FR2985566A1 - LIQUID LEVEL SENSOR WITH FREE FLOAT - Google Patents

LIQUID LEVEL SENSOR WITH FREE FLOAT Download PDF

Info

Publication number
FR2985566A1
FR2985566A1 FR1250170A FR1250170A FR2985566A1 FR 2985566 A1 FR2985566 A1 FR 2985566A1 FR 1250170 A FR1250170 A FR 1250170A FR 1250170 A FR1250170 A FR 1250170A FR 2985566 A1 FR2985566 A1 FR 2985566A1
Authority
FR
France
Prior art keywords
measuring
float
liquid level
probes
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1250170A
Other languages
French (fr)
Other versions
FR2985566B1 (en
Inventor
Dominique Pinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Technique pour lEnergie Atomique Technicatome SA
TechnicAtome SA
Original Assignee
Societe Technique pour lEnergie Atomique Technicatome SA
TechnicAtome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Technique pour lEnergie Atomique Technicatome SA, TechnicAtome SA filed Critical Societe Technique pour lEnergie Atomique Technicatome SA
Priority to FR1250170A priority Critical patent/FR2985566B1/en
Priority to PCT/EP2013/050099 priority patent/WO2013102658A1/en
Priority to EP13701710.9A priority patent/EP2800955A1/en
Publication of FR2985566A1 publication Critical patent/FR2985566A1/en
Application granted granted Critical
Publication of FR2985566B1 publication Critical patent/FR2985566B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • G01F23/70Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means for sensing changes in level only at discrete points
    • G01F23/703Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means for sensing changes in level only at discrete points using electromechanically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • G01F23/70Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means for sensing changes in level only at discrete points
    • G01F23/706Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means for sensing changes in level only at discrete points using opto-electrically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
    • G01F23/74Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means for sensing changes in level only at discrete points

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

Le dispositif de mesure d'un niveau de liquide dans un réservoir comprenant un flotteur apte à flotter à la surface dudit liquide, le dit flotteur étant logé à l'intérieur d'un tube principal permettant le guidage en translation dudit flotteur sous la poussée hydrostatique exercé par le fluide, le dispositif comprenant en outre une pluralité de logements comprenant chacun au moins une sonde fixée à l'intérieur dudit logement à une profondeur prédéterminée.The device for measuring a level of liquid in a tank comprising a float able to float on the surface of said liquid, said float being housed inside a main tube for translational guidance of said float under the hydrostatic thrust exerted by the fluid, the device further comprising a plurality of housings each comprising at least one probe attached within said housing to a predetermined depth.

Description

CAPTEUR DE NIVEAU DE LIQUIDE AVEC FLOTTEUR LIBRE DOMAINE Le domaine de l'invention est celui des capteurs de niveau d'un liquide stocké dans un réservoir tel qu'un bassin ou une piscine. Plus particulièrement, l'invention se rapporte aux capteurs de grandes dimensions et s'applique notamment aux réservoirs devant présenter une grande fiabilité tels que les réservoirs utilisés dans les installations nucléaires, notamment les piscines destinées à recevoir les assemblages combustibles. ETAT DE L'ART Actuellement, il existe différents types de capteurs de niveau de grandes tailles d'un liquide stocké dans un bassin. Parmi ces systèmes, il existe des capteurs électromagnétiques tels que ceux décrits dans le document de brevet US2005 109105. Ce dernier document décrit un système de mesure du niveau d'un liquide dans un réservoir utilisant un flotteur comportant un aimant flottant dans le réservoir. Le document de brevet EP 0397338 décrit également un capteur électromagnétique de niveau de liquide comportant un aimant flottant qui coulisse dans un tube. Un capteur est disposé autour de l'aimant. The field of the invention is that of the level sensors of a liquid stored in a tank such as a pond or swimming pool. More particularly, the invention relates to large size sensors and is particularly applicable to tanks to be highly reliable such as tanks used in nuclear facilities, including pools for receiving fuel assemblies. STATE OF THE ART Currently, there are different types of level sensors of large sizes of a liquid stored in a basin. Among these systems, there are electromagnetic sensors such as those described in patent document US2005109105. This latter document describes a system for measuring the level of a liquid in a tank using a float comprising a magnet floating in the tank. The patent document EP 0397338 also describes an electromagnetic liquid level sensor comprising a floating magnet which slides in a tube. A sensor is arranged around the magnet.

Il existe également des capteurs de type optique tels que ceux décrits dans le document de brevet US 6173609. Ce denier décrit un système de mesure du niveau d'un liquide utilisant un capteur optique, notamment un guide d'ondes. Le guide d'ondes peut consister en une pluralité de fibres présentant des longueurs différentes. There are also optical type sensors such as those described in US patent document 6173609. This discloses a system for measuring the level of a liquid using an optical sensor, including a waveguide. The waveguide may consist of a plurality of fibers having different lengths.

II existe également des capteurs hybrides de type électromagnétique et optique, tels que ceux décrits dans la demande de brevet W02004076987. Ce dernier document décrit un capteur de niveau de liquide comportant un flotteur aimanté qui coulisse dans un tube et un élément de capteur optique mis autour du flotteur. L'élément de capteur possède des caractéristiques variables de réflexion à la suite de l'action d'un champ magnétique. There are also hybrid sensors of the electromagnetic and optical type, such as those described in the patent application WO2004076987. The latter document describes a liquid level sensor having a magnetic float that slides in a tube and an optical sensor element around the float. The sensor element has variable reflection characteristics as a result of the action of a magnetic field.

Généralement, un capteur aimanté permet d'agir sur des circuits électriques au niveau de la surface du liquide afin d'en mesurer le niveau. Le document de brevet US 5552774 décrit typiquement un procédé standard de détermination du niveau d'un liquide dans un réservoir avec un flotteur aimanté qui ouvre ou ferme un circuit électrique en réponse à un changement de niveau du liquide. Néanmoins, ces solutions présentent de nombreux inconvénients. Notamment, les systèmes de mesures de niveau d'un liquide tel l'eau d'une piscine destinée à recevoir les assemblages combustibles nucléaires doivent être opérationnels par toutes conditions. En l'occurrence, les systèmes de mesure doivent pouvoir résister à des tremblements de terre et par conséquent les sondes utilisées ne doivent pas être de trop grandes dimensions. Les solutions actuelles présentent souvent un problème quant à la réalisation des sondes qui doivent être de grande taille et qui présentent un jeu trop important pour un dimensionnement antisismique. Generally, a magnetic sensor makes it possible to act on electrical circuits at the surface of the liquid in order to measure the level thereof. US 5552774 typically discloses a standard method of determining the level of a liquid in a tank with a magnetic float that opens or closes an electrical circuit in response to a change in fluid level. Nevertheless, these solutions have many disadvantages. In particular, systems for measuring the level of a liquid such as pool water intended to receive the nuclear fuel assemblies must be operational under all conditions. In this case, the measuring systems must be able to withstand earthquakes and therefore the probes used must not be too large. Current solutions often present a problem in the realization of the probes which must be large and which present a game too important for an antiseismic dimensioning.

En outre, aucun de ces systèmes ne permet une maintenance facilitée. Ainsi, l'un des inconvénients majeurs des dispositifs de grandes tailles provient du fait que l'architecture des structures ne permet pas une maintenance aisée. En cas d'accident ou de panne, la maintenance d'un capteur/une sonde doit pouvoir être simplifiée à son maximum. In addition, none of these systems allows easy maintenance. Thus, one of the major drawbacks of large devices comes from the fact that the architecture of the structures does not allow easy maintenance. In the event of an accident or breakdown, the maintenance of a sensor / probe must be simplified to its maximum.

RESUME DE L'INVENTION L'invention permet de résoudre les inconvénients précités. SUMMARY OF THE INVENTION The invention solves the aforementioned drawbacks.

L'invention concerne un dispositif de mesure d'un niveau de liquide dans un réservoir. Avantageusement, le dispositif comprend un flotteur apte à flotter à la surface dudit liquide, le dit flotteur étant logé à l'intérieur d'un tube principal permettant le guidage en translation dudit flotteur sous la poussée hydrostatique exercé par le fluide. Le dispositif comprend, en outre, une pluralité de sondes disposées à proximité du tube s principal, chaque sonde étant susceptible de mesurer la position du flotteur sur une portion de la profondeur du bassin, ladite sonde étant maintenue à une profondeur prédéterminée. Avantageusement, l'ensemble des portions de mesure recouvrant la course maximale du flotteur dans le tube principal sous l'effet de la 10 poussée hydrostatique. Avantageusement, le dispositif de mesure comprend une pluralité de logements, chaque logement comprenant chacun au moins une sonde, les sondes étant maintenues à l'intérieur desdits logements. Cette solution permet d'effectuer des opérations de maintenance 15 spécifiques sur chacune des sondes sans générer une interruption totale de fonctionnement du dispositif de mesure. En effet, chaque logement comprend une sonde qui peut être remplacée ou réparée sans impact sur les sondes des autres logements. Les logements sont préférentiellement des tubes juxtaposés au 20 tube principal, appelés tubes secondaires. Structurellement la forme d'un tube facilite la pose et le retrait d'une sonde lors des opérations de maintenance. Avantageusement, deux tubes secondaires pris deux à deux ont chacun une extrémité située sensiblement à la même hauteur et ont des 25 longueurs différentes s'étendant dans la profondeur du bassin de manière à ce que les sondes soient posées au fond de chaque tube secondaire. 30 En conséquence, deux tubes secondaires pris deux à deux ont des longueurs différentes de manière à ce que les sondes soient susceptibles de mesurer la position du flotteur sur des portions différentes de la profondeur du réservoir. Ainsi cette solution permet notamment de limiter s la taille des sondes. Avantageusement, chaque portion de mesure est inférieure à 2m. En outre, les sondes de mesure sont disposées dans des tubes secondaires entourant le tube principal. Chacun des tubes secondaires comprend une sonde qui est disposée à une hauteur spécifique et différente 10 d'au moins une autre sonde d'un autre tube secondaire. Cette caractéristique permet de limiter la taille des sondes et d'éviter de prévoir une hauteur sous plafond importante. Elle facilite donc les opérations de maintenance. Elle permet également de pouvoir contrôler le niveau de l'eau sur toute la course du flotteur puisque les sondes sont 15 disposées à différentes profondeurs. En outre, si un composant est endommagé, une opération de maintenance localisée peut-être réalisée sans interrompre le fonctionnement du dispositif ou le service complètement. Dans une réalisation préférée, les sondes de mesure sont toutes identiques entre elles et sont disposées à différentes profondeurs, cela 20 permet ainsi de limiter le nombre de références de pièces de rechange. L'invention propose d'utiliser un aimant flottant, qui est un flotteur, et qui coulisse dans un tube principal. L'utilisation d'un champ magnétique présente l'avantage d'être indépendant des niveaux d'irradiation ou de température pouvant endommager des composants électroniques. 25 Avantageusement, dans ce cas, le flotteur comprend des moyens de génération d'un champ magnétique et que les sondes comprennent des relais électromagnétiques s'activant lorsqu'ils sont sous l'action du champ magnétique du flotteur. Avantageusement, les relais électromagnétiques se désactivent en dehors du champ magnétique du flotteur. 30 Les tubes secondaires sont préférentiellement disposés pour dépasser la hauteur maximale à mesurer du liquide du bassin pour éviter l'emploi de connecteur(s) étanche(s). Les tubes forment alors une cavité étanche. Outre les caractéristiques principales qui viennent d'être mentionnées dans le paragraphe précédent, le dispositif de mesure selon s l'invention peut présenter une ou plusieurs caractéristiques supplémentaires ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement réalisables : Avantageusement, une variante de réalisation comprend des tubes secondaires sensiblement de même taille et que des moyens de 10 maintien disposés à l'intérieur de chaque tube permettent de maintenir les sondes à différentes profondeurs. Avantageusement, chaque tube secondaire comprend une unique sonde. Les tubes secondaires peuvent être localisés autour du tube principal et former un colimaçon. 15 Avantageusement, chaque sonde comprend un circuit électrique tout en longueur formé d'une alternance de résistances et de relais, la mesure du niveau du liquide s'effectuant par une mesure de courant. BREVES DESCRIPTION DES FIGURES 20 D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui est donnée ci-après, à titre purement indicatif et nullement limitatif, de modes de réalisation faisant références à différentes figures sur lesquelles : 25 ^ la figure 1 représente une vue de dessus du dispositif de l'invention ; ^ figure 2 représente une vue de face du dispositif de l'invention ; ^ figure 3 représente un tube secondaire de l'invention comprenant une sonde; 30 ^ figure 4 représente une sonde de l'invention comprenant une pluralité de relais électromagnétiques ; ^ figure 5 représente une première alternative de réalisation du dispositif de l'invention ; ^ figure 6 illustre une seconde alternative de réalisation du dispositif de l'invention. The invention relates to a device for measuring a level of liquid in a tank. Advantageously, the device comprises a float able to float on the surface of said liquid, said float being housed inside a main tube for translational guidance of said float under the hydrostatic thrust exerted by the fluid. The device further comprises a plurality of probes disposed near the main tube, each probe being capable of measuring the position of the float on a portion of the depth of the basin, said probe being maintained at a predetermined depth. Advantageously, all the measuring portions covering the maximum stroke of the float in the main tube under the effect of the hydrostatic thrust. Advantageously, the measuring device comprises a plurality of housings, each housing each comprising at least one probe, the probes being held inside said housing. This solution makes it possible to carry out specific maintenance operations on each of the probes without generating a total interruption of operation of the measuring device. Indeed, each housing includes a probe that can be replaced or repaired without impact on the probes of other dwellings. The housings are preferably tubes juxtaposed to the main tube, called secondary tubes. Structurally the shape of a tube facilitates the installation and removal of a probe during maintenance operations. Advantageously, two secondary tubes taken in pairs each have an end located substantially at the same height and have different lengths extending in the depth of the basin so that the probes are placed at the bottom of each secondary tube. As a result, two secondary tubes taken in pairs have different lengths so that the probes are capable of measuring the position of the float on different portions of the depth of the reservoir. Thus, this solution makes it possible to limit the size of the probes. Advantageously, each measurement portion is less than 2m. In addition, the measurement probes are arranged in secondary tubes surrounding the main tube. Each of the secondary tubes comprises a probe which is disposed at a specific height and different from at least one other probe of another secondary tube. This characteristic makes it possible to limit the size of the probes and to avoid providing a large ceiling height. It therefore facilitates maintenance operations. It also makes it possible to control the level of the water over the entire stroke of the float since the probes are arranged at different depths. In addition, if a component is damaged, a localized maintenance operation can be performed without interrupting the operation of the device or the service completely. In a preferred embodiment, the measurement probes are all identical to one another and are arranged at different depths, thus making it possible to limit the number of spare part references. The invention proposes to use a floating magnet, which is a float, and which slides in a main tube. The use of a magnetic field has the advantage of being independent of the levels of irradiation or temperature that can damage electronic components. Advantageously, in this case, the float comprises means for generating a magnetic field and the probes comprise electromagnetic relays activated when they are under the action of the magnetic field of the float. Advantageously, the electromagnetic relays are deactivated outside the magnetic field of the float. The secondary tubes are preferably arranged to exceed the maximum height to be measured of the liquid of the basin to avoid the use of connector (s) waterproof (s). The tubes then form a sealed cavity. In addition to the main features that have just been mentioned in the preceding paragraph, the measuring device according to the invention may have one or more additional characteristics below, taken individually or in any technically feasible combination: Advantageously, a variant of FIG. The embodiment comprises secondary tubes of substantially the same size and holding means disposed within each tube to hold the probes at different depths. Advantageously, each secondary tube comprises a single probe. The secondary tubes can be located around the main tube and form a spiral. Advantageously, each probe comprises a full-length electrical circuit formed of an alternation of resistors and relays, the measurement of the level of the liquid being effected by a measurement of current. BRIEF DESCRIPTION OF THE FIGURES Other characteristics and advantages of the invention will emerge clearly from the description given below, purely by way of indication and in no way limiting, of embodiments referring to various figures in which: FIG. 1 represents a view from above of the device of the invention; Figure 2 shows a front view of the device of the invention; Figure 3 shows a secondary tube of the invention comprising a probe; Figure 4 shows a probe of the invention comprising a plurality of electromagnetic relays; FIG. 5 represents a first alternative embodiment of the device of the invention; FIG. 6 illustrates a second alternative embodiment of the device of the invention.

DESCRIPTION La figure 1 représente une vue de dessus du dispositif 1 de l'invention. Le dispositif 1 comprend un tube principal 2 et des tubes secondaires 3 qui sont disposés autour du tube principal 1. Selon les modes de réalisation, les tubes secondaires peuvent entourer totalement ou partiellement le tube principal. Une pluralité de tubes secondaires 3 entourant le tube principal 2 selon un arc de cercle conviendrait pour certaines applications de l'invention. DESCRIPTION Figure 1 shows a top view of the device 1 of the invention. The device 1 comprises a main tube 2 and secondary tubes 3 which are arranged around the main tube 1. According to the embodiments, the secondary tubes may wholly or partially surround the main tube. A plurality of secondary tubes 3 surrounding the main tube 2 in a circular arc would be suitable for certain applications of the invention.

La figure 2 représente une vue de face du dispositif de l'invention. Le tube principal 2 est entouré de tubes secondaires, notés 31, 32, 33, 34, 35 sur la figure 2, de différentes longueurs. Les tubes secondaires 31, 32, 33, 34, 35 correspondent aux tubes 3 de la figure 1. Un flotteur 4 est guidé dans le tube principal 2. Le flotteur peut parcourir la longueur totale du tube principal 2. Le tube principal 2 est muni de moyens d'ouverture et éventuellement de moyens de filtrage permettant d'égaliser le niveau du liquide à l'intérieur du tube principal 2 avec celui du bassin. Les niveaux d'eau sont symbolisés par les deux lignes horizontales 5 et 6 correspondantes à deux configurations différentes selon le remplissage du bassin. Le flotteur 4 peut être de forme ovoïde tel qu'il est représenté à la figure 2. Il peut également présenter n'importe quelle autre forme de flotteur admissible. Le flotteur 4 permet de s'aligner au niveau 5, 6 d'eau d'un bassin tout en étant maintenu dans une position dont deux degrés de libertés sont fixés. La seule translation guidé dans le tube est autorisée. Figure 2 shows a front view of the device of the invention. The main tube 2 is surrounded by secondary tubes, labeled 31, 32, 33, 34, 35 in Figure 2, of different lengths. The secondary tubes 31, 32, 33, 34, 35 correspond to the tubes 3 of FIG. 1. A float 4 is guided in the main tube 2. The float can travel the total length of the main tube 2. The main tube 2 is provided with opening means and possibly filtering means for equalizing the level of the liquid inside the main tube 2 with that of the basin. The water levels are symbolized by the two horizontal lines 5 and 6 corresponding to two different configurations depending on the filling of the basin. The float 4 may be of ovoid shape as shown in Figure 2. It may also have any other form of eligible float. The float 4 allows to align with the level 5, 6 of water of a pool while being maintained in a position of which two degrees of freedom are fixed. The only guided translation in the tube is allowed.

Dans un mode de réalisation le flotteur comprend des moyens de génération d'un champ électromagnétique tel qu'un aimant dans son mode de réalisation le plus simple à mettre en oeuvre. Chaque tube secondaire 31, 32, 33, 34, 35 comprend une sonde s dont la hauteur est plus petite que la hauteur du tube secondaire qui lui est associé. Lors de l'installation ou d'une opération de maintenance, chaque sonde peut coulisser en translation dans chaque tube secondaire de manière à être retirée ou positionnée à l'intérieur. Lorsqu'une sonde est introduite 10 dans un tube secondaire, des moyens permettent de fixer la sonde à une certaine hauteur prédéfinie. Par exemple, dans le mode de réalisation de la figure 2, les sondes insérées dans les tubes secondaires peuvent être retenues naturellement par le fond de chaque tube secondaire. Chaque sonde est 15 positionnée à une profondeur différente compte tenu que les tubes sont de longueurs différentes. De manière alternative, chaque tube secondaire peut comprendre des moyens de maintien d'une sonde. Typiquement, les figures 5 et 6 représentent des exemples d'alternatives détaillées dans la suite de la 20 description. Le dispositif de l'invention permet d'utiliser autant de tubes secondaires que de sondes. Cette solution permet de disposer une seule sonde par tube secondaire et simplifie la maintenance des dispositifs de mesures de niveau d'eau d'un bassin. 25 Cet avantage est notamment primordial en cas d'accident, c'est-à- dire lorsque les mesures de contrôle de niveaux de liquide sont nécessaires et/ou lorsque des opérations de maintenance doivent être entreprises pour remplacer des sondes défectueuses. Les sondes peuvent être aisément retirées des tubes secondaires 30 par le haut du tube qui est émergé. En effet, une configuration préférée de l'invention permet de disposer les tubes de manière à ce qu'ils dépassent du niveau d'eau maximum d'un bassin. Il n'est pas besoin qu'une hauteur sous plafond soit prévue de manière à retirer une sonde de plusieurs mètres de longueur. La figure 3 représente une sonde 40 dans un tube secondaire 33. s La sonde 40 est retenue par le fond 42 du tube secondaire 43. Les sondes peuvent être reliées à un calculateur externe permettant de relever les mesures des sondes par l'intermédiaire de fils électriques 41. Dans la figure 4, chaque sonde 40 comprend, par exemple, une série de relais montés en série 51, 52, 53, 54, 55 et 56 qui changent d'état 10 lorsqu'ils sont dans le champ magnétique du flotteur. Un mode de réalisation concerne des sondes qui comprennent des relais électromagnétiques disposés en série et espacé d'une distance fixe. Par exemple, les relais électromagnétiques peuvent être disposés entre des résistances d'une série de résistances montés en série et disposées sur un circuit imprimé conçu 15 tout en longueur. Lorsque le champ magnétique d'un aimant est à proximité d'un relais électromagnétique, il active ou désactive un élément métallique qui permet d'ouvrir ou de fermé me circuit électrique imprimé. En conséquence, le circuit formé de la série de résistances montées sur un circuit s'ouvre ou 20 se ferme en fonction de la présence du champ magnétique. Les pièces métalliques réagissent à présence du champ magnétique et permettent de définir une résistance totale équivalente du circuit ainsi modifié par la présence du cham magnétique. Une lamelle métallique peut être utilisée pour court-circuiter le 25 montage ou l'ouvrir ou encore des résistances métalliques peuvent être utilisées. Les résistances peuvent être, par exemple, enrobées dans de la céramique. Un montage entièrement mécanique serait équivalent dans le dispositif de l'invention. L'aimant dans ce dernier cas actionne des pièces 30 métalliques telles que des switch ou des lamelles qui sont attirées par la présence de l'aimant. 2985 566 9 L'avantage de l'utilisation de résistances formant un circuit électrique est que le niveau du liquide peut être directement lu et interprété par une mesure d'intensité ou de résistance équivalente de sortie ou par un voltmètre. Un calculateur permet de réaliser la conversion d'une donnée s électrique en une grandeur physique, notamment un niveau d'un liquide dans un bassin. Les relais disposés en série dans la sonde forment une graduation naturelle du tube secondaire au niveau de la sonde. Le champ magnétique du flotteur active le relais en regard du niveau d'eau auquel il se situe et 10 détermine une résistance équivalente du circuit de la sonde d'un des tubes secondaires. Lorsque les relais sont espacés par exemple de 1 cm, le dispositif de l'invention permet d'obtenir le niveau du liquide du bassin avec une précision convenable pour des bassins de grandes dimensions. 15 Les sondes sont disposées dans les tubes secondaires à des profondeurs différentes de telle manière qu'un bassin d'une grande profondeur, par exemple de l'ordre de 20 mètres de profondeur, peut être gradué sur toute sa profondeur. Les sondes, qui sont de taille limitée par exemple d'une longueur de 1 mètre, sont disposées dans des tubes 20 secondaires entourant le tube principal. Les tubes secondaires peuvent être choisis et agencés de sorte à ce qu'ils forment un colimaçon autour du tube principal. Dans l'exemple de la figure 2, les tubes secondaires comprennent des profondeurs différentes. Les sondes, qui sont disposées au fond de 25 chaque tube secondaire, peuvent graduer toute la hauteur d'un bassin. Un avantage de cette solution est qu'il n'est pas nécessaire de disposer de sondes de grandes tailles qui imposent une hauteur sous plafond importante. Ainsi, les sondes de dimensions limitées sont plus simples à manipuler et à sortir des tubes secondaires lors d'opérations de 30 maintenance, notamment quand le bassin est plein. En outre, cette configuration évite également une disposition de plusieurs sondes dans -10- chaque tube pénalisant également des opérations de maintenance. Ces dernières opérations doivent offrir une certaine souplesse dans certaine application, notamment lorsque les bassins sont des bassins d'eaux usées d'usine nucléaire. s La disposition en colimaçon permet au champ magnétique du flotteur d'être toujours présent en regard d'un relais électromagnétique. La figure 2 représente le flotteur 4 également dans une configuration où il est immergé dans le tube principal à un niveau 6 correspondant au niveau du liquide du bassin. 10 La figure 5 représente une variante de réalisation dans laquelle des cales 43 sont utilisées pour retenir les sondes à une certaine profondeur. Lorsque ces cales sont utilisées, elles sont positionnées à différentes profondeurs des tubes secondaires. La figure 6 représente une autre variante de réalisation, dans 15 laquelle les moyens de maintien des sondes à une hauteur fixée du tube sont une cale 43 positionnée en fond de tube secondaire. Les variantes de réalisation des figures 5 et 6 permettent de réaliser le dispositif de l'invention avec une série de tubes secondaires sensiblement identiques. Les tubes sont répartis autour du tube principal en 20 formant un barillet. Ce mode de réalisation peut donc présenter un avantage quant à sa conception puisque les tubes secondaires n'ont pas besoin d'être usinés. Un avantage du dispositif de l'invention est qu'il permet de tenir des températures élevées avoisinant les 200°C notamment en limitant au 25 maximum les pièces électroniques et en utilisant au maximum des pièces métalliques. Notamment, les températures de 100°C n'endommagent pas le dispositif de l'invention. En particulier, le dispositif peut être utilisé notamment en cas d'accident lorsque les températures ne sont plus contrôlées. 30 Un autre avantage du dispositif de l'invention résulte de la tenue aux irradiations de niveaux élevés. Cette tenue est permise par l'utilisation de -11- matériaux métalliques et par la limitation de l'électronique embarquée dans le capteur de l'invention. L'invention permet de tenir des forts niveaux de radioactivité au-delà de 50 kilo Gray et allant jusqu'à 1 millions de Gray. s Enfin un autre avantage résulte des dimensions limitées des capteurs, donc des sondes, dont la longueur est limitée. La limitation des dimensions des sondes permettent de les faire tenir des déformations élastiques importantes notamment en cas de chocs violents ou de séisme. Les sondes peuvent être de 50cm à 3m selon les configurations dites 10 « nominales » du dispositif de l'invention. Au-delà le jeu peut devenir important et peut causer une limitation dans les relevés de mesures. Un avantage du dispositif de l'invention est qu'il est étanche vis-à-vis de l'eau du bassin. La partie supérieure des tubes est émergée et l'eau ne peut pas s'infiltrer à l'intérieur des tubes. Outre l'étanchéité du système, 15 l'avantage est double compte tenu de la simplicité pour sortir les sondes des tubes en cas de remplacement. Selon les configurations du bassin, les relais des sondes peuvent être disposés tous les centimètres ou tous les deux centimètres par exemple. Des sondes comprenant différentes graduations peuvent être 20 utilisées. Notamment, l'invention peut comprendre des sondes comportant des relais disposés tous les centimètres et des sondes dont les relais sont disposés tous les 5 cm. Ce système permet d'offrir un dispositif comprenant des sondes de précision et des sondes d'estimation du niveau. En outre, ce dispositif permet d'offrir une redondance de relevés de niveaux qui permet de 25 garantir la mesure du niveau avec une marge d'erreur prédéfinie. Selon une alternative de réalisation un émetteur/ détecteur optique pourrait remplacer l'aimant et les relais électromagnétiques. Quelques modifications du dispositif devraient alors être réalisées. Notamment, 30 l'émetteur optique dans le flotteur doit émettre sur toute sa circonférence ou du moins en regard d'un arc de cercle sur lequel des tubes secondaires sont -12- positionnés à la verticale. Les capteurs optiques doivent pouvoir recevoir les signaux émis dans n'importe quelle configuration. Cette exigence impose l'utilisation de matériaux permettant le non filtrage des signaux lumineux émis par l'émetteur optique. s Un exemple de réalisation permet l'utilisation d'un dispositif de mesure de l'invention comprenant un tube principal d'une vingtaine de mètres. Les tubes secondaires forment un colimaçon autour du tube principal. La hauteur des tubes secondaires vont de 1m50-2m à 20m. Le diamètre des tubes secondaires est de 10 à 15 cm. 10 Les sondes sont de taille fixe, environ lm à 1,5m de longueur, et toutes identiques les unes aux autres. Chaque sonde comprend des relais électromagnétiques disposés tous les centimètres et répartis dans la longueur de la sonde. Chaque sonde comprend en moyenne 100 à 150 relais. Il y a idéalement entre 6 et 20 tubes secondaires autour d'un tube 15 principal. Les sondes formant les capteurs sont donc réparties de manière à graduer toute la profondeur du bassin d'une vingtaine de mètres. Les capteurs sont disposés dans les tubes secondaires de manière à occuper une portion d'environ 1m à 1m50 d'une profondeur du bassin. Le premier 20 tube secondaire, c'est-à-dire le plus petit, est sensiblement de même longueur que la sonde, voire un peu plus grand pour constituer la partie émergée du dispositif lorsque le bassin est à son niveau maximum. Le dispositif de l'invention est particulièrement adapté aux bassins de grandes tailles, notamment ayant une grande profondeur. Cependant le 25 dispositif de l'invention convient également à des bassins de plus petites tailles dans lesquels la précision de la mesure peut être accrue. Dans un mode de réalisation, les sondes sont moulées dans leur logement. Dans un autre mode de réalisation, les sondes comprennent une coque étanche. Dans un exemple de réalisation, le tube principal comprend 30 des moyens d'attaches permettant de fixer les coques étanches des sondes le long du tube principal à des profondeurs différentes. -13 La coque peut éventuellement remplacer chaque tube secondaire dans la mesure où une sonde peut être extraite du bassin et être dissociée simplement du tube principal. A titre d'exemple, un système utilisant un mécanisme proche ou identique à des gonds de portes peut être employé. s Les coques étanches des sondes viennent alors s'encastrer le long du tube principal dans une liaison glissière comportant une butée à une profondeur donnée. Le retrait de la coque s'effectuant simplement en effectuant le mouvement inverse vers la surface du liquide. Les butées sont alors situées à des profondeurs différentes sur la circonférence du tube principal. Dans un 10 mode particulier, le tube principal comprend un ou des rail(s) permettant de réaliser la liaison glissière le long du tube principal. In one embodiment the float comprises means for generating an electromagnetic field such as a magnet in its simplest embodiment to implement. Each secondary tube 31, 32, 33, 34, 35 comprises a probe s whose height is smaller than the height of the secondary tube associated therewith. During installation or maintenance, each probe can slide in translation in each secondary tube so as to be withdrawn or positioned inside. When a probe is introduced into a secondary tube, means make it possible to fix the probe at a certain predefined height. For example, in the embodiment of Figure 2, the probes inserted into the secondary tubes can be naturally retained by the bottom of each secondary tube. Each probe is positioned at a different depth since the tubes are of different lengths. Alternatively, each secondary tube may comprise means for holding a probe. Typically, Figures 5 and 6 show examples of alternatives detailed in the following description. The device of the invention makes it possible to use as many secondary tubes as probes. This solution makes it possible to have a single probe for a secondary tube and simplifies the maintenance of the devices for measuring the water level of a pool. This advantage is particularly important in the event of an accident, that is to say when the liquid level control measures are necessary and / or when maintenance operations must be undertaken to replace defective probes. The probes can be easily removed from the secondary tubes 30 from the top of the emerging tube. Indeed, a preferred configuration of the invention allows to arrange the tubes so that they exceed the maximum water level of a pool. It is not necessary that a ceiling height is provided to remove a probe several meters in length. FIG. 3 represents a probe 40 in a secondary tube 33. s The probe 40 is retained by the bottom 42 of the secondary tube 43. The probes can be connected to an external calculator making it possible to record the measurements of the probes via wires. 41. In FIG. 4, each probe 40 comprises, for example, a series of series-connected relays 51, 52, 53, 54, 55 and 56 which change state when they are in the magnetic field of the float. . One embodiment relates to probes that include electromagnetic relays arranged in series and spaced a fixed distance apart. For example, the electromagnetic relays may be disposed between resistors of a series of resistors connected in series and arranged on a printed circuit designed in full length. When the magnetic field of a magnet is close to an electromagnetic relay, it activates or deactivates a metal element that opens or closes the printed electrical circuit. As a result, the circuit formed of the series of resistors mounted on a circuit opens or closes as a function of the presence of the magnetic field. The metal parts react to the presence of the magnetic field and make it possible to define an equivalent total resistance of the circuit thus modified by the presence of the magnetic cham. A metal strip can be used to short circuit the mounting or open it or metal resistors can be used. The resistors may be, for example, embedded in ceramic. An entirely mechanical assembly would be equivalent in the device of the invention. The magnet in the latter case actuates metal parts such as switches or slats which are attracted by the presence of the magnet. The advantage of using resistors forming an electrical circuit is that the liquid level can be directly read and interpreted by an equivalent intensity or output resistance measurement or a voltmeter. A calculator makes it possible to convert an electrical data item into a physical quantity, in particular a level of a liquid in a pool. The relays arranged in series in the probe form a natural graduation of the secondary tube at the probe. The magnetic field of the float activates the relay with respect to the water level at which it is located and determines an equivalent resistance of the circuit of the probe of one of the secondary tubes. When the relays are spaced apart for example by 1 cm, the device of the invention makes it possible to obtain the level of the liquid of the basin with a suitable precision for large basins. The probes are arranged in the secondary tubes at different depths so that a basin of great depth, for example of the order of 20 meters deep, can be graduated over its entire depth. The probes, which are of limited size, for example, 1 meter long, are arranged in secondary tubes surrounding the main tube. The secondary tubes can be chosen and arranged so that they form a spiral around the main tube. In the example of Figure 2, the secondary tubes comprise different depths. The probes, which are arranged at the bottom of each secondary tube, can graduate the entire height of a basin. An advantage of this solution is that it is not necessary to have large probes that impose a high ceiling height. Thus, the probes of limited dimensions are easier to handle and to get out of the secondary tubes during maintenance operations, especially when the basin is full. In addition, this configuration also avoids an arrangement of several probes in each tube also penalizing maintenance operations. These latter operations must provide some flexibility in some applications, especially when the basins are nuclear plant wastewater ponds. s The spiral arrangement allows the magnetic field of the float to always be present next to an electromagnetic relay. Figure 2 shows the float 4 also in a configuration where it is immersed in the main tube at a level 6 corresponding to the level of the liquid of the basin. Figure 5 shows an alternative embodiment in which shims 43 are used to retain the probes at a certain depth. When these wedges are used, they are positioned at different depths of the secondary tubes. FIG. 6 represents another variant embodiment, in which the means for holding the probes at a fixed height of the tube are a shim 43 positioned at the bottom of the secondary tube. The alternative embodiments of FIGS. 5 and 6 make it possible to produce the device of the invention with a series of substantially identical secondary tubes. The tubes are distributed around the main tube forming a barrel. This embodiment may therefore have an advantage in its design since the secondary tubes do not need to be machined. An advantage of the device of the invention is that it makes it possible to maintain high temperatures of around 200 ° C., in particular by limiting the maximum number of electronic parts and by making maximum use of metal parts. In particular, the temperatures of 100 ° C do not damage the device of the invention. In particular, the device can be used in particular in case of accident when temperatures are no longer controlled. Another advantage of the device of the invention results from the resistance to irradiation of high levels. This behavior is enabled by the use of metal materials and the limitation of the on-board electronics in the sensor of the invention. The invention makes it possible to maintain high levels of radioactivity above 50 kilo Gray and up to 1 million Gray. Finally, another advantage results from the limited dimensions of the sensors, and therefore probes, the length of which is limited. The limitation of the dimensions of the probes makes it possible to make them hold important elastic deformations in particular in the event of violent shocks or earthquakes. The probes can be from 50 cm to 3 m in the so-called "nominal" configurations of the device of the invention. Beyond the game can become important and can cause a limitation in the measurement records. An advantage of the device of the invention is that it is waterproof vis-à-vis the water basin. The upper part of the tubes is emerged and the water can not seep inside the tubes. In addition to sealing the system, the advantage is twofold given the simplicity of removing the probes from the tubes in the event of replacement. Depending on the basin configurations, the relays of the probes can be arranged every centimeter or every two centimeters, for example. Probes with different graduations can be used. In particular, the invention may comprise probes comprising relays arranged every centimeter and probes whose relays are arranged every 5 cm. This system makes it possible to offer a device comprising precision probes and level estimation probes. In addition, this device makes it possible to provide a redundancy of level readings which makes it possible to guarantee the measurement of the level with a predefined margin of error. According to an alternative embodiment an optical transmitter / detector could replace the magnet and the electromagnetic relays. Some modifications of the device should then be realized. In particular, the optical transmitter in the float must emit over its entire circumference or at least opposite a circular arc on which secondary tubes are positioned vertically. The optical sensors must be able to receive the signals emitted in any configuration. This requirement requires the use of materials allowing the non-filtering of the light signals emitted by the optical transmitter. An exemplary embodiment allows the use of a measuring device of the invention comprising a main tube of about twenty meters. The secondary tubes form a spiral around the main tube. The height of the secondary tubes range from 1m50-2m to 20m. The diameter of the secondary tubes is 10 to 15 cm. The probes are of fixed size, about 1m to 1.5m in length, and all identical to each other. Each probe comprises electromagnetic relays arranged every centimeter and distributed in the length of the probe. Each probe comprises on average 100 to 150 relays. There is ideally between 6 and 20 secondary tubes around a main tube. The probes forming the sensors are thus distributed so as to graduate the entire depth of the basin of about twenty meters. The sensors are arranged in the secondary tubes so as to occupy a portion of approximately 1m to 1m50 from a depth of the basin. The first secondary tube, i.e. the smaller one, is substantially of the same length as the probe, or even a little larger to constitute the emergent part of the device when the basin is at its maximum level. The device of the invention is particularly suitable for large basins, especially having a great depth. However, the device of the invention is also suitable for smaller basins in which the accuracy of the measurement can be increased. In one embodiment, the probes are molded in their housing. In another embodiment, the probes comprise a waterproof shell. In an exemplary embodiment, the main tube comprises fastening means for fixing the sealed shells of the probes along the main tube at different depths. The hull may possibly replace each secondary tube to the extent that a probe can be extracted from the basin and be dissociated simply from the main tube. For example, a system using a mechanism similar to or similar to door hinges may be employed. The sealed shells of the probes are then embedded along the main tube in a slide connection having a stop at a given depth. The removal of the hull is effected simply by performing the reverse movement to the surface of the liquid. The stops are then located at different depths on the circumference of the main tube. In a particular embodiment, the main tube comprises one or more rails for making the slide connection along the main tube.

Claims (13)

REVENDICATIONS1. Dispositif de mesure (1) d'un niveau de liquide dans REVENDICATIONS1. Dispositif de mesure (1) d'un niveau de liquide dans un réservoir comprenant un flotteur (4) apte à flotter à la surface dudit liquide, le dit flotteur étant logé à l'intérieur d'un tube principal (2) permettant le guidage en translation dudit flotteur (4) sous la poussée hydrostatique exercé par le fluide, le dispositif (1) comprenant en outre une pluralité to de sondes (40) disposées à proximité du tube principal (2), chaque sonde (40) étant susceptible de mesurer la position du flotteur (4) sur une portion de la profondeur du bassin, ladite sonde (40) étant maintenue à une profondeur prédéterminée, l'ensemble des portions de mesure recouvrant la course maximale du flotteur dans le tube 15 principal (2) sous l'effet de la poussée hydrostatique. REVENDICATIONS1. Device (1) for measuring a liquid level in CLAIMS1. Device for measuring (1) a level of liquid in a tank comprising a float (4) able to float on the surface of said liquid, said float being housed inside a main tube (2) for guiding in translation of said float (4) under the hydrostatic thrust exerted by the fluid, the device (1) further comprising a plurality to of probes (40) disposed near the main tube (2), each probe (40) being capable of measuring the position of the float (4) on a portion of the depth of the basin, said probe (40) being maintained at a predetermined depth, the set of measurement portions covering the maximum stroke of the float in the main tube (2) under the effect of the hydrostatic thrust. 2. Dispositif de mesure d'un niveau de liquide selon la revendication 1, caractérisé en ce qu'il comprend une pluralité de logements (3), chaque logement (3) comprenant chacun au moins une sonde (40), 20 les sondes étant maintenues à l'intérieur desdits logements (3). 2. Device for measuring a liquid level according to claim 1, characterized in that it comprises a plurality of housings (3), each housing (3) each comprising at least one probe (40), the probes being held within said housing (3). 3. Dispositif de mesure d'un niveau de liquide selon la revendication 2, caractérisé en ce que les logements (3) sont des tubes (30, 31, 32, 33, 34, 35) juxtaposés au tube principal (2), appelés tubes 25 secondaires. 3. Device for measuring a liquid level according to claim 2, characterized in that the housings (3) are tubes (30, 31, 32, 33, 34, 35) juxtaposed to the main tube (2), called secondary tubes. 4. Dispositif de mesure d'un niveau de liquide selon la revendication 3, caractérisé en ce que deux tubes secondaires pris deux à deux ont chacun une extrémité située sensiblement à la même hauteur et ont 30 des longueurs différentes s'étendant dans la profondeur du bassin de manière à ce que les sondes (40) soient posées au fond de chaque tube secondaire. 4. A device for measuring a liquid level according to claim 3, characterized in that two secondary tubes taken in pairs each have an end located substantially at the same height and have different lengths extending in the depth of basin so that the probes (40) are placed at the bottom of each secondary tube. 5. Dispositif de mesure d'un niveau de liquide selon la revendication 3, caractérisé en ce que les tubes secondaires sont sensiblement de même taille et que des moyens de maintien disposés à l'intérieur de chaque tube permettent de maintenir les sondes à différentes profondeurs. 5. Device for measuring a liquid level according to claim 3, characterized in that the secondary tubes are substantially of the same size and that holding means disposed inside each tube to maintain the probes at different depths . 6. Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications 2 à 5, caractérisé en ce que chaque tube secondaire comprend une unique sonde (40). 6. Device for measuring a liquid level according to any one of claims 2 to 5, characterized in that each secondary tube comprises a single probe (40). 7. Dispositif de mesure d'un niveau de liquide selon l'une quelconque 15 des revendications 2 à 6, caractérisé en ce que les tubes secondaires sont localisés autour du tube principal (2) et forment un colimaçon. 7. Device for measuring a liquid level according to any one of claims 2 to 6, characterized in that the secondary tubes are located around the main tube (2) and form a spiral. 8. Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les tubes secondaires 20 dépassent du niveau maximum du liquide de manière à former une cavité étanche. 8. Device for measuring a liquid level according to any one of claims 2 to 7, characterized in that the secondary tubes 20 exceed the maximum level of the liquid so as to form a sealed cavity. 9. Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications 1 à 8, caractérisé en ce que chaque sonde (40) est 25 identique. 9. Liquid level measuring device according to any one of claims 1 to 8, characterized in that each probe (40) is identical. 10. Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le flotteur (4) comprend des moyens de génération d'un champ magnétique et que 30 les sondes (40) comprennent des relais électromagnétiques s'activant lorsqu'ils sont sous l'action du champ magnétique du flotteur (4). 10. Device for measuring a liquid level according to any one of claims 1 to 9, characterized in that the float (4) comprises means for generating a magnetic field and that the probes (40) comprise electromagnetic relays activated when they are under the action of the magnetic field of the float (4). 11. Dispositif de mesure d'un niveau de liquide selon la revendication 10, caractérisé en ce que les relais électromagnétiques se désactivent en dehors du champ magnétique du flotteur (4). 5 11. Device for measuring a liquid level according to claim 10, characterized in that the electromagnetic relays are deactivated outside the magnetic field of the float (4). 5 12.Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications 10 à 11, caractérisé en ce que chaque sonde comprend un circuit électrique tout en longueur formé d'une alternance de résistances et de relais, la mesure du niveau du liquide s'effectuant par une mesure de courant. 12.Device for measuring a liquid level according to any one of claims 10 to 11, characterized in that each probe comprises a full-length electrical circuit formed of an alternation of resistors and relays, the measurement of the level of the liquid taking place by measuring the current. 13.Dispositif de mesure d'un niveau de liquide selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque portion de mesure est inférieure à 2m. 13.Device for measuring a liquid level according to any one of the preceding claims, characterized in that each measuring portion is less than 2m.
FR1250170A 2012-01-06 2012-01-06 LIQUID LEVEL SENSOR WITH FREE FLOAT Expired - Fee Related FR2985566B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1250170A FR2985566B1 (en) 2012-01-06 2012-01-06 LIQUID LEVEL SENSOR WITH FREE FLOAT
PCT/EP2013/050099 WO2013102658A1 (en) 2012-01-06 2013-01-04 Liquid level sensor with free float
EP13701710.9A EP2800955A1 (en) 2012-01-06 2013-01-04 Liquid level sensor with free float

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1250170A FR2985566B1 (en) 2012-01-06 2012-01-06 LIQUID LEVEL SENSOR WITH FREE FLOAT

Publications (2)

Publication Number Publication Date
FR2985566A1 true FR2985566A1 (en) 2013-07-12
FR2985566B1 FR2985566B1 (en) 2015-06-12

Family

ID=47628099

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1250170A Expired - Fee Related FR2985566B1 (en) 2012-01-06 2012-01-06 LIQUID LEVEL SENSOR WITH FREE FLOAT

Country Status (3)

Country Link
EP (1) EP2800955A1 (en)
FR (1) FR2985566B1 (en)
WO (1) WO2013102658A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562707B (en) * 2018-03-28 2023-10-13 浙江大学昆山创新中心 Water quality monitoring probe protection structure of self-adaptation water level degree of depth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR794880A (en) * 1934-12-03 1936-02-27 Liquid level indicator
FR2600157A1 (en) * 1986-06-16 1987-12-18 Keubler Wolfgang Graduated scale for measuring levels
EP0397338A1 (en) * 1989-05-12 1990-11-14 General Motors Corporation Liquid float gauge assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552774A (en) 1994-06-10 1996-09-03 Gridley; R. F. Magnetically activated float switch
US6173609B1 (en) 1997-06-20 2001-01-16 Optical Sensor Consultants, Inc. Optical level sensor
ITMI20030334A1 (en) 2003-02-25 2004-08-26 Bonetti Cesare Spa PROCEDURE FOR MEASURING THE POSITION OF MOBILE ELEMENTS THROUGH OPTICAL DEVICES AND RELATED DEVICES AND EQUIPMENT.
US20050056092A1 (en) 2003-09-12 2005-03-17 Kowalski Kenneth H. Liquid level indicator using lights

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR794880A (en) * 1934-12-03 1936-02-27 Liquid level indicator
FR2600157A1 (en) * 1986-06-16 1987-12-18 Keubler Wolfgang Graduated scale for measuring levels
EP0397338A1 (en) * 1989-05-12 1990-11-14 General Motors Corporation Liquid float gauge assembly

Also Published As

Publication number Publication date
EP2800955A1 (en) 2014-11-12
WO2013102658A1 (en) 2013-07-11
FR2985566B1 (en) 2015-06-12

Similar Documents

Publication Publication Date Title
WO2007012607A1 (en) Optical refractometer for measuring seawater salinity and corresponding salinity sensor
WO2014083207A1 (en) Long base inclinometer with optical measurement
EP3907513B1 (en) Current sensor based on the faraday effect in an atomic gas
FR2985566A1 (en) LIQUID LEVEL SENSOR WITH FREE FLOAT
FR3002649A1 (en) METHOD AND DEVICE FOR DETERMINING RADIOLOGICAL ACTIVITY DEPOSITED IN A SUB-MARINE BOTTOM
WO2008090186A1 (en) Optical sensor for measuring salinity and visibility in sea water
BE1012730A3 (en) Indicator device level in a liquefied petroleum gas tank.
FR2983573A1 (en) ACOUSTIC SENSOR FOR MEASURING LINEAR DISPLACEMENT.
EP3580531B1 (en) Optical probe for measuring the level of a liquid in a tank
FR2842902A1 (en) PROPELLER FOR DATA ACQUISITION IN A FLOW
FR3073940B1 (en) OPTICAL AUTOCALIBRANT DEVICE FOR NON-CONTACT MEASUREMENT OF THE LEVEL OF A LIQUID
EP3775757A1 (en) Method for monitoring at least one measurement of the structural state of a building
FR2731272A1 (en) DEVICE FOR LOCATING THE SEPARATION POSITION BETWEEN TWO MEDIA, RECEPTACLE AND DETECTION METHOD USING THE DEVICE
FR3104708A1 (en) ANALOGUE TYPE LIQUID LEVEL SENSOR
FR3015042A1 (en) DEVICE FOR MEASURING ELECTRICAL POTENTIAL DIFFERENCES FOR AN UNDERWATER METAL STRUCTURE EQUIPPED WITH A CATHODIC PROTECTION SYSTEM, AND ASSOCIATED METHOD
FR3075361A1 (en) TANK WITH LIQUID LEVEL SENSOR
EP0048688A2 (en) Method to detect optically and/or to measure a deformation and/or a displacement of an object or part of an object, device to carry out the method and use of the method
FR3039893A1 (en) DEVICE FOR MEASURING LIQUID LEVEL BY OPTICAL REFLECTROMETRY, STRUCTURE COMPRISING SUCH A DEVICE AND CORRESPONDING MEASUREMENT METHOD
FR2461933A1 (en) LEVEL MEASURING DEVICE FOR MATERIAL CONTAINED IN RESERVOIRS LOCATED IN PROTECTIVE CHAMBERS PROHIBITED FOR THE CIRCULATION OF PERSONNEL, IN PARTICULAR FOR THE TREATMENT OF NUCLEAR FUELS
FR2886399A1 (en) ELECTRONIC THERMOMETER WITH ENERGY ACCUMULATION
FR2506329A1 (en) Charge profile determination in a blast furnace - by optical methods using a laser
FR3039891A1 (en) DEVICE FOR MEASURING LIQUID LEVEL BY OPTICAL REFLECTROMETRY, STRUCTURE COMPRISING SUCH A DEVICE AND CORRESPONDING MEASUREMENT METHOD
WO2024017612A1 (en) Device for determining the elongation of a connection
EP4224142A2 (en) Method for corrosion detection and infiltration evaluation by measuring value of magnetic characteristic
Dong et al. A digital liquid level sensor system based on parallel fiber sensor heads

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20170929