/9 and 9/1, preferably 2/1 and 1/2.

La composition peut comprendre en outre des additifs par exemple des additifs antistatiques, des agents anti-UV, des antioxydants, des stabilisants, des fongicides, des agents absorbants, des agents réfléchissants ou des agents diffractant des rayons infrarouges, des pigments, des stabilisateurs de volume ou des agents de nucléation, par exemple dans des quantités comprises entre 0,01 et 15 % en masse, de préférence entre 0,1 et 10%. Selon une variante préférée, la composition utile à la 15 fabrication de la mousse selon l'invention comprend par rapport à son poids total : - de 20 à 90%, par exemple de 50 à 89%, d'au moins une polyoléfine choisie parmi le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges ; 20 - de 2 à 30%, par exemple de 3 à 15%, d'au moins une polyoléfine fonctionnalisée comprenant de 0,1 à 10 % en masse de monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement 25 l'anhydride maléique ou le méthacrylate de glycidyle - de 2 à 40%, par exemple de 3 à 20%, d'amidon ; - de 2 à 40%, par exemple de 3 à 20%, d'au moins un plastifiant de cet amidon ; - éventuellement entre 0,01 et 15% d'additifs ; 30 la somme des proportions massiques des constituants faisant 100%. Pour fabriquer la composition utile à la mousse selon l'invention, on peut utiliser les méthodes classiques de 35 mélange des thermoplastiques. Ces méthodes classiques comprennent au moins une étape de mélange à l'état fondu ou ramolli des différents constituants et une étape de récupération de la composition. On peut réaliser ce procédé dans un équipement de mélange thermoplastique, par exemple un mélangeur interne à pales ou à rotors, un mélangeur externe, une extrudeuse planétaire, une extrudeuse mono-vis, une extrudeuse bi-vis co-rotatives ou contrarotatives. On préfère réaliser ce mélange par extrusion, notamment en utilisant une extrudeuse co-rotative. Le mélange des constituants de la composition peut se faire à 10 une température allant de 80 à 300°C, par exemple de 100 à 250°C. Si l'on souhaite éliminer au moins partiellement certains composés volatils naturellement inclus dans les constituants de la composition, notamment l'eau, l'équipement de mélange 15 thermoplastique peut être équipé d'une pompe à vide. Dans le cas d'une extrudeuse, on peut introduire les différents constituants de la composition à l'aide de trémies d'introduction situées le long de l'extrudeuse. On peut utiliser le procédé décrit dans la demande W02009095618 20 dans lequel l'amidon thermoplastique est mélangé de manière thermomécanique à la polyoléfine et la polyoléfine fonctionnalisée. Toutefois, on préfère utiliser particulièrement un procédé de préparation de la composition comprenant l'introduction de 25 l'amidon et d'un plastifiant de celui-ci, dans un réacteur contenant un mélange de polyoléfine et de polyoléfine fonctionnalisée ramollies ou fondues, et le malaxage du mélange obtenu dans des conditions suffisantes pour obtenir la plastification de l'amidon par le plastifiant afin d'obtenir la 30 composition selon l'invention. Ce procédé est décrit en détail dans la demande W02010010282 au nom de la Demanderesse. La mousse obtenue présente une densité inférieure à 300 kg/m3, par exemple inférieure à 250 kg/m3, avantageusement entre 5 et 35 200 kg/ma, de préférence entre 7 et 100 kg/m3, tout préférentiellement entre 10 et 60 kg/ m3. The composition can furthermore comprise additives, for example antistatic additives, anti-UV agents, antioxidants, stabilizers, fungicides, absorbing agents, reflecting agents or infrared-ray diffracting agents, pigments, volume or nucleating agents, for example in amounts between 0.01 and 15% by weight, preferably between 0.1 and 10%. According to a preferred variant, the composition useful for the manufacture of the foam according to the invention comprises, with respect to its total weight: from 20 to 90%, for example from 50 to 89%, of at least one polyolefin chosen from the group comprising polyethylene and polypropylene and mixtures thereof; From 2 to 30%, for example from 3 to 15%, of at least one functionalized polyolefin comprising from 0.1 to 10% by weight of functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes, preferentially maleic anhydride or glycidyl methacrylate - from 2 to 40%, for example from 3 to 20%, of starch; from 2 to 40%, for example from 3 to 20%, of at least one plasticizer of this starch; optionally between 0.01 and 15% of additives; The sum of the mass proportions of the constituents making 100%. In order to produce the foam-useful composition according to the invention, conventional thermoplastic blending methods can be used. These conventional methods comprise at least one step of melt blending or softening of the various constituents and a step of recovering the composition. This process can be carried out in a thermoplastic mixing equipment, for example an internal mixer with blades or rotors, an external mixer, a planetary extruder, a single-screw extruder, a co-rotating or counter-rotating twin-screw extruder. It is preferred to carry out this mixture by extrusion, in particular by using a co-rotating extruder. The mixture of the constituents of the composition can be at a temperature ranging from 80 to 300 ° C, for example from 100 to 250 ° C. If it is desired to at least partially eliminate certain volatile compounds naturally included in the constituents of the composition, especially water, the thermoplastic mixing equipment may be equipped with a vacuum pump. In the case of an extruder, the various constituents of the composition can be introduced by means of introducing hoppers located along the extruder. The process described in WO2009095618 wherein the thermoplastic starch is thermomechanically blended with the polyolefin and the functionalized polyolefin can be used. However, it is particularly preferred to use a process for preparing the composition comprising introducing the starch and a plasticizer thereof into a reactor containing a mixture of softened or fused polyolefin and functionalized polyolefin. kneading the mixture obtained under conditions sufficient to obtain the plasticization of the starch by the plasticizer in order to obtain the composition according to the invention. This process is described in detail in application WO2010010282 in the name of the Applicant. The foam obtained has a density of less than 300 kg / m 3, for example less than 250 kg / m 3, advantageously between 5 and 200 kg / m 3, preferably between 7 and 100 kg / m 3, most preferably between 10 and 60 kg / m 3. m3.

Les cellules de la mousse peuvent présenter une taille de cellules très faible, avantageusement une taille de cellules moyenne en nombre allant de 0,1 à 3 mm, préférentiellement de 0,5 à 2,5, tout préférentiellement de 0,8 à 1,8 mm. Cette taille peut être déterminée en prenant un cliché de la mousse par microscope optique et en déterminant le diamètre moyen d'au moins cent cellules adjacentes. Cette taille peut varier largement, en particulier selon la densité. Avec la composition selon l'invention, la Demanderesse est parvenue à fabriquer des mousses de faible densité conservant une taille moyenne de cellules très faible. De plus, on est également parvenu à obtenir des mousses dont la dispersion de la taille de cellules est faible. Cela n'était pas possible avec les mousses de l'art antérieur réalisées à base de compositions comprenant un amidon thermoplastique et une polyoléfine. Ainsi, le choix de la composition de la mousse et la structure (en particulier sa densité voire la taille des cellules de la mousse produite) ont permis d'obtenir une mousse présentant des propriétés améliorées. Les mousses présentent d'excellentes propriétés de résistance au feu, tout en ne dégageant que peu de gaz corrosifs lors de 25 leur combustion. Les propriétés mécaniques de la mousse sont également excellentes. En particulier, la mousse peut présenter une contrainte à 10% de compression allant de 0,002 à 1 MPa, de préférence entre 0,005 à 0,5 MPa. 30 Les mousses selon l'invention peuvent également présenter une contrainte à 50% de compression allant de 0,005 à 1 MPa, préférentiellement de 0,01 à 0,1 MPa. De préférence, les mousses présentent une contrainte à la rupture allant de 0,1 à 4 MPa. Les mousses présentent de préférence de 10 à 600% 35 d'allongement à la rupture. La mousse présente avantageusement une déformation rémanente après compression (DRC à 23°C pendant 22h et 25% de compression) allant de 0,1 à 30 % et de préférence de 1 à 15%. Pour former les mousses selon l'invention, on peut utiliser 5 tout type de procédé de moussage, utilisant des agents de moussage physique ou chimique, notamment le procédé déjà décrit dans le résumé de l'invention. Les extrudeuses pour former des mousses sont des appareillages déjà connus. 10 Selon le procédé selon l'invention, on injecte lors de l'étape c soit un gaz de moussage, soit un liquide apte à former un gaz de moussage. Préférentiellement, il s'agit d'un gaz de moussage qui comprend les alcanes, les gaz hydrochlorofluorocarbonés ou les gaz inertes. Le gaz de moussage comprend préférentiellement 15 l'isobutane. La température d'extrusion du mélange en filière sera adaptée par l'homme de l'art afin d'obtenir la consistance requise du produit moussé. Cela signifie qu'il faut obtenir une température à la filière plus élevée que la température qui 20 mènerait à la formation de cellules fermées. Toutefois, la Demanderesse est parvenue à obtenir des mousses de densité particulièrement faible, tout en conservant une faible taille de cellules, en utilisant les conditions suivantes. La température de l'étape b se situe préférentiellement entre 150 25 et 220 °C, de préférence entre 160 et 200°C. La température à l'étape e est avantageusement comprise entre 100 et 150 °C, de préférence entre 100 et 140°C. Pendant l'étape f, l'extrusion à travers une filière du mélange de la composition et du gaz va provoquer une chute importante de pression au sein du mélange, 30 ce qui entraîne la formation des bulles de gaz et donc la formation de la mousse. La température à l'étape f peut être comprise entre 80 et 140 °C, de préférence entre 90 et 120°C. Cependant, il est conseillé de réaliser une trempe de la surface de la mousse immédiatement après sa sortie de la 35 filière à l'air libre, ceci afin de constituer une couche périmétrique de cellules fermées. Cela permet d'éviter l'effondrement de la masse moussée, qui est plus faible mécaniquement vu la température d'extrusion volontairement plus élevée que pour l'obtention de mousses à cellules majoritairement fermées. L'extrudeuse peut être une extrudeuse à simple vis, double vis 5 co-rotative ou contre-rotative. Le procédé peut comprendre en outre une étape de réticulation, par exemple à l'aide d'un faisceau d'électrons. 10 Le procédé selon l'invention peut comprendre en outre une étape g d'étirage et de guidage de la mousse produite à l'étape f, par exemple pour former une bobine de mousse. Il est possible de fabriquer des mousses de formes multiples : 15 feuilles, profilés ronds, carrés, formes irrégulières concaves ou convexes. Il suffit d'extruder la composition en présence du gaz à travers une filière ayant la forme requise pour donner la forme finale expansée désirée. Pour des formes creuses, on utilisera un pointeau et une 20 filière afin de réaliser le corps creux. La mousse selon l'invention peut être utilisée dans tous les domaines, en particulier dans les domaines de l'emballage, du bâtiment, de l'automobile, des transports, du sport, des jouets, 25 de la chaussure, des industries des matériaux composites, ou pour la fabrication de tout type d'objet, par exemple un emballage, un panneau, un élément décoratif, un tube ou un profilé, un amortisseur ou une chaussure. La mousse peut servir au renforcement des composites, pour l'allègement des matériaux 30 structuraux, pour filtrer un fluide ou comme matériau absorbant. L'invention porte également sur une structure multicouche comprenant au moins une couche de mousse selon l'invention et une couche support adhérant à la couche de mousse. 35 La structure peut bien évidemment comprendre une ou plusieurs couches de mousse, ces couches pouvant être associées les unes aux autres. The cells of the foam may have a very small cell size, advantageously a number-average cell size ranging from 0.1 to 3 mm, preferably from 0.5 to 2.5, most preferably from 0.8 to 1, 8 mm. This size can be determined by taking a snapshot of the foam by optical microscope and determining the average diameter of at least one hundred adjacent cells. This size can vary widely, especially depending on the density. With the composition according to the invention, the Applicant has managed to manufacture low density foams retaining a very small average cell size. In addition, it has also been possible to obtain foams whose dispersion of cell size is low. This was not possible with the foams of the prior art made from compositions comprising a thermoplastic starch and a polyolefin. Thus, the choice of the composition of the foam and the structure (in particular its density or even the size of the cells of the foam produced) made it possible to obtain a foam having improved properties. Foams have excellent fire resistance properties while releasing only a small amount of corrosive gas during their combustion. The mechanical properties of the foam are also excellent. In particular, the foam may have a stress at 10% compression ranging from 0.002 to 1 MPa, preferably between 0.005 to 0.5 MPa. The foams according to the invention may also have a stress at 50% compression ranging from 0.005 to 1 MPa, preferably from 0.01 to 0.1 MPa. Preferably, the foams have a tensile strength of 0.1 to 4 MPa. The foams preferably have from 10 to 600% elongation at break. The foam advantageously has a compression set (DRC at 23 ° C. for 22 h and 25% compression) ranging from 0.1 to 30% and preferably from 1 to 15%. To form the foams according to the invention, any type of foaming process can be used, using physical or chemical foaming agents, in particular the process already described in the summary of the invention. Extruders for forming foams are already known apparatus. According to the process according to the invention, during step c, either a foaming gas or a liquid capable of forming a foaming gas is injected. Preferably, it is a foaming gas which comprises alkanes, hydrochlorofluorocarbon gases or inert gases. The foaming gas preferably comprises isobutane. The extrusion temperature of the die mixture will be adapted by those skilled in the art to obtain the required consistency of the foamed product. This means that the die temperature must be higher than the temperature which would lead to the formation of closed cells. However, the Applicant has succeeded in obtaining foams of particularly low density, while maintaining a small cell size, using the following conditions. The temperature of step b is preferably between 150 and 220 ° C, preferably between 160 and 200 ° C. The temperature in step e is advantageously between 100 and 150 ° C., preferably between 100 and 140 ° C. During step f, the extrusion through a die of the mixture of the composition and the gas will cause a significant drop in pressure within the mixture, resulting in the formation of gas bubbles and thus the formation of the foam. . The temperature in step f may be between 80 and 140 ° C, preferably between 90 and 120 ° C. However, it is advisable to quench the surface of the foam immediately after it has left the die in the open air in order to form a perimetric layer of closed cells. This makes it possible to prevent the collapse of the foamed mass, which is mechanically weaker in view of the voluntarily higher extrusion temperature than for obtaining predominantly closed cell foams. The extruder may be a co-rotating or counter-rotating twin-screw, twin-screw extruder. The method may further comprise a crosslinking step, for example using an electron beam. The method according to the invention may further comprise a step of stretching and guiding the foam produced in step f, for example to form a foam reel. It is possible to manufacture foams of multiple shapes: 15 leaves, round shapes, squares, irregular concave or convex shapes. It suffices to extrude the composition in the presence of the gas through a die having the shape required to give the desired expanded final shape. For hollow shapes, a needle and a die will be used to make the hollow body. The foam according to the invention can be used in all fields, in particular in the fields of packaging, building, automobile, transport, sports, toys, footwear, materials industries. composites, or for the manufacture of any type of object, for example a packaging, a panel, a decorative element, a tube or a profile, a shock absorber or a shoe. The foam can be used for reinforcing composites, for lightening structural materials, for filtering a fluid or as an absorbent material. The invention also relates to a multilayer structure comprising at least one foam layer according to the invention and a support layer adhering to the foam layer. The structure may of course comprise one or more layers of foam, which layers may be associated with each other.

Cette structure peut comprendre également plusieurs couches support. Cette couche support est choisie parmi les mats, les textiles choisis parmi les tissés et non tissés, les films extrudés, les feuilles, les films à bulle, les mousses, y compris les mousses selon l'invention, les pièces découpées, les pièces moulées ou les pièces injectées. La couche support peut être en polymère synthétique ou naturel, tel que les polyoléfines, les polyesters tels que le polyéthylène téréphtalate, les polychlorures de vinyle, les résines thermodurcissables, le bois, le verre, le carbone ou les métaux comme par exemple l'aluminium. La fabrication de ces structures peut être réalisée par assemblage de ces couches, classiquement à l'aide de colles ou de résines, ou par fusion d'au moins une des couches de la structure. Selon une variante de fabrication, on peut coextruder directement la mousse selon l'invention sur la couche support, qui peut ou non être une matière moussée. This structure can also include several support layers. This support layer is chosen from mats, textiles chosen from woven and non-woven fabrics, extruded films, sheets, bubble films, foams, including foams according to the invention, cut pieces, molded parts. or the injected parts. The support layer may be of synthetic or natural polymer, such as polyolefins, polyesters such as polyethylene terephthalate, polyvinyl chlorides, thermosetting resins, wood, glass, carbon or metals such as aluminum . The manufacture of these structures can be achieved by assembling these layers, typically using glues or resins, or by melting at least one of the layers of the structure. According to a manufacturing variant, the foam according to the invention can be coextruded directly on the support layer, which may or may not be a foamed material.

La présente invention va maintenant être décrite dans les exemples qui suivent. Il est précisé que ces exemples particuliers ne limitent en rien la portée de la présente invention. The present invention will now be described in the following examples. It is specified that these particular examples do not limit the scope of the present invention.

Exemples Composition amylacée 1 (CA1) Constituants de la composition CA1 Polyéthylène (25 parts) ; Polyéthylène malélsé comprenant 1,5% en masse d'anhydride maléique (25 parts) ; Amidon de blé natif (30 parts) Plastifiant (glycérol et sorbitol) :(20 parts). Examples Composition starchy 1 (CA1) Constituents of the composition CA1 Polyethylene (25 parts); Maleated polyethylene comprising 1.5% by weight of maleic anhydride (25 parts); Native wheat starch (30 parts) Plasticizer (glycerol and sorbitol): (20 parts).

La composition est obtenue en introduisant les constituants de la composition dans une extrudeuse à double vis de marque TSA, ayant un diamètre (D) de 26 mm et de longueur 50D, en utilisant une vitesse de vis de 200 tours /min. La température maximale dans l'extrudeuse est de 160°C. The composition is obtained by introducing the constituents of the composition into a TSA twin-screw extruder having a diameter (D) of 26 mm and a length of 50D, using a screw speed of 200 rpm. The maximum temperature in the extruder is 160 ° C.

Composition amylacée 2 (CA2) Constituants de la composition CA2 Polypropylène (25 parts) ; Polypropylène maléïsé comprenant 1% en masse d'anhydride maléique (25 parts) ; Amidon de blé natif (30 parts) ; Plastifiant (glycérol et sorbitol) (20 parts). La composition CA2 est obtenue en introduisant les constituants de la composition dans une extrudeuse à double vis de marque TSA, ayant un diamètre (D) de 26 mm et de longueur 50D, en utilisant une vitesse de vis de 200 tours /min. La température maximale dans l'extrudeuse est de 170°C. Exemple 1 Une mousse selon l'invention est réalisée en extrudant un mélange de 40% en masse de CA1, 54,2% en masse d'un polyéthylène basse densité ayant une densité de 921 kg/m3 et ayant un PIPI de 1,9g/lOmin (190°C et 2,16 kg), 2,0% en masse d'un mélange-maître de talc, 1,5% en masse de mono stéarate de glycérol, 0,8% en masse d'un stabilisateur de volume (amides d'acides gras) et 1,5% en masse d'un colorant en une seule étape à 270 kg/h avec 18,1 kg/h d'un gaz d'isobutane à travers une filière de 130 mm. Amylaceous composition 2 (CA2) Constituents of CA2 composition Polypropylene (25 parts); Maleified polypropylene comprising 1% by weight of maleic anhydride (25 parts); Native wheat starch (30 parts); Plasticizer (glycerol and sorbitol) (20 parts). The CA2 composition is obtained by introducing the constituents of the composition into a TSA brand twin-screw extruder having a diameter (D) of 26 mm and a length of 50D, using a screw speed of 200 rpm. The maximum temperature in the extruder is 170 ° C. Example 1 A foam according to the invention is made by extruding a mixture of 40% by weight of CA1, 54.2% by weight of a low density polyethylene having a density of 921 kg / m3 and having a PIPI of 1.9 g / lOmin (190 ° C. and 2.16 kg), 2.0% by weight of a talc masterbatch, 1.5% by weight of glycerol mono stearate, 0.8% by weight of a stabilizer of volume (fatty acid amides) and 1.5% by weight of a single-stage dye at 270 kg / h with 18.1 kg / h of isobutane gas through a 130 mm die .

Pour cela l'ensemble des constituants du mélange est chauffé successivement entre 170 et 180°C pour une étape de chauffage et mélangeage. Après introduction du gaz de moussage le mélange est refroidi et mélangé à 110°C et extrudé au travers de la filière à 100°C. Une filière annulaire est utilisée pour former le flux de matière qui mousse librement à la sortie de celle-ci. For this, all the constituents of the mixture are heated successively between 170 and 180 ° C for a heating step and mixing. After introduction of the foaming gas the mixture is cooled and mixed at 110 ° C and extruded through the die at 100 ° C. An annular die is used to form the flow of freely foaming material at the outlet thereof.

La mousse est produite avec une très bonne processabilité et présente après production une densité de 25 kg/m3, une épaisseur de llmm, un excellent aspect, une coloration attendue et uniforme, la distribution des cellules est très régulière, la surface ne présente aucun défaut. La mousse obtenue présente également une bonne résilience et une inflammabilité réduite. Exemple 2 Une mousse selon l'invention est réalisée en extrudant un mélange de 20% en masse de CA1, 75,7% en masse d'un polyéthylène basse densité ayant une densité de 921 kg/m3 et ayant un MFI de 1,9g/lOmin (190°C et 2,16kg), 2.0% en masse d'un mélange-maître de talc , 1,5% en masse de mono stéarate de glycérol, 0.8% en masse d'un stabilisateur de volume (amides d'acides gras) et 1,5% en masse d'un colorant en une seule étape à 280 kg/h avec 19,4 kg par heure d'un mélange d'isobutane à travers une filière de 130mm. Pour cela l'ensemble des constituants du mélange est chauffé successivement entre 180 et 190°C pour une étape de chauffage et mélangeage. Après introduction du gaz de moussage le mélange est refroidi et mélangé à 110°C et extrudé au travers de la filière à 100°C. Une filière annulaire est utilisée pour former le flux de matière qui mousse librement à la sortie de celle-ci. The foam is produced with a very good processability and has after production a density of 25 kg / m3, a thickness of llmm, excellent appearance, expected and uniform coloring, the distribution of the cells is very regular, the surface has no defect . The resulting foam also has good resilience and reduced flammability. Example 2 A foam according to the invention is made by extruding a mixture of 20% by weight of CA1, 75.7% by weight of a low density polyethylene having a density of 921 kg / m3 and having a MFI of 1.9 g / lOmin (190 ° C. and 2.16 kg), 2.0% by weight of a talc masterbatch, 1.5% by weight of glycerol mono stearate, 0.8% by weight of a volume stabilizer (amides of fatty acids) and 1.5% by weight of a single-stage dye at 280 kg / h with 19.4 kg / h of a mixture of isobutane through a 130mm die. For this, all the constituents of the mixture are heated successively between 180 and 190 ° C for a heating step and mixing. After introduction of the foaming gas the mixture is cooled and mixed at 110 ° C and extruded through the die at 100 ° C. An annular die is used to form the flow of freely foaming material at the outlet thereof.

La mousse est produite avec une très bonne processabilité et présente une densité de 25 kg/m3, une épaisseur de llmm, un excellent aspect, une coloration attendue et uniforme, la distribution des cellules est très régulière, la surface ne présente aucun défaut. La mousse obtenue présente également une bonne résilience et une inflammabilité réduite. Exemple 3 Une mousse selon l'invention est réalisée en extrudant un 35 mélange de 20% en masse de CA1, 75,7% en masse d'un polyéthylène basse densité ayant une densité de 921 kg/m3 et ayant un MFI de 1,9g/lOmin (190°C et 2,16kg), 2,0% en masse d'un mélange-maître de talc, 1,5% en masse de mono stéarate de glycérol, 0,8% en masse d'un stabilisateur de volume (amides d'acides gras) et 1,5% en masse d'un colorant en une seule étape à 160 kg/h avec un mélange d'isobutane à travers une filière. Pour cela l'ensemble des constituants du mélange est chauffé successivement entre 160 et 170°C pour une étape de chauffage et mélangeage. Après introduction du gaz de moussage le mélange est refroidi et mélangé à 110°C et extrudé au travers de la filière à 100°C. Une filière annulaire est utilisée pour former le flux de matière qui mousse librement à la sortie de celle-ci. La mousse est produite avec une très bonne processabilité et présente après production une densité de 55 kg/m3, une épaisseur de 3 mm, un excellent aspect, une coloration attendue et uniforme, la distribution des cellules est très régulière, la surface ne présente aucun défaut. La mousse obtenue présente également une bonne résilience et une inflammabilité réduite. The foam is produced with a very good processability and has a density of 25 kg / m3, a thickness of llmm, an excellent appearance, a coloring expected and uniform, the distribution of cells is very regular, the surface has no defects. The resulting foam also has good resilience and reduced flammability. Example 3 A foam according to the invention is made by extruding a mixture of 20% by weight of CA1, 75.7% by weight of a low density polyethylene having a density of 921 kg / m3 and having an MFI of 1, 9 g / lOmin (190 ° C. and 2.16 kg), 2.0% by weight of a talc masterbatch, 1.5% by weight of glycerol mono stearate, 0.8% by weight of a stabilizer of volume (fatty acid amides) and 1.5% by weight of a dye in a single step at 160 kg / h with a mixture of isobutane through a die. For this, all the constituents of the mixture are heated successively between 160 and 170 ° C for a heating step and mixing. After introduction of the foaming gas the mixture is cooled and mixed at 110 ° C and extruded through the die at 100 ° C. An annular die is used to form the flow of freely foaming material at the outlet thereof. The foam is produced with a very good processability and after production has a density of 55 kg / m3, a thickness of 3 mm, an excellent appearance, an expected and uniform coloration, the distribution of cells is very regular, the surface has no default. The resulting foam also has good resilience and reduced flammability.

Exemple 4 Une mousse selon l'invention est réalisée en extrudant un mélange de 20% en masse de CA1, 73,4% en masse d'un polyéthylène basse densité ayant une densité de 921 kg/m3 et ayant un MFI de 1,9g/lOmin (190°C et 2,16kg), 2,5% en masse d'un mélange-maître de talc, 2,1% en masse de mono stéarate de glycérol, 0,6% en masse d'un stabilisateur de volume (amides d'acides gras) et 1,4% en masse d'un colorant en une seule étape à 160 kg/h avec un mélange d'isobutane à travers une filière. Pour cela l'ensemble des constituants du mélange est chauffé successivement entre 170 et 180°C pour une étape de chauffage et mélangeage. Après introduction du gaz de moussage le mélange est refroidi et mélangé à 110°C et extrudé au travers de la filière à 100°C. Une filière annulaire est utilisée pour former le flux de matière qui mousse librement à la sortie de celle-ci. Example 4 A foam according to the invention is made by extruding a mixture of 20% by weight of CA1, 73.4% by weight of a low density polyethylene having a density of 921 kg / m3 and having a MFI of 1.9g / lOmin (190 ° C. and 2.16 kg), 2.5% by weight of a talc masterbatch, 2.1% by weight of glycerol mono stearate, 0.6% by weight of a stabilizer of volume (fatty acid amides) and 1.4% by weight of a dye in a single step at 160 kg / h with a mixture of isobutane through a die. For this, all the constituents of the mixture are heated successively between 170 and 180 ° C for a heating step and mixing. After introduction of the foaming gas the mixture is cooled and mixed at 110 ° C and extruded through the die at 100 ° C. An annular die is used to form the flow of freely foaming material at the outlet thereof.

La mousse est produite avec une très bonne processabilité et présente après production une densité de 18 kg/m3, une épaisseur de 1,5mm, un excellent aspect, une coloration attendue et uniforme, la distribution des cellules est très régulière, la surface ne présente aucun défaut. La mousse obtenue présente également une bonne résilience et une inflammabilité réduite. The foam is produced with a very good processability and after production has a density of 18 kg / m3, a thickness of 1.5 mm, excellent appearance, expected and uniform coloring, the distribution of cells is very regular, the surface does not present no defect. The resulting foam also has good resilience and reduced flammability.

Exemple 5 Une mousse selon l'invention est réalisée en extrudant un mélange de 40% en masse de CA2, 56,5% en masse d'un polypropylène à tenue en fondu élevée ayant une densité de 902 kg/m3 et ayant un MFI de 2,5g/lOmin (190°C et 2.16kg), 1,0% en masse d'un mélange-maître de talc, 1,5% en masse de mono stéarate de glycérol et 1,5% en masse d'un colorant en une seule étape à 95 kg/h avec 8,6 kg par heure d'un mélange d'isobutane à travers une filière. EXAMPLE 5 A foam according to the invention is made by extruding a mixture of 40% by weight of CA 2, 56.5% by weight of a high melt strength polypropylene having a density of 902 kg / m 3 and having an MFI of 2.5 g / lOmin (190 ° C. and 2.16 kg), 1.0% by weight of a talc masterbatch, 1.5% by weight of glycerol mono stearate and 1.5% by weight of a dye in a single step at 95 kg / h with 8.6 kg per hour of a mixture of isobutane through a die.

Pour cela l'ensemble des constituants du mélange est chauffé successivement entre 180°C et 190°C pour une étape de chauffage et mélangeage. Après introduction du gaz de moussage le mélange est refroidi et mélangé à 140°C et extrudé au travers de la filière à 130°C. Une filière annulaire est utilisée pour former le flux de matière qui mousse librement à la sortie de celle-ci. La mousse est produite avec une très bonne processabilité et présente après production une densité de 30 kg/m3, une épaisseur de 6mm, un excellent aspect, une coloration attendue et uniforme, la distribution des cellules est régulière, la surface ne présente aucun défaut. La mousse obtenue présente également une coalescence réduite et une bonne résilience. Les propriétés des différentes mousses produites sont 35 détaillées dans le Tableau 1. Différentes mousses comparatives (Comp 1, Comp 2 et Comp 3,) fabriquées selon un procédé similaire et constituées de polyéthylène basse densité ayant une densité de 921 kg/m3 et ayant un MFI de 1,9g/lOmin (190°C et 2,16kg), ont également été évaluées pour comparaison. Les propriétés de ces mousses figurent également dans le Tableau 1. For this, all the constituents of the mixture are successively heated between 180 ° C. and 190 ° C. for a heating and mixing step. After introduction of the foaming gas the mixture is cooled and mixed at 140 ° C and extruded through the die at 130 ° C. An annular die is used to form the flow of freely foaming material at the outlet thereof. The foam is produced with a very good processability and after production has a density of 30 kg / m3, a thickness of 6mm, excellent appearance, expected and uniform coloring, the distribution of cells is regular, the surface has no defects. The resulting foam also has reduced coalescence and good resilience. The properties of the various foams produced are detailed in Table 1. Various comparative foams (Comp 1, Comp 2 and Comp 3,) made by a similar process and made of low density polyethylene having a density of 921 kg / m 3 and having a MFI of 1.9 g / lOmin (190 ° C and 2.16 kg), were also evaluated for comparison. The properties of these foams are also shown in Table 1.

Tableau 1 Unité Ex Ex Ex Ex Compl Comp2 Comp3 Ex 1 2 3 4 5 Densité kg/m3 25 25 55 18 25 55 18 30 ISO 845 Epaisseur mm 11 11 3 1,5 11 3 1,5 6 Contrainte à 50% de compression kPa 52 57 / / 59 / / IS03386-1 Allongement rupture % 120 128 122 58 116 99 60 95 Sens Machine ISO 1798 Allongement rupture Sens % 87 109 113 54 74 85 57 80 Transverse ISO 1798 Inflammabilité mm/min 155 166 272 692 181 415 770 112 ISO 7214 / : Non mesurable (épaisseur trop faible) Outre le fait que les mousses selon l'invention présentent l'avantage d'être partiellement fabriquées à partir de matière d'origine végétale, les essais montrent que ces mousses présentent des propriétés mécaniques similaires, voire améliorées, par rapport à celles des mousses de polyoléfine (Ex 1 ou Ex 2 vs. Compl, Ex 3 vs. Comp2 ou Ex 4 vs. Comp3). De plus, les essais montrent que le comportement au feu des 5 mousses selon l'invention est amélioré vis-à-vis des mousses comparatives. Table 1 Ex Ex Ex Ex Ex Ex Comp 2 Comp3 Ex 1 2 3 4 5 Density kg / m3 25 25 55 18 25 55 18 30 ISO 845 Thickness mm 11 11 3 1.5 11 3 1.5 6 50% compressive stress kPa 52 57 / / 59 / / IS03386-1 Elongation elongation% 120 128 122 58 116 99 60 95 Direction Machine ISO 1798 Sense elongation elongation% 87 109 113 54 74 85 57 80 Transverse ISO 1798 Flammability mm / min 155 166 272 692 181 415 770 112 ISO 7214 /: Not measurable (thickness too low) In addition to the fact that the foams according to the invention have the advantage of being partially manufactured from material of plant origin, the tests show that these foams have similar mechanical properties, even improved, compared to those of polyolefin foams (Ex 1 or Ex 2 vs. Compl, Ex 3 vs. Comp 2 or Ex 4 vs. Comp 3). In addition, the tests show that the fire behavior of the foams according to the invention is improved with respect to the comparative foams.

Claims (15)

REVENDICATIONS1. Mousse obtenue à partir d'une composition comprenant: - une polyoléfine choisie parmi le groupe comprenant le polyéthylène et le polypropylène et leurs mélanges ; - au moins une polyoléfine fonctionnalisée comprenant de 0,1 à 10 % en masse d'au moins un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique insaturés, les oxiranes insaturés et les silanes insaturés, préférentiellement l'anhydride maléique ou le méthacrylate de glycidyle ; - de 2 à 40% en masse d'amidon par rapport au poids total de la composition ; - de 2 à 40% d'au moins un plastifiant de cet amidon par rapport au poids total de la composition ; ladite mousse présentant une densité inférieure à 300 kg/m3. REVENDICATIONS1. Foam obtained from a composition comprising: a polyolefin chosen from the group comprising polyethylene and polypropylene and their mixtures; at least one functionalized polyolefin comprising from 0.1 to 10% by weight of at least one functional monomer (X) chosen from unsaturated carboxylic acid anhydrides, unsaturated oxiranes and unsaturated silanes, preferentially maleic anhydride or glycidyl methacrylate; from 2 to 40% by weight of starch relative to the total weight of the composition; from 2 to 40% of at least one plasticizer of this starch relative to the total weight of the composition; said foam having a density of less than 300 kg / m3. 2. Mousse selon la revendication 1, caractérisée en ce qu'elle présente une densité inférieure à 250 kg/m3, avantageusement entre 5 et 200 kg/m3, de préférence entre 7 et 100 kg/m3, tout préférentiellement entre 10 et 60 kg/ m3. 2. Foam according to claim 1, characterized in that it has a density of less than 250 kg / m3, preferably between 5 and 200 kg / m3, preferably between 7 and 100 kg / m3, most preferably between 10 and 60 kg. / m3. 3. Mousse selon l'une des revendications précédentes, caractérisée en ce que la polyoléfine est un polyéthylène, de préférence un polyéthylène présentant une densité comprise entre 0,905 et 0,940. 3. Foam according to one of the preceding claims, characterized in that the polyolefin is a polyethylene, preferably a polyethylene having a density between 0.905 and 0.940. 4. Mousse selon la revendication 1 ou 2, caractérisée en ce que la polyoléfine est un polypropylène, de préférence un polypropylène ramifié. 35 4. Foam according to claim 1 or 2, characterized in that the polyolefin is a polypropylene, preferably a branched polypropylene. 35 5. Mousse selon l'une des revendications précédentes, caractérisée en ce que la somme des quantités de polyoléfine et 30de polyoléfine fonctionnalisée va de 25 à 95% en masse de la composition, de préférence de 45 à 90%, tout préférentiellement de 55% à 85%. Foam according to one of the preceding claims, characterized in that the sum of the amounts of polyolefin and functionalized polyolefin ranges from 25 to 95% by weight of the composition, preferably from 45 to 90%, most preferably 55%. at 85%. 6. Mousse selon l'une des revendications précédentes, caractérisée en ce que le ratio massique polyoléfine/polyoléfine fonctionnalisée va de 10/90 à 99/1, avantageusement de 45/55 à 98/2, préférentiellement de 70/30 à 95/5. 6. Foam according to one of the preceding claims, characterized in that the weight ratio polyolefin / functionalized polyolefin ranges from 10/90 to 99/1, preferably from 45/55 to 98/2, preferably from 70/30 to 95 / 5. 7. Mousse selon l'une des revendications précédentes, caractérisée en ce que le plastifiant de l'amidon est choisi parmi le glycérol, le sorbitol, le mannitol, le maltitol, des oligomères de ces polyols, le polyéthylène glycol, l'urée ou un mélange de ces plastifiants. 7. Foam according to one of the preceding claims, characterized in that the plasticizer of the starch is selected from glycerol, sorbitol, mannitol, maltitol, oligomers of these polyols, polyethylene glycol, urea or a mixture of these plasticizers. 8. Mousse selon l'une des revendications précédentes, caractérisée en ce que les cellules de la mousse présente une taille de cellules moyenne en nombre allant de 0,1 à 3 mm, avantageusement de 0,5 à 2,5 mm et de préférence de 0,8 à 1,8 MM. Foam according to one of the preceding claims, characterized in that the cells of the foam have a number-average cell size ranging from 0.1 to 3 mm, advantageously from 0.5 to 2.5 mm and preferably from 0.8 to 1.8 MM. 9. Procédé de fabrication d'une mousse selon l'une des revendications précédentes, caractérisé en ce que ledit procédé 25 comprenant les étapes suivantes : a. introduction de la composition ou des constituants de la composition dans une extrudeuse ; b. chauffage et mélangeage pour fondre entièrement la masse et l'homogénéiser ; 30 c. injection d'un gaz de moussage ou d'un liquide apte à former un gaz de moussage dans l'extrudeuse ; d. homogénéisation du mélange de la composition et du gaz de moussage ; e. refroidissement partiel du mélange et homogénéisation ; 35 f. extrusion à travers une filière de ce mélange provoquant la formation de la mousse en sortie de filière. 9. A method of manufacturing a foam according to one of the preceding claims, characterized in that said method comprising the following steps: a. introducing the composition or constituents of the composition into an extruder; b. heating and mixing to fully melt the mass and homogenize it; 30 c. injecting a foaming gas or a liquid capable of forming a foaming gas in the extruder; d. homogenizing the mixture of the composition and the foaming gas; e. partial cooling of the mixture and homogenization; 35 f. extrusion through a die of this mixture causing the formation of the foam at the die outlet. 10. Procédé selon la revendication 9, caractérisé en ce que le gaz de moussage introduit lors de l'étape c comprend les alcanes, les gaz hydrochlorofluorocarbonés ou les gaz inertes, préférentiellement l'isobutane. 10. The method of claim 9, characterized in that the foaming gas introduced during step c comprises alkanes, hydrochlorofluorocarbon gases or inert gases, preferably isobutane. 11. Procédé selon l'une des revendications 9 ou 10, caractérisé en ce que la température de l'étape b se situe entre 150 et 220 °C, de préférence entre 160 et 200°C. 11. Method according to one of claims 9 or 10, characterized in that the temperature of step b is between 150 and 220 ° C, preferably between 160 and 200 ° C. 12. Procédé selon l'une des revendications 9 à 11, caractérisé en ce que la température à l'étape e est comprise entre 100 et 150 °C, de préférence entre 100 et 140°C. 12. Method according to one of claims 9 to 11, characterized in that the temperature in step e is between 100 and 150 ° C, preferably between 100 and 140 ° C. 13. Procédé selon l'une des revendications 9 à 12, 15 caractérisé en ce que la température à l'étape f est comprise entre 80 et 140 °C, de préférence entre 90 et 120°C. 13. Method according to one of claims 9 to 12, characterized in that the temperature in step f is between 80 and 140 ° C, preferably between 90 and 120 ° C. 14. Utilisation de la mousse selon l'une des revendications 1 à 8, dans les domaines de l'emballage, du bâtiment, de 20 l'automobile, des transports, du sport, des jouets, de la chaussure, des industries des matériaux composites, ou pour la fabrication de tout type d'objet, par exemple un emballage, un panneau, un élément décoratif, un tube ou un profilé, un amortisseur ou une chaussure. 25 14. Use of the foam according to one of claims 1 to 8, in the fields of packaging, building, automobile, transport, sports, toys, footwear, materials industries. composites, or for the manufacture of any type of object, for example a packaging, a panel, a decorative element, a tube or a profile, a shock absorber or a shoe. 25 15. Structure comprenant une couche de mousse selon l'une des revendications 1 à 8 et au moins une couche support adhérant à la couche de mousse. 30 15. Structure comprising a foam layer according to one of claims 1 to 8 and at least one support layer adhering to the foam layer. 30
FR1254074A 2012-05-03 2012-05-03 FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN Expired - Fee Related FR2990209B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1254074A FR2990209B1 (en) 2012-05-03 2012-05-03 FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN
EP13723895.2A EP2844689A1 (en) 2012-05-03 2013-05-02 Foam based on thermoplastic starch and polyolefin
PCT/FR2013/050972 WO2013164547A1 (en) 2012-05-03 2013-05-02 Foam based on thermoplastic starch and polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1254074A FR2990209B1 (en) 2012-05-03 2012-05-03 FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN

Publications (2)

Publication Number Publication Date
FR2990209A1 true FR2990209A1 (en) 2013-11-08
FR2990209B1 FR2990209B1 (en) 2014-05-09

Family

ID=48468654

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1254074A Expired - Fee Related FR2990209B1 (en) 2012-05-03 2012-05-03 FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN

Country Status (3)

Country Link
EP (1) EP2844689A1 (en)
FR (1) FR2990209B1 (en)
WO (1) WO2013164547A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786313B1 (en) * 2016-03-17 2017-10-17 현대자동차주식회사 Polyolefin composite composition for automotive airduct

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844009A (en) * 1996-04-26 1998-12-01 Sentinel Products Corp. Cross-linked low-density polymer foam
WO2007027877A1 (en) * 2005-08-31 2007-03-08 Gala Industries, Inc. Method and apparatus for pelletizing biomaterial composites
WO2012019244A1 (en) * 2010-08-13 2012-02-16 Tristano Pty Ltd Polymer foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085421A1 (en) 2008-01-25 2009-08-05 Nmc S.A. Fire retardant foam compositions
FR2927084B1 (en) 2008-02-01 2011-02-25 Roquette Freres PROCESS FOR THE PREPARATION OF THERMOPLASTIC COMPOSITIONS BASED ON PLASTICIZED STARCH AND COMPOSITIONS THUS OBTAINED
FR2934272B1 (en) 2008-07-24 2013-08-16 Roquette Freres PROCESS FOR THE PREPARATION OF COMPOSITIONS BASED ON AMYLACEOUS MATERIAL AND SYNTHETIC POLYMER
JP4358895B1 (en) 2009-01-06 2009-11-04 昭和高分子株式会社 Foamable resin composition and foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844009A (en) * 1996-04-26 1998-12-01 Sentinel Products Corp. Cross-linked low-density polymer foam
WO2007027877A1 (en) * 2005-08-31 2007-03-08 Gala Industries, Inc. Method and apparatus for pelletizing biomaterial composites
WO2012019244A1 (en) * 2010-08-13 2012-02-16 Tristano Pty Ltd Polymer foam

Also Published As

Publication number Publication date
EP2844689A1 (en) 2015-03-11
FR2990209B1 (en) 2014-05-09
WO2013164547A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
EP2310447B1 (en) Process for preparing compositions based on a starchy component and on a synthetic polymer
Pushpadass et al. Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films
US9464188B2 (en) Simultaneous plasticization and compatibilization process and compositions
WO2011117549A1 (en) Plant material compositions and method for preparing same
CA2712901A1 (en) Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions
EP3548546B1 (en) Biaxially stretched starch-based foil
KR920700884A (en) Starch moldings
WO2012056183A2 (en) Method for producing a multilayer structure comprising an adhesive composition based on an amylaceous material
FR2927083A1 (en) Preparing thermoplastic composition based on amylaceous soluble material, comprises selecting a soluble amylaceous material and a binding agents and incorporating the binding agent in amylaceous soluble material by thermomechanical mixing
CN109233162B (en) Environment-friendly degradable composite film for packaging and preparation method thereof
WO2016079417A1 (en) Composition comprising a mixture of polyesters and thermoplastic starch, having improved film-forming ability
EP2516535A1 (en) Compositions containing plant matter and synthetic fibres and method for preparing such compositions
WO2011086334A1 (en) Method for preparing thermoplastic compositions of plasticised starch, and such compositions
FR2990209A1 (en) FOAMS BASED ON THERMOPLASTIC STARCH AND POLYOLEFIN
WO2014009679A1 (en) Starch-based thermoplastic composition comprising a copolymer grafted with a functional compound
WO2015107301A1 (en) Starch-based masterbatch including a grafted polyolefin
EP2872564B1 (en) Thermoplastic starch composition containing functionalised propylene copolymer
FR2791603A1 (en) Water-resistant biodegradable composite material useful for making containers comprises a core of thermoplastic starch and a shell of a biodegradable polymer having a low melting point and a high viscosity
WO2014009678A1 (en) Starch-based thermoplastic composition comprising a functionalised polypropylene of selected fluidity
WO2014009677A1 (en) Starch-based thermoplastic composition comprising a functionalised polyethylene wax
EP3634615B1 (en) Process for producing polymer blend
EP0440557A2 (en) Saponified ethylene-vinyl-acetate composition containing hydrotalcite and use thereof

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20160129