FR2985374A1 - PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE - Google Patents

PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE Download PDF

Info

Publication number
FR2985374A1
FR2985374A1 FR1162451A FR1162451A FR2985374A1 FR 2985374 A1 FR2985374 A1 FR 2985374A1 FR 1162451 A FR1162451 A FR 1162451A FR 1162451 A FR1162451 A FR 1162451A FR 2985374 A1 FR2985374 A1 FR 2985374A1
Authority
FR
France
Prior art keywords
photovoltaic cell
cell according
electrodes
module
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1162451A
Other languages
French (fr)
Inventor
Yaakoubi Mustapha El
Jacques Meot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLSIA
Original Assignee
SOLSIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLSIA filed Critical SOLSIA
Priority to FR1162451A priority Critical patent/FR2985374A1/en
Priority to FR1250141A priority patent/FR2985375A1/en
Priority to PCT/EP2012/076466 priority patent/WO2013098204A2/en
Publication of FR2985374A1 publication Critical patent/FR2985374A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

L'invention s'applique à une cellule photovoltaïque. Selon l'invention, deux diodes, l'une comprenant une couche semi-conductrice de préférence en pmSi et l'autre comprenant une autre couche semi-conductrice, de préférence en SiGe, les deux couches étant de dimensions adaptées, sont montées en parallèle entre elles, les cellules étant montées en série pour constituer un panneau photovoltaïque. Les diodes montées en parallèle sont déposées en deux modules comprenant un substrat différent et séparées par un encapsulant diffuseur comprenant des fines particules d'indice et de dimension adaptées pour maximiser la diffusion vers l'avant et minimiser la diffusion vers l'arrière, lesdits paramètres étant optimisés en appliquant les lois de Mie. Le module arrière comprend avantageusement un réflecteur miroir permettant de maximiser le piégeage optique.The invention applies to a photovoltaic cell. According to the invention, two diodes, one comprising a semi-conductor layer preferably in pmSi and the other comprising another semiconductor layer, preferably SiGe, the two layers being of suitable dimensions, are connected in parallel between them, the cells being mounted in series to form a photovoltaic panel. The diodes connected in parallel are deposited in two modules comprising a different substrate and separated by a diffusion encapsulant comprising fine particles of index and dimension adapted to maximize forward diffusion and minimize backward diffusion, said parameters being optimized by applying the laws of Mie. The rear module advantageously comprises a mirror reflector for maximizing optical trapping.

Description

PANNEAU PHOTOVOLTAÏQUE A DIODES MONTEES EN PARALLELE A STRUCTURE CENTRALE DIFFUSANTE ET STRUCTURE ARRIERE REFLECHISSANTE La présente invention s'applique au domaine de la production d'énergie électrique à partir de panneaux photovoltaïques. Malgré son coût de production qui reste élevé, ce domaine a connu un grand essor, notamment dans les filières de production de cellules à base de wafers de silicium amorphe, mono ou poly-cristallin. Parmi les voies de réduction de coût, les techniques de dépôt en couches minces sont prometteuses car elles bénéficient des améliorations introduites dans les procédés et les équipements pour la production de composants électroniques semiconducteurs. Le développement de cette filière reste cependant freiné par un rendement de conversion électrique inférieur atteint jusqu'à présent (inférieurs à 10% pour la filière silicium amorphe/silicium microcristallin en couches minces la plus performante - technologie dite micro-morphe, contre plus de 15% pour les filières traditionnelles en silicium cristallin. Une voie prometteuse pour augmenter de manière significative le rendement de conversion électrique est ouverte par la technologie dite « split » qui associe deux séries de diodes ayant chacune des spectres d'absorption lumineuse différents en montage parallèle. Ce principe est divulgué dans la demande de brevet français publiée sous le n°FR2948498 appartenant à la demanderesse. Dans une cellule de diodes split, le rendement de conversion est accru par piégeage optique par incorporation de particules diffusantes entre les deux séries de diodes ayant chacune des spectres d'absorption lumineuse différents. Plusieurs options sont possibles pour améliorer la réalisation et l'efficacité de ce piégeage optique. L'incorporation de fines particules dans une des deux séries de diodes voire les deux et alternativement ou complémentairement dans une couche polymère entre ces deux électrodes. La réalisation de ces solutions est possible selon les enseignements de la demande de brevet. citée ci-dessus. Cependant, parmi toutes les combinaisons possibles de matériaux et de dimensions des particules, il est nécessaire de réaliser un choix qui soit optimal pour une application visée. La présente invention permet de réaliser le choix d'une combinaison optimale 5 et d'obtenir une cellule split de rendement fortement amélioré (de 20-30% par rapport aux cellules micro-morphes). A cet effet, l'invention prévoit une cellule photovoltaïque comprenant : - Un premier module comprenant, sur un premier substrat transparent à une 10 lumière incidente, une première et une deuxième électrodes enserrant un premier matériau choisi pour photo-convertir un rayonnement lumineux de longueur d'onde inférieure à un seuil de longueur d'onde et sensiblement transparent aux rayonnements lumineux de longueur d'onde supérieure audit seuil, les première et deuxième électrodes et le premier matériau déposés 15 en couches minces sur le premier substrat, Un deuxième module comprenant sur un deuxième substrat, une troisième et une quatrième électrodes enserrant un deuxième matériau choisi pour photo-convertir un rayonnement lumineux de longueur d'onde supérieure audit seuil de longueur d'onde, les troisième et quatrième électrodes et le deuxième 20 matériau déposés en couches minces sur le deuxième substrat, Lesdits premier et deuxième modules étant montés solidairement ensemble, la deuxième et la quatrième électrodes étant séparés par un encapsulant d'indice de réfraction n1 et étant reliés électriquement par deux connexions électriques parallèles de la 1 è' et de la 3ème électrodes et de la 2ème et de la 25 4ème électrodes, ladite cellule photovoltaïque étant caractérisée en ce que sont insérées dans au moins un des éléments choisis dans le groupe de l'encapsulant et des deuxième et quatrième électrodes des particules diffusantes l'indice de réfraction n2 supérieur à n1 et de dimension caractéristique d choisis pour maximiser l'angle de diffusion et minimiser la 30 rétrodiffusion aux longueurs d'onde supérieures audit seuil. Avantageusement, lesdites particules diffusantes sont insérées dans l'encapsulant diffuseur. The present invention applies to the field of the production of electrical energy from photovoltaic panels. BACKGROUND OF THE DISCLOSURE Despite its high cost of production, this area has experienced a great expansion, especially in the production of cells based on amorphous silicon wafers, mono or poly-crystalline. Among the cost reduction pathways, thin-film deposition techniques are promising as they benefit from improvements introduced in processes and equipment for the production of semiconductor electronic components. However, the development of this sector remains hampered by a lower electrical conversion efficiency achieved so far (less than 10% for the amorphous silicon / microcrystalline silicon thin-film system the most efficient - technology called micro-morph, against more than 15 % for traditional crystalline silicon channels A promising way to significantly increase the efficiency of electrical conversion is opened by the so-called "split" technology which combines two series of diodes each having different light absorption spectra in parallel assembly. This principle is disclosed in the French patent application published under No. FR 2948498 belonging to the applicant In a split diode cell, the conversion efficiency is increased by optical trapping by incorporation of diffusing particles between the two series of diodes each different light absorption spectra. There are options for improving the performance and efficiency of this optical trapping. Incorporation of fine particles into one or both sets of diodes and alternately or complementarily in a polymer layer between these two electrodes. The realization of these solutions is possible according to the teachings of the patent application. quoted above. However, among all possible combinations of materials and particle sizes, it is necessary to make a choice that is optimal for a targeted application. The present invention makes it possible to choose an optimal combination and to obtain a split cell with a greatly improved yield (of 20-30% relative to the micro-morphine cells). For this purpose, the invention provides a photovoltaic cell comprising: a first module comprising, on a first transparent substrate with incident light, a first and a second electrode enclosing a first material chosen for photoconverting light radiation of length wave less than a threshold wavelength and substantially transparent to the light radiation of wavelength greater than said threshold, the first and second electrodes and the first material deposited in thin layers on the first substrate, A second module comprising on a second substrate, a third and a fourth electrode enclosing a second material chosen to photo-convert a light radiation of wavelength greater than said wavelength threshold, the third and fourth electrodes and the second material deposited in layers on the second substrate, said first and second modules being integrally together, the second and fourth electrodes being separated by an encapsulant of refractive index n1 and being electrically connected by two parallel electrical connections of the 1st and 3rd electrodes and the 2nd and 4th electrodes said photovoltaic cell being characterized in that at least one of the elements selected from the group of the encapsulant and the second and fourth electrodes of the scattering particles have a refractive index n2 greater than n1 and a characteristic dimension d selected from maximize the scattering angle and minimize backscattering at wavelengths above said threshold. Advantageously, said scattering particles are inserted into the diffuser encapsulant.

Avantageusement, lesdites particules diffusantes sont insérées dans au moins l'une des deuxième et quatrième électrodes. Avantageusement, la 3ème électrode est constituée par un réflecteur miroir à 5 rugosité contrôlée. Avantageusement, l'encapsulant est constitué d'un polymère. Avantageusement, la 1ère, la 2ème et la 4ème électrodes sont en Transparent 10 Conductive Oxyde. Avantageusement, le premier matériau est choisi pour une photo-conversion optimale de la lumière visible. 15 Avantageusement, l'épaisseur du premier matériau est choisie pour une photo-conversion optimale de la lumière visible en fin de vie de la cellule. Avantageusement, le premier matériau est un matériau amorphe grand gap. 20 Avantageusement, le deuxième matériau est un matériau petit gap. Avantageusement, le deuxième matériau est choisi dans le groupe comprenant le SiGe, le pc-Si, le poly-Si et le CIGS. 25 Avantageusement, l'indice de réfraction n2 et la dimension caractéristique d sont choisis en appliquant les lois de Mie. Avantageusement, l'application de la loi de Mie est faite à une longueur d'onde sensiblement égale à la moyenne de la plage d'absorption du 30 deuxième module. Avantageusement, l'indice de réfraction n2 est au minimum égal à 2,5 et la dimension caractéristique d est égale sensiblement à 0,3 microns. Advantageously, said scattering particles are inserted into at least one of the second and fourth electrodes. Advantageously, the third electrode is constituted by a mirror reflector with controlled roughness. Advantageously, the encapsulant consists of a polymer. Advantageously, the 1st, 2nd and 4th electrodes are in Transparent Conductive Oxide. Advantageously, the first material is chosen for an optimal photoconversion of the visible light. Advantageously, the thickness of the first material is chosen for an optimal photo-conversion of the visible light at the end of the life of the cell. Advantageously, the first material is a large gap amorphous material. Advantageously, the second material is a small gap material. Advantageously, the second material is chosen from the group comprising SiGe, pc-Si, poly-Si and CIGS. Advantageously, the refractive index n2 and the characteristic dimension d are chosen by applying the laws of Mie. Advantageously, the application of the Mie law is made at a wavelength substantially equal to the average of the absorption range of the second module. Advantageously, the refractive index n2 is at least 2.5 and the characteristic dimension d is substantially equal to 0.3 microns.

L'invention divulgue également un panneau solaire comprenant au moins deux ensembles photovoltaïques selon l'une des revendications 1 à 14, le premier ensemble comprenant des premières cellules Cl mises en série par leur grand côté de dimension L, et le deuxième ensemble comprenant des deuxièmes cellules C2 mises en série par leur grand côté de même dimension L et ayant chacune une dimension L x 11 et L x 12 respectivement, ledit panneau étant caractérisé en ce que le rapport des dimensions 11 et 12 desdites premières et deuxièmes cellules desdits ensembles est égal au rapport des tensions circuit ouvert de Cl et C2. The invention also discloses a solar panel comprising at least two photovoltaic assemblies according to one of claims 1 to 14, the first set comprising first cells C1 connected in series by their long side of dimension L, and the second set comprising second C2 cells connected in series by their long side of the same dimension L and each having a dimension L x 11 and L x 12 respectively, said panel being characterized in that the ratio of dimensions 11 and 12 of said first and second cells of said sets is equal to the ratio of open circuit voltages of C1 and C2.

L'invention présente l'avantage complémentaire de permettre le réglage fin de l'optimisation du piégeage optique en fonction de la longueur d'onde de la lumière traitée par la diode arrière. En outre, dans une cellule split selon l'invention, la présence d'un substrat arrière distinct sur lequel est déposée la diode arrière permet de réaliser un état de surface de rugosité contrôlée sur lequel on déposera avantageusement une couche réflectrice à rugosité controlée, miroir qui augmentera l'effet de piégeage optique. Enfin, structurellement, une cellule split permet de bénéficier plus facilement de toute amélioration sur les matériaux qui peuvent être utilisés pour accroître le rendement de chacune des diodes de la cellule sans avoir à se préoccuper des contraintes sur ces matériaux qui rendraient impossible leur utilisation dans une structure à dépôts successifs. L'invention sera mieux comprise, ses différentes caractéristiques et 25 avantages ressortiront de la description qui suit de plusieurs exemples de réalisation et de ses figures annexées dont : - Les figures 1 a et 1 b illustrent respectivement une cellule photovoltaïque à structure micro-morphe et à structure split ; - Les figures 2a, 2b et 2c représentent des vues de détail de la structure 30 du réflecteur miroir de la figure 1 dans deux modes de réalisation différents de l'invention; - Les figures 3a et 3b illustrent l'effet de diffusion des rayons lumineux aux interfaces de couches respectivement dans une cellule photovoltaïque à structure micro-morphe de l'art antérieur et dans une 35 structure split dans un mode de réalisation de l'invention; - Les figures 4a, 4b, 4c et 4d représentent des vue de détail de la structure de la partie centrale de la structure split selon trois modes de réalisation différents de l'invention ; - Les figures 5a, 5b et 5c représentent respectivement les courbes de distribution angulaire des diffusions dues à la couche d'encapsulation dans plusieurs modes de réalisation de l'invention ; - Les figures 6a et 6b représentent l'effet de réflexion à l'arrière respectivement dans une cellule photovoltaïque à structure micromorphe de l'art antérieur et dans une structure split dans un mode de réalisation de l'invention ; - Les figures 7a et 7b représentent respectivement les courbes courant/tension des diodes avant et arrière dans un mode de réalisation de l'invention. The invention has the additional advantage of allowing fine tuning of the optimization of optical trapping as a function of the wavelength of the light processed by the rear diode. In addition, in a split cell according to the invention, the presence of a distinct rear substrate on which the rear diode is deposited makes it possible to achieve a state of controlled roughness surface on which a mirror-controlled, mirror-controlled, reflective layer will advantageously be deposited. which will increase the effect of optical trapping. Finally, structurally, a split cell makes it easier to benefit from any improvement in the materials that can be used to increase the efficiency of each of the diodes of the cell without having to worry about the constraints on these materials that would make it impossible to use them in a single cell. successive deposit structure. The invention will be better understood, its various features and advantages will emerge from the following description of several embodiments and its accompanying figures, of which: FIGS. 1 a and 1b respectively illustrate a photovoltaic cell with a micro-morph structure and split structure; FIGS. 2a, 2b and 2c show detailed views of the structure of the mirror reflector of FIG. 1 in two different embodiments of the invention; FIGS. 3a and 3b illustrate the scattering effect of the light rays at the layer interfaces respectively in a photovoltaic cell with a micro-morph structure of the prior art and in a split structure in an embodiment of the invention; FIGS. 4a, 4b, 4c and 4d show detailed views of the structure of the central part of the split structure according to three different embodiments of the invention; FIGS. 5a, 5b and 5c respectively represent the angular distribution curves of the diffusions due to the encapsulation layer in several embodiments of the invention; FIGS. 6a and 6b show the reflection effect at the rear respectively in a micromorphic structure photovoltaic cell of the prior art and in a split structure in one embodiment of the invention; FIGS. 7a and 7b respectively represent the current / voltage curves of the front and rear diodes in one embodiment of the invention.

Les figures 1 a et 1 b illustrent respectivement une cellule photovoltaïque à structure micro-morphe et à structure split. Un type de cellules photovoltaïques de l'art antérieur est représenté sur la figure 1 a. De telles cellules sont décrites notamment dans le brevet US n°5,085,711. Elles sont dites « micro-morphes » dans la mesure où elles combinent une couche de silicium amorphe (aSi) 130a et une couche de silicium microcristallin (pSi) 140a. Le silicium amorphe ne convertit pas les rayons lumineux de grande longueur d'onde (infrarouge) ; lesdits rayons sont convertis par la couche de silicium microcristallin. L'assemblage de la figure 1 a constitue un module électrique dont les connections sont situées en 1210a et 1510a et relient aux circuits extérieurs deux électrodes 120a et 150a, la première en oxyde de zinc (ZnO), la seconde en ZnO ou matériau réflecteur. La lumière incidente pénètre dans le module par une première couche de verre 110a formant substrat. Le module est fermé par une couche 30 d'encapsulant 160a et une seconde couche de verre 170a. Un type de cellules photovoltaïques à structure split est représenté sur la figure 1 b. Le principe de telles cellules a été décrit dans la demande de brevet FR n°2948498. La structure en est améliorée dans le cadre de la 35 présente invention. Une cellule de ce type est constituée de deux modules 2 9853 74 6 11 b et 12b. Un premier module 11 b est constitué par dépôt sur un premier substrat de verre 110b d'une première couche conductrice 120b et d'une deuxième couche conductrice 140b, lesdites deux couches étant par exemple en oxyde de zinc et enserrant une couche 130b constituée par un 5 matériau convertissant les rayons lumineux de longueur d'onde inférieure à un seuil. Ce seuil dépend du gap du matériau et de son épaisseur. On utilisera pour ce premier module un matériau dit « grand gap » qui peut par exemple être du pmSi (silicium polymorphe), ou du silicium amorphe ou tout autre matériau ayant un gap supérieur à 1,6 eV . Un deuxième module 12b 10 est constitué par un deuxième substrat de verre 190b sur lequel on dépose une troisième couche conductrice (une multicouche en métal/TCO (Transparent Conducting Oxyde ou Oxyde transparent conducteur) , par exemple Ag/ZnO) formant un réflecteur miroir 180b, une couche en matériau dit « petit gap » 170b puis une quatrième couche conductrice 160b, par 15 exemple également en ZnO. Le matériau petit gap est choisi pour convertir les rayons de lumière de longueur d'onde supérieure au seuil du premier module. On peut choisir par exemple un alliage de silicium germanium (SiGe), du silicium microcristallin (p-cSi), CIGS( Cuivre-Indium-GaliumSelenium) ou tout autre matériau ayant un gap inférieur à 1,5 eV dont l'on 20 pourra ajuster l'épaisseur et les caractéristiques optiques de manière à accroître le courant généré, sans être limité par le courant du premier module, comme il sera expliqué plus loin dans la description. Les couches semi-conductrices 130b et 170b de chacun des deux modules 25 11 b et 12b sont donc déposées sur des substrats différents, ce qui permet d'optimiser à la fois le choix des matériaux, de l'épaisseur des couches et des paramètres de température et de pression de dépôt. En particulier, il est ainsi possible d'optimiser la diffusion de l'électrode avant pour une diffusion optimale de la lumière visible, pour un maximum 30 d'efficacité du module avant, 11b. Il est possible également de prévoir une épaisseur de ce module avant qui permettre de préserver une efficacité maximale en fin de vie, malgré la dégradation sous lumière. La prise en compte du vieillissement sous lumière est en revanche impossible dans les structures micro-morphes de l'art 35 antérieur car la modification de la couche active du premier module aurait un impact direct sur les performances optiques du deuxième module. Les structures micro-morphes ont recours à une insertion de couches à fort indice, par exemple en TCO (ZnO) ou SiO2 entre la diode a-Si et la diode pcSi afin de palier à ce problème. Mais cette méthode est contraignante vis-à- vis des interfaces entre les couches, d'une part, et d'autre part ne permet pas de satisfaire pleinement les exigences de diffusion vers le haut de courtes longueurs d'onde et en même temps la diffusion vers le bas des grandes longueurs d'onde. Les deux modules 11 b et 12b sont assemblés par collage des couches 140b et 160b par l'intermédiaire d'une couche 150b d'encapsulant. . Le substrat de verre du premier module 11b est exposé aux rayons lumineux, ledit premier module constituant la face avant de la cellule photovoltaïque. Le substrat du deuxième module constitue la face arrière de la cellule. La fonction technique des couches 140b et 160b est à la fois électrique (collection des charges) et optique dans le cadre de la présente invention en assurant la diffusion maximale de la lumière de grande longueur d'onde ayant traversé le premier module. Au même titre la fonction technique de l'encapsulant diffuseur est à la fois de réaliser la liaison mécanique entre les deux modules et la diffusion maximale de la lumière de grande longueur d'onde ayant traversé le premier module. Les moyens mis en oeuvre dans le cadre de la présente invention pour réaliser cette deuxième fonction seront détaillés plus loin en relation avec les figures 2a et 2b, puis 5a, 5b et 5c. Le module 11 b constitue un module de génération de courant dont la 1 ère couche conductrice 120b a une connexion avec l'extérieur via une 1 ère électrode 1210b et la 2ème couche conductrice 140b a également une connexion avec l'extérieur via une 2ème électrode 1410b. Les 3ème et 4ème couches conductrices (180b et 160b) incluses dans le deuxième module 12b ont respectivement des connexions avec des 3ème et 4ème électrodes 1810b et 1610b. Les deux modules 11 b et 12b constituent donc deux diodes. Avantageusement, on les monte en parallèle, en connectant les 1 ère et 3ème électrodes entre elles et les 2ème et 4ème électrodes entre elles. Les avantages du montage parallèle sont notamment qu'ainsi le courant du premier module n'est pas limitant pour le deuxième module et que les possibilités du silicium microcristallin (ou du SiGe) peuvent être exploitées au maximum pour maximiser le courant du deuxième module. Les largeurs respectives 11 et 12 des cellules des premier et deuxième modules doivent être choisies telles que les tensions aux 1 ère et 3ème électrodes et 2ème et 4ème électrodes soient égales.,. FIGS. 1 a and 1 b respectively illustrate a photovoltaic cell with a micro-morph structure and a split structure. One type of photovoltaic cells of the prior art is shown in FIG. Such cells are described in particular in US Pat. No. 5,085,711. They are called "micro-morphs" in that they combine an amorphous silicon layer (aSi) 130a and a microcrystalline silicon layer (pSi) 140a. Amorphous silicon does not convert long wavelength (infrared) light rays; said rays are converted by the microcrystalline silicon layer. The assembly of Figure 1 has an electrical module whose connections are located at 1210a and 1510a and connect the external circuits two electrodes 120a and 150a, the first zinc oxide (ZnO), the second ZnO or reflective material. The incident light enters the module through a first substrate-forming glass layer 110a. The module is closed by an encapsulant layer 160a and a second glass layer 170a. A type of split-structure photovoltaic cells is shown in Figure 1b. The principle of such cells has been described in the patent application FR No. 2948498. The structure is improved in the context of the present invention. A cell of this type consists of two modules 2 9853 74 6 11 b and 12b. A first module 11b is constituted by depositing on a first glass substrate 110b a first conductive layer 120b and a second conductive layer 140b, said two layers being for example made of zinc oxide and enclosing a layer 130b constituted by a 5 material converting light rays of wavelength lower than a threshold. This threshold depends on the gap of the material and its thickness. For this first module, a so-called "large gap" material will be used which may for example be pmSi (polymorphous silicon), or amorphous silicon or any other material having a gap greater than 1.6 eV. A second module 12b 10 is constituted by a second glass substrate 190b on which a third conductive layer (a multilayer metal / TCO (Transparent Conducting Oxide or Conductive Transparent Oxide), for example Ag / ZnO) forming a 180b mirror reflector is deposited. , a layer of material called "small gap" 170b and a fourth conductive layer 160b, for example also ZnO. The small gap material is chosen to convert light rays of longer wavelength to the threshold of the first module. For example, an alloy of silicon germanium (SiGe), microcrystalline silicon (p-cSi), CIGS (Copper-Indium-GaliumSelenium) or any other material having a gap of less than 1.5 eV which can be used can be chosen. adjust the thickness and the optical characteristics so as to increase the generated current, without being limited by the current of the first module, as will be explained later in the description. The semiconductor layers 130b and 170b of each of the two modules 11b and 12b are therefore deposited on different substrates, which makes it possible to optimize both the choice of materials, the thickness of the layers and the parameters of temperature and deposition pressure. In particular, it is thus possible to optimize the diffusion of the front electrode for an optimal diffusion of the visible light, for a maximum efficiency of the front module, 11b. It is also possible to provide a thickness of this module before which allow to preserve maximum efficiency at the end of life, despite degradation under light. Taking into account the aging under light is, however, impossible in the micro-morphic structures of the prior art because the modification of the active layer of the first module would have a direct impact on the optical performance of the second module. The micro-morphic structures use an insertion of high index layers, for example TCO (ZnO) or SiO 2 between the diode a-Si and the diode pcSi to overcome this problem. But this method is constraining vis-à-vis the interfaces between the layers, on the one hand, and on the other hand does not fully satisfy the requirements of diffusion up short wavelengths and at the same time the downward diffusion of long wavelengths. The two modules 11b and 12b are assembled by bonding the layers 140b and 160b via a layer 150b of encapsulant. . The glass substrate of the first module 11b is exposed to light rays, said first module constituting the front face of the photovoltaic cell. The substrate of the second module constitutes the rear face of the cell. The technical function of the layers 140b and 160b is both electrical (charge collection) and optical in the context of the present invention by ensuring the maximum diffusion of the long wavelength light having passed through the first module. In the same way, the technical function of the diffuser encapsulant is both to achieve the mechanical connection between the two modules and the maximum diffusion of the long wavelength light having passed through the first module. The means used in the context of the present invention to perform this second function will be detailed below in relation to FIGS. 2a and 2b, then 5a, 5b and 5c. The module 11b constitutes a current generation module whose first conductive layer 120b has a connection with the outside via a 1st electrode 1210b and the second conductive layer 140b also has a connection with the outside via a 2nd electrode 1410b . The 3rd and 4th conductive layers (180b and 160b) included in the second module 12b respectively have connections with the 3rd and 4th electrodes 1810b and 1610b. The two modules 11b and 12b thus constitute two diodes. Advantageously, they are mounted in parallel, connecting the 1st and 3rd electrodes between them and the 2nd and 4th electrodes between them. The advantages of parallel mounting include that the current of the first module is not limiting for the second module and the possibilities of microcrystalline silicon (or SiGe) can be exploited to the maximum to maximize the current of the second module. The respective widths 11 and 12 of the cells of the first and second modules must be chosen such that the voltages at the 1st and 3rd electrodes and 2nd and 4th electrodes are equal.

Les figures 2a, 2b et 2c représentent des vues de détail de la structure du réflecteur miroir de la figure 1 dans deux modes de réalisation différents de l'invention. Comme illustré sur la figure 2a et indiqué en commentaire à la figure 1, le matériau 182b peut être un TCO. Le réflecteur miroir 181b peut être un miroir métal et le substrat 190b peut être en verre.L'ensemble 181b+182b représente le réflecteur miroir 180b de la figure 1 b Les interfaces entre le miroir métal et le verre sont avantageusement de rugosité contrôlée. Deux modes de contrôle de la rugosité de cette interface sont illustrés sur les figures 2b et 2c. Sur la figure 2b, on a représenté de manière schématique le résultat d'un dépôt de couche d'interface sur le verre avant dépôt du miroir métal, ladite couche étant constituée de particules ayant typiquement une dimension caractéristique du réseau dans le plan de 0,5 à 2 microns et une épaisseur comprise entre 0,1 et 1 micron. Ce dépôt peut être réalisé soit par des techniques dites « bottom-up » en fabriquant ces particules directement par des méthodes in-situ telles que dépôt sous-vide (PVD, PECVD, etc), soit par des techniques dites « top-down » en partant de particules déjà fabriquées par ailleurs et déposées soit directement par des méthodes Spray par exemple, soit mélangé dans un liquide et déposé sur le substrat à la suite de l'évaporation du liquide (SOLGEL, etc). Sur la figure 2c, la rugosité est réalisée par gravure soit dans le métal soit sur le substrat avant dépôt miroir métal. Les dimensions caractéristiques sont équivalentes à celles réalisés par dépôt. La gravure peut être de type 30 humide ou sèche. Les figures 3a et 3b illustrent l'effet de diffusion des rayons lumineux aux interfaces de couches respectivement dans une cellule photovoltaïque à structure micro-morphe de l'art antérieur et dans une structure split dans un 35 mode de réalisation de l'invention. Figures 2a, 2b and 2c show detail views of the structure of the mirror reflector of Figure 1 in two different embodiments of the invention. As illustrated in FIG. 2a and indicated in comment on FIG. 1, the material 182b can be a TCO. The mirror reflector 181b may be a metal mirror and the substrate 190b may be made of glass. The assembly 181b + 182b represents the mirror reflector 180b of FIG. 1b. The interfaces between the metal mirror and the glass are advantageously of controlled roughness. Two modes of roughness control of this interface are illustrated in Figures 2b and 2c. FIG. 2b schematically shows the result of an interface layer deposition on the glass before deposition of the metal mirror, said layer consisting of particles typically having a characteristic dimension of the grating in the plane of 0, 5 to 2 microns and a thickness of between 0.1 and 1 micron. This deposit can be achieved either by so-called "bottom-up" techniques by manufacturing these particles directly by in-situ methods such as vacuum deposition (PVD, PECVD, etc.), or by techniques known as "top-down" techniques. starting from particles already manufactured elsewhere and deposited either directly by Spray methods for example, or mixed in a liquid and deposited on the substrate following the evaporation of the liquid (SOLGEL, etc.). In FIG. 2c, the roughness is achieved by etching either in the metal or on the substrate before metal mirror deposition. The characteristic dimensions are equivalent to those made by deposit. The etching may be of the wet or dry type. FIGS. 3a and 3b illustrate the scattering effect of the light rays at the layer interfaces respectively in a photovoltaic cell with a micro-morph structure of the prior art and in a split structure in an embodiment of the invention.

Dans une structure micro-morphe telle que représentée sur la figure 2a, aucune structure diffusante n'est spécifiquement prévue. L'effet de diffusion résulte donc de la rugosité des interfaces entre les couches. La même interface réalise la fonction de diffusion aux longueurs d'onde converties par la première couche semi-conductrice (310a), et la fonction de diffusion aux longueurs d'onde converties par la deuxième couche semi-conductrice (320a), ce qui ne permettra pas de maximiser le piégeage optique dans cette deuxième couche. En effet, le piégeage optique pourra éventuellement être adapté pour les longueurs d'onde converties par la première couche semi- conductrice mais pas pour celles converties par la deuxième couche. En effet, dans la mesure où les dépôts des couches sont conformes, les états de rugosité aux interfaces seront sensiblement identiques et la diffusion aux longueurs d'onde plus longues ne sera pas optimale, si elle l'est aux longueurs d'onde plus courtes. In a micro-morph structure as shown in Figure 2a, no scattering structure is specifically provided. The diffusion effect therefore results from the roughness of the interfaces between the layers. The same interface performs the diffusion function at the wavelengths converted by the first semiconductor layer (310a), and the wavelength diffusion function converted by the second semiconductor layer (320a), which does not will not maximize optical trapping in this second layer. Indeed, optical trapping may possibly be adapted for the wavelengths converted by the first semiconductor layer but not for those converted by the second layer. Indeed, insofar as the deposits of the layers are in conformity, the states of roughness at the interfaces will be substantially identical and the diffusion at longer wavelengths will not be optimal, if it is at shorter wavelengths. .

En revanche, dans une diode split, les optimisations aux deux bandes de longueur d'onde, 310b et 320b, sont réalisées séparément, la première à l'interface entre la couche conductrice 120b et la couche semi-conductrice 130b, la deuxième soit dans les électrodes 140b et 160b, soit dans l'encapsulant diffuseur 150b ou dans toute combinaison de ces trois couches. La constitution de la couche diffusante peut être choisie pour optimiser la diffusion aux longueurs d'onde converties par la deuxième diode. Les différentes couches diffusantes (140b, 150b, 160b) peuvent être chargées par des particules pour optimiser la diffusion infra rouge dans le sens de la propagation de la lumière. Ceci augmentera le chemin optique dans le sous module arrière donc son courant. Dans le cas de l'invention, les charges mises en oeuvre dans les différentes couches des deux panneaux ont pour but de diffuser la lumière incidente transmise à travers la première diode avec un angle le plus grand possible par rapport à l'axe de propagation de la lumière en évitant au maximum la rétrodiffusion. Le fait que les deux modules 11 b et 12b soient séparés permet d'avoir accès à la partie centrale du dispositif et donc d'améliorer la structure optique du dispositif. Ainsi, l'introduction dans les couches centrales de fines particules permet de faire diffuser la lumière ayant traversé le premier module. Selon la constitution de la couche semi-conductrice de ce premier module, le seuil de longueur d'onde des rayons lumineux non absorbés et diffusant vers le deuxième module sera choisi aux environs de 850 nm et la majorité de cette lumière se situera dans l'infrarouge ou le proche infrarouge. Le but de cette diffusion n'est pas comme dans le cas des modules classiques de renvoyer de la lumière sur la diode avant mais de la diffuser avec un angle de diffusion le plus large possible (entre 0 et 90° par rapport à l'axe de la lumière incidente) dans le deuxième module (module arrière). Les lois de la physique nous permettent de calculer la taille d des particules qui doivent être incorporées. Celle-ci doit être comprise entre 0.1 et 1.5p, le matériau doit être non absorbant avec un indice de réfraction n2 le plus haut possible (n1 étant l'indice de réfraction du matériau dans lequel sont incorporées les particules). La concentration et la taille des particules doivent être définies en fonction de l'épaisseur de la couche pour avoir un angle maximum de diffusion et pas ou très peu de rétrodiffusion. On the other hand, in a split diode, the optimizations at the two wavelength bands, 310b and 320b, are carried out separately, the first at the interface between the conductive layer 120b and the semiconductor layer 130b, the second at the interface between the conductive layer 120b and the semiconductor layer 130b. the electrodes 140b and 160b, either in the diffuser encapsulant 150b or in any combination of these three layers. The constitution of the diffusing layer may be chosen to optimize the diffusion at the wavelengths converted by the second diode. The different scattering layers (140b, 150b, 160b) can be charged by particles to optimize infrared scattering in the direction of light propagation. This will increase the optical path in the rear sub-module so its current. In the case of the invention, the charges used in the different layers of the two panels are intended to diffuse incident light transmitted through the first diode with an angle as large as possible relative to the axis of propagation of light by maximizing backscatter. The fact that the two modules 11b and 12b are separated makes it possible to have access to the central part of the device and thus to improve the optical structure of the device. Thus, the introduction into the central layers of fine particles makes it possible to diffuse the light that has passed through the first module. According to the constitution of the semiconductor layer of this first module, the wavelength threshold of the unabsorbed light beams and diffusing towards the second module will be chosen around 850 nm and the majority of this light will be located in the infrared or near infrared. The purpose of this diffusion is not, as in the case of conventional modules, to return light to the front diode but to diffuse it with the widest possible diffusion angle (between 0 and 90 ° with respect to the axis). incident light) in the second module (rear module). The laws of physics allow us to calculate the size of particles that need to be incorporated. This must be between 0.1 and 1.5p, the material must be non-absorbing with a refractive index n2 as high as possible (n1 being the refractive index of the material in which the particles are incorporated). The concentration and size of the particles must be defined according to the thickness of the layer to have a maximum angle of diffusion and no or very little backscattering.

Selon la taille des particules les lois de diffusion de la lumière vont être différentes : Si le produit n2 x d est très inférieur à la longueur d'onde de la lumière, on est dans un modèle de diffusion de Rayleigh ; la lumière est diffusée à 360°; cette configuration est divulguée dans le brevet US20100059101 n'est pas celle retenue dans le cadre de la présente invention ; Si le produit n2 x d est de l'ordre de grandeur de la longueur d'onde de la lumière, en sélectionnant un couple (n2, d) on modifie l'angle de diffusion par rapport à l'axe de propagation de la lumière ; on cherchera 25 également à minimiser la rétrodiffusion de la lumière. La théorie de Mie permet de calculer la dimension des particules la mieux adaptée pour une diffusion maximum avec un angle maximum tout en minimisant au maximum la rétrodiffusion. La théorie de Mie est basée sur la résolution des équations de Maxwell dans 30 le cas d'une sphère de rayon R constituée d'un matériau d'indice np plongée dans un milieu d'indice ri,. Donnons ici à titre d'illustration les équations de Mie donnant les sections efficaces de diffusion : L) 2 Chf = (2L + 1)(aL 12 + 11/L12 ) Avec x = kR,oùk = 27c I X,X étant la longueur d'onde. 2 9853 74 11 Avec L étant l'orde du développement multipolaire des champs en fonction de la symétrie sphérique. Si on ne prend en compte que le premier ordre, c'est-à-dire L=1, dans ce cas nous avons : a = 1111P 1,(111x)VL(x)-IFL(x)''L(rnx) n/YL (nix); (x) (x)VL (lm) 5 Avec m=nlin, Et IPLetLétant les fonctions cylindriques de Riccati-Bessel. L'homme de l'art aura à sa disposition les moyens de résoudre ces équations dans les cas d'application de la présente invention. Pour plus de détail on pourra se référer par exemple à la publication de Bohren C.F., Huffman D. 10 R., "Absorption and Scattering of light by small perfides", John Wiley and Sons, Inc., New York, NY, first edition (1983). Compte tenu des différents matériaux que l'on peut utiliser pour la cellule arrière (le 2ème module), le calcul de la taille des particules dépend de la 15 longueur d'onde que l'on va privilégier. Dans le cas d'un matériau avec un gap de 1.1eV on va essayer de maximiser la diffusion pour une longueur d'onde de l'ordre de 850nm (proche IR). Cette valeur représente la médiane des longueurs d'onde de la lumière reçue par le deuxième module après qu'elle ait traversée le premier module. Par exemple, pour un module avant 20 avec un matériau grand gap de 1,7 eV et un module arrière petit gap de 1,1 eV cette médiane sera située dans l'intervalle 700-1000 nm qui donne une médiane à 850 nm qui a servi d'exemple dans les calculs de diffusion. Les résultats de modélisation sont donnés plus loin dans la description Dans le cas de l'incorporation des particules dans le polymère, à l'interface des deux sous modules, ce dernier doit être transparent et assurer deux fonctions principales, servir de matrice dispersante pour les particules et d'encapsulant pour assurer la protection du panneau contre les éléments climatiques. Ce polymère peut par exemple être de l'EVA (Ethylène Vynil Acétate), du PVB (Polyvinlyle Butyrale) ou du silicone ou tout autre élastomère isolant et transparent permettant d'encapsuler des panneaux solaires avec une durée de vie supérieure à 20 ans. Depending on the size of the particles, the laws of diffusion of the light will be different: If the product n2 x d is very much smaller than the wavelength of the light, one is in a Rayleigh scattering model; the light is diffused at 360 °; this configuration is disclosed in US20100059101 is not that retained in the context of the present invention; If the product n2 x d is of the order of magnitude of the wavelength of the light, by selecting a pair (n2, d) the diffusion angle is modified with respect to the axis of propagation of the light; we will also try to minimize the backscattering of light. Mie's theory makes it possible to calculate the particle size best suited for maximum diffusion with maximum angle while minimizing backscattering. The theory of Mie is based on the resolution of Maxwell's equations in the case of a sphere of radius R consisting of a material of index np dipped in a medium of index ri. Let us give here as an illustration the Mie equations giving the scattering cross sections: L) 2 Chf = (2L + 1) (aL 12 + 11 / L12) With x = kR, where k = 27c IX, X being the length wave. 2 9853 74 11 With L being the orde of multipolar field development as a function of spherical symmetry. If we take into account only the first order, that is to say L = 1, in this case we have: a = 1111P 1, (111x) VL (x) -IFL (x) '' L (rnx ) n / YL (nix); (x) (x) VL (lm) 5 With m = nlin, and IPLetLand the cylindrical functions of Riccati-Bessel. One skilled in the art will have the means to solve these equations in the case of application of the present invention. For further details reference may be made, for example, to the publication of Bohren CF, Huffman D. R., "Absorption and Scattering of Light by Small Perfides", John Wiley and Sons, Inc., New York, NY, first edition (1983). Given the different materials that can be used for the rear cell (the second module), the calculation of the particle size depends on the wavelength that will be preferred. In the case of a material with a gap of 1.1eV we will try to maximize the diffusion for a wavelength of the order of 850nm (near IR). This value represents the median wavelength of the light received by the second module after it has passed through the first module. For example, for a module before 20 with a large gap material of 1.7 eV and a small gap rear module of 1.1 eV this median will be in the range 700-1000 nm which gives a median at 850 nm which has served as an example in the diffusion calculations. The modeling results are given later in the description. In the case of the incorporation of the particles into the polymer, at the interface of the two sub-modules, the latter must be transparent and provide two main functions, serve as a dispersing matrix for the particles and encapsulant to ensure the panel's protection against climatic elements. This polymer may for example be EVA (Ethylene Vynil Acetate), PVB (Polyvinyl Butyral) or silicone or any other insulating and transparent elastomer for encapsulating solar panels with a service life greater than 20 years.

Les figures 4a, 4b, 4c et 4d représentent des vue de détail de la structure de la partie centrale d'une diode selon trois modes de réalisation différents de l'invention. La figure 4a reprend la figure 3b et indique trois modes de réalisation 5 possibles de l'invention qui sont représentés sur les figures 4b, 4c et 4d. Sur la figure 4b, les particules diffusantes dont l'indice et la taille sont calculés selon la méthode discutée plus haut en relation avec la figure 3b sont incorporées dans l'électrode 140b. Sur la figure 4c, lesdites particules diffusantes sont incorporées dans la 10 couche d'encapsulant diffuseur 150b. Sur la figure 4d, les particules diffusantes sont incorporées dans l'électrode 160b. Dans les trois cas c'est l'indice du milieu qui change(nm), ce qui fait que le rapport m des indices entre la particule np et le milieu m=np/nm ( comme 15 défini plus haut) va changer et aura une influence sur la diffusion de la lumière. La taille de la particule devra en principe être adaptée pour une maximisation de la diffusion. Néanmoins dans notre cas pratique, la différence d'indice entre le matériau encapsulant (généralement autour de 1,5) et le TCO (généralement 1,9-2 à 600 nm mais qui est même plus petit 20 pour les grandes longueurs d'onde) n'est pas excessivement grand pour influencer de façon significative le résultat de la diffusion. En effet comme mentionné précédemment la taille de la particule est choisie pour une diffusion maximale pour une longueur d'onde moyenne sur le spectre. Ce qui fait qu'une variation de 10 à 20% du diamètre de la particule peut être 25 tolérée. Sinon, si nécessaire, une légère adaptation de la taille de la particule pourra être faite lorsque les particules seront insérées dans le TCO. En cas d'intégration dans le TCO on privilégiera l'incorporation des particules dans le TCO en contact avec l'absorbeur petit gap. 30 Les figures 5a, 5b et 5c représentent respectivement les courbes de distribution angulaire des diffusions dues à la couche d'encapsulation dans plusieurs modes de réalisation de l'invention. Ces figures ne constituent que des exemples de l'incorporation des particules dans l'encapsulant. On aurait pu au même titre faire des courbes 35 identiques pour établir les mêmes courbes de distribution angulaire dans les cas de la réalisation de l'invention par incorporation de particules diffusantes dans les électrodes 140b et/ou 160b. On prend à titre d'exemple illustratif les hypothèses suivantes : - n2 (indice des particules fines implantées dans la matrice polymère) 2.61 - n1 (Indice la matrice polymère de l'encapsulant): 1.5 - Longueur d'onde dans le vide : 850 nm - d = diamètre de la fine particule en p Les calculs selon la modélisation de Mie donnent alors les valeurs suivantes : D 0.04 0.1 0.2 0.3 0.4 0.5 0.6 Efficacité de la 0.001 1 0.043 0.657 2.773 3.75 4.09 4.712 diffusion vers l'avant Efficacité de la 0.001 5 0.055 0.413 0.215 1 0.652 1.655 1.983 diffusion vers l'arrière D 0.6 0.7 0.8 0.9 1 1.5 5 Efficacité de la diffusion 4.712 3.57 2.759 1.58 1.92 2.44 2.17 vers l'avant Efficacité de la diffusion 1.983 7.716 12.06 5.528 8.98 5.94 24.45 vers l'arrière La diffusion vers l'avant porte souvent le nom de « Forward scattering ». La 15 diffusion vers l'arrière porte souvent le nom de « Backward scattering ». La meilleure solution dans l'exemple de réalisation privilégié est alors obtenue pour des particules de 0.3 p où le rapport forward scattering sur back scattering est le plus fort. De plus cette information est confirmée par la distribution angulaire de la diffusion : 20 Figure 5a : distribution angulaire pour d=0.2p et longueur d'onde dans le vide 850 nm ; Figure 5b : distribution angulaire pour d=0.3p et longueur d'onde dans le vide 850 nm ; Figure 5c : distribution angulaire pour d=0.4p et longueur d'onde dans le 25 vide 850 nm. Figures 4a, 4b, 4c and 4d show detail views of the structure of the central portion of a diode according to three different embodiments of the invention. Figure 4a shows Figure 3b and shows three possible embodiments of the invention shown in Figures 4b, 4c and 4d. In FIG. 4b, the scattering particles whose index and size are calculated according to the method discussed above in relation with FIG. 3b are incorporated in the electrode 140b. In FIG. 4c, said scattering particles are incorporated in the diffusion encapsulant layer 150b. In FIG. 4d, the scattering particles are incorporated in the electrode 160b. In all three cases it is the index of the medium which changes (nm), so that the ratio m of indices between the particle np and the medium m = np / nm (as defined above) will change and have an influence on the diffusion of light. The size of the particle should in principle be adapted for maximization of diffusion. Nevertheless, in our practical case, the difference in index between the encapsulating material (generally around 1.5) and the TCO (generally 1.9-2 at 600 nm but which is even smaller for long wavelengths). ) is not excessively large to significantly influence the outcome of the broadcast. Indeed, as mentioned above, the size of the particle is chosen for maximum diffusion for an average wavelength on the spectrum. This means that a variation of 10 to 20% of the diameter of the particle can be tolerated. Otherwise, if necessary, a slight adaptation of the particle size can be made when the particles are inserted into the TCO. In the case of integration into the TCO, the incorporation of the particles into the TCO in contact with the small gap absorber will be preferred. Figures 5a, 5b and 5c respectively show the angular distribution curves of the diffusions due to the encapsulation layer in several embodiments of the invention. These figures are only examples of the incorporation of the particles into the encapsulant. Likewise, identical curves could have been made to establish the same angular distribution curves in the cases of the embodiment of the invention by incorporation of scattering particles in the electrodes 140b and / or 160b. The following hypotheses are used as illustrative examples: n2 (index of fine particles implanted in the polymer matrix) 2.61 - n1 (Index the polymer matrix of the encapsulant): 1.5 - Wavelength in vacuum: 850 nm - d = diameter of the fine particle in p The calculations according to the modelization of Mie then give the following values: D 0.04 0.1 0.2 0.3 0.4 0.5 0.6 Efficiency of 0.001 1 0.043 0.657 2.773 3.75 4.09 4.712 forward diffusion Efficiency of the 0.001 5 0.055 0.413 0.215 1 0.652 1.655 1.983 diffusion to the back D 0.6 0.7 0.8 0.9 1 1.5 5 Effectiveness of the diffusion 4.712 3.57 2.759 1.58 1.92 2.44 2.17 forward Effectiveness of the broadcast 1.983 7.716 12.06 5.528 8.98 5.94 24.45 backward Forwarding is often referred to as "forward scattering". Backcasting is often referred to as "backward scattering". The best solution in the preferred embodiment is then obtained for 0.3 p particles where the forward scattering report on back scattering is the strongest. Moreover this information is confirmed by the angular diffusion distribution: FIG. 5a: angular distribution for d = 0.2p and wavelength in vacuum 850 nm; Figure 5b: angular distribution for d = 0.3p and wavelength in vacuum 850 nm; Figure 5c: Angular distribution for d = 0.4p and wavelength in vacuum 850 nm.

Les différents graphes montrent bien que pour des particules de 0.2 p il existe un peu de back scattering, que pour d=0.3 p l'angle de diffusion est bien ouvert avec pas de back scattering et que pour d=0.4 p on voit réapparaitre un peu de back scattering avec une diminution de l'angle de diffusion. Une taille de particule de 0.3p est donc la mieux adaptée dans le cadre du calcul prenant les hypothèses suivantes, longueur d'onde 850 nm, matrice polymère ayant un indice de 1.5 et des particules ayant un indice de 2.61. On peut refaire ce calcul en fonction des différents paramètres, indice du 10 milieu recevant les particules, indice des particules de charge et longueur d'onde. La plupart des matrices polymères ayant un indice de 1.5, la taille optimale des particules permettant une diffusion avec un angle le plus grand possible et avec la rétrodiffusion la plus faible possible sera de l'ordre de 0.1 à 2p 15 maximum. La plage de diamètre des particules est comprise dans l'enveloppe très large donnée pour d'autres applications, notamment dans le brevet US20100059101. En revanche, ce document explique clairement (paragraphe [0090]) que le but de la charge est de diffuser la lumière à la fois 20 dans la diode aSi et la pSi. Ceci ne laisse aucune ambigüité sur le fait que, selon la divulgation de cette invention, ce qui est recherché est de la diffusion vers l'avant et de la rétrodiffusion. Ce document détermine une première fourchette entre 0.1 et 10p puis une fourchette optimum plus petite entre 0.5 et 2p, supérieure aux valeurs obtenues dans le cas de l'application au 25 dispositif de l'invention. Les figures 6a et 6b représentent l'effet de réflexion à l'arrière respectivement dans une cellule photovoltaïque à structure micro-morphe de l'art antérieur et dans une structure split dans un mode de réalisation de 30 l'invention. La structure du dispositif selon l'invention permet de déposer la couche réfléchissante à rugosité contrôlée sur le verre. Cette rugosité permet d'avoir une réflexion diffusive optimale avec une faible absorption du miroir. . Ce miroir va réfléchir la lumière diffusée par les particules incluses dans les 35 couches 140b, 150b et 160b et permettre ainsi à cette dernière d'augmenter son nombre de trajets à travers les couches absorbantes. The different graphs show that for particles of 0.2 p there is a bit of back scattering, that for d = 0.3 p the diffusion angle is well open with no back scattering and that for d = 0.4 p we see reappear a little back scattering with a decrease in the scattering angle. A particle size of 0.3p is therefore the best suited for the calculation taking the following hypotheses, wavelength 850 nm, polymer matrix having an index of 1.5 and particles having an index of 2.61. This calculation can be repeated as a function of the various parameters, the index of the medium receiving the particles, the index of the charge particles and the wavelength. Most polymeric matrices having an index of 1.5, the optimum size of the particles allowing diffusion with the greatest possible angle and with the lowest possible backscattering will be of the order of 0.1 to 2p maximum. The diameter range of the particles is included in the very wide envelope given for other applications, in particular in the patent US20100059101. On the other hand, this document clearly explains (paragraph [0090]) that the purpose of the load is to diffuse light in both the aSi diode and the pSi. This leaves no ambiguity that, according to the disclosure of this invention, what is sought is forward scatter and backscatter. This document determines a first range between 0.1 and 10 p and then a smaller optimum range between 0.5 and 2 p, higher than the values obtained in the case of application to the device of the invention. FIGS. 6a and 6b show the rear reflection effect respectively in a micro-morph structure photovoltaic cell of the prior art and in a split structure in an embodiment of the invention. The structure of the device according to the invention makes it possible to deposit the reflective layer with controlled roughness on the glass. This roughness makes it possible to have optimal diffusive reflection with a low absorption of the mirror. . This mirror will reflect the light scattered by the particles included in the layers 140b, 150b and 160b and thus allow the latter to increase its number of paths through the absorbent layers.

Comme décrit sur les figures 2b et 2c, la réalisation de la rugosité contrôlée peut être obtenue, soit par dépôt d'agrégats de l'ordre d'un micromètre disposées régulièrement sur le verre, soit par gravure micrométrique du verre. Le miroir diffusif sera obtenu par dépôt conforme d'un métal sur cette structure. Les figures 7a et 7b représentent respectivement les courbes courant/tension des diodes avant et arrière dans un mode de réalisation de l'invention. La connexion électrique des diodes de chacun des modules (frontale ou avant et arrière) fabriqués et optimisés séparément s'effectue sans perte d'efficacité de chacun des modules. Les rendements de conversion des deux diodes, dont les valeurs sont indiquées sur les figures 7a et 7b sont préservées par le montage en parallèle des deux diodes. Les sigles figurant sur les figures ont les significations suivantes: Jsc : Densité de courant (mA/cm2) de la cellule photovoltaïque ; Voc : Tension circuit ouvert (V) de la cellule ; FF : Facteur de forme (%) de la cellule = VMax x JMax /Jsc x VOC Rendement : Jsc x VOC x FF/Puissance incidente (une valeur de 1 kW/m2 correspond à la norme Spectra AM 1 .5) On assemblera les cellules photovoltaïques selon l'invention en panneaux solaires destinés eux-mêmes à être groupés en unités de production d'électricité et à être montés sur le site de production d'énergie électrique et d'être reliés au réseau local (maison, immeuble...) ou étendu, dans le cas d'assemblages d'un nombre de cellules. Avantageusement, un premier ensemble de premières cellules Cl de grand côté de dimension L et de petit côté de dimension 11 sont mises en série par leur grand côté et un deuxième ensemble de deuxièmes cellules C2 de dimension L x 12 également montées en séries sont combinées. Les dimensions 11 et 12 sont choisies de tel sorte que leur rapport soit égal au rapport des tensions circuit ouvert aux bornes de Cl et C2. Les exemples décrits ci-dessus sont donc donnés à titre d'illustration de certains des modes de réalisation de l'invention. Ils ne limitent en aucune manière le champ de l'invention qui est défini par les revendications qui suivent. As described in FIGS. 2b and 2c, the achievement of the controlled roughness can be obtained either by deposition of aggregates of the order of one micrometer arranged regularly on the glass, or by micrometric etching of the glass. The diffusive mirror will be obtained by conformal deposition of a metal on this structure. FIGS. 7a and 7b respectively represent the current / voltage curves of the front and rear diodes in one embodiment of the invention. The electrical connection of the diodes of each of the modules (front or front and rear) manufactured and optimized separately is performed without loss of efficiency of each of the modules. The conversion efficiencies of the two diodes, the values of which are indicated in FIGS. 7a and 7b, are preserved by the parallel connection of the two diodes. The acronyms in the figures have the following meanings: Jsc: current density (mA / cm2) of the photovoltaic cell; Voc: Open circuit voltage (V) of the cell; FF: Shape factor (%) of the cell = VMax x JMax / Jsc x VOC Efficiency: Jsc x VOC x FF / incident power (a value of 1 kW / m2 corresponds to the Spectra AM standard 1 .5) We will assemble the photovoltaic cells according to the invention in solar panels for themselves to be grouped in electricity production units and to be mounted on the site of production of electrical energy and to be connected to the local network (house, building .. .) or extended, in the case of assemblies of a number of cells. Advantageously, a first set of first large-dimension C1 cells of dimension L and small size side 11 are put in series by their long side and a second set of second cells C2 of dimension L × 12 also mounted in series are combined. The dimensions 11 and 12 are chosen so that their ratio is equal to the ratio of the open circuit voltages across C1 and C2. The examples described above are therefore given by way of illustration of some of the embodiments of the invention. They in no way limit the scope of the invention which is defined by the following claims.

Claims (15)

REVENDICATIONS1. Cellule photovoltaïque comprenant : Un premier module (11b) comprenant, sur un premier substrat (110b) transparent à une lumière incidente, une première et une deuxième électrodes (120b, 140b) enserrant un premier matériau (130b) choisi pour photo-convertir un rayonnement lumineux de longueur d'onde inférieure à un seuil de longueur d'onde et sensiblement transparent aux rayonnements lumineux de longueur d'onde supérieure audit seuil, les première et deuxième électrodes et le premier matériau déposés en couches minces sur le premier substrat, Un deuxième module (12b) comprenant sur un deuxième substrat (190b), une troisième et une quatrième électrodes (160b, 180b) enserrant un deuxième matériau (170b) choisi pour photo-convertir un rayonnement lumineux de longueur d'onde supérieure audit seuil de longueur d'onde, les troisième et quatrième électrodes et le deuxième matériau déposés en couches minces sur le deuxième substrat, Lesdits premier et deuxième modules étant montés solidairement ensemble, la deuxième et la quatrième électrodes étant séparés par un encapsulant (150b) d'indice de réfraction n1 et étant reliés électriquement par deux connexions électriques parallèles de la 1 ère et de la 3ème électrodes (1210b, 1810b) et de la 2ème et de la 4ème électrodes (1410b, 1610b), ladite cellule photovoltaïque étant caractérisée en ce que sont insérées dans au moins un des éléments choisis dans le groupe de l'encapsulant (150b) et des deuxième et quatrième électrodes (140b, 160b) des particules diffusantes l'indice de réfraction n2 supérieur à n1 et de dimension caractéristique d choisis pour maximiser l'angle de diffusion et minimiser la rétrodiffusion aux longueurs d'onde supérieures audit seuil. REVENDICATIONS1. Photovoltaic cell comprising: a first module (11b) comprising, on a first substrate (110b) transparent to an incident light, a first and a second electrode (120b, 140b) enclosing a first material (130b) selected for photoconverting radiation light of wavelength less than a threshold wavelength and substantially transparent to the light radiation of wavelength greater than said threshold, the first and second electrodes and the first material deposited in thin layers on the first substrate, A second module (12b) comprising on a second substrate (190b), a third and a fourth electrode (160b, 180b) enclosing a second material (170b) selected for photoconverting light radiation of wavelength greater than said threshold length of d wave, the third and fourth electrodes and the second material deposited in thin layers on the second substrate, said first and second modules being integrally mounted together, the second and fourth electrodes being separated by an encapsulant (150b) of refractive index n1 and being electrically connected by two parallel electrical connections of the 1st and 3rd electrodes (1210b, 1810b) and of the 2nd and 4th electrodes (1410b, 1610b), said photovoltaic cell being characterized in that are inserted in at least one of the elements selected from the group of the encapsulant (150b) and the second and fourth electrodes (140b, 160b) diffusing particles having a refractive index n2 greater than n1 and having a characteristic dimension d chosen to maximize the scattering angle and to minimize backscattering at wavelengths above said threshold. 2. Cellule photovoltaïque selon la revendication 1, caractérisée en ce que lesdites particules diffusantes sont insérées dans l'encapsulant diffuseur (150b). 2. Photovoltaic cell according to claim 1, characterized in that said scattering particles are inserted into the diffuser encapsulant (150b). 3. Cellule photovoltaïque selon la revendication 1, caractérisée en ce que lesdites particules diffusantes sont insérées dans au moins l'une des deuxième et quatrième électrodes (140b, 160b) Photovoltaic cell according to claim 1, characterized in that said diffusing particles are inserted in at least one of the second and fourth electrodes (140b, 160b). 4. Cellule photovoltaïque selon l'une des revendications 1 à 3, 10 caractérisée en ce que la 3ème électrode est constituée par un réflecteur miroir à rugosité contrôlée. 4. Photovoltaic cell according to one of claims 1 to 3, characterized in that the 3rd electrode is constituted by a mirror reflector with controlled roughness. 5. Cellule photovoltaïque selon l'une des revendications 1 à 4, 15 caractérisée en ce que l'encapsulant (150b) est constitué d'un polymère. 5. Photovoltaic cell according to one of claims 1 to 4, characterized in that the encapsulant (150b) consists of a polymer. 6. Cellule photovoltaïque selon l'une des revendications 1 à 5, caractérisée en ce que la 1 ère la 2ème et la 4ème électrodes sont en Transparent Conductive Oxyde. 20 6. Photovoltaic cell according to one of claims 1 to 5, characterized in that the 1st the 2nd and 4th electrodes are Transparent Conductive Oxide. 20 7. Cellule photovoltaïque selon l'une des revendications 1 à 6, caractérisée en ce que le premier matériau est choisi pour une photo-conversion optimale de la lumière visible. 25 7. Photovoltaic cell according to one of claims 1 to 6, characterized in that the first material is chosen for an optimal photoconversion of visible light. 25 8. Cellule photovoltaïque selon l'une des revendications 1 à 7, caractérisée en ce que l'épaisseur du premier matériau est choisie pour une photo-conversion optimale de la lumière visible en fin de vie de la cellule. 8. Photovoltaic cell according to one of claims 1 to 7, characterized in that the thickness of the first material is chosen for optimal photoconversion of visible light at the end of life of the cell. 9. Cellule photovoltaïque selon l'une des revendications 1 à 8, 30 caractérisée en ce que le premier matériau est un matériau amorphe grand gap. 9. Photovoltaic cell according to one of claims 1 to 8, characterized in that the first material is a large gap amorphous material. 10. Cellule photovoltaïque selon l'une des revendications 1 à 9, caractérisée en ce que le deuxième matériau est un matériau petit gap. 35 2 9853 74 19 10. Photovoltaic cell according to one of claims 1 to 9, characterized in that the second material is a small gap material. 35 2 9853 74 19 11. Cellule photovoltaïque selon la revendication 10, caractérisée en ce que le deuxième matériau est choisi dans le groupe comprenant le SiGe, le pc-Si, le poly-Si et le CIGS. 5 Photovoltaic cell according to claim 10, characterized in that the second material is selected from the group consisting of SiGe, pc-Si, poly-Si and CIGS. 5 12. Cellule photovoltaïque selon l'une des revendications 1 à 11, caractérisée en ce que l'indice de réfraction n2 et la dimension caractéristique d sont choisis en appliquant les lois de Mie. 12. Photovoltaic cell according to one of claims 1 to 11, characterized in that the refractive index n2 and the characteristic dimension d are chosen by applying the laws of Mie. 13. Cellule photovoltaïque selon la revendication 12, 10 caractérisée en ce l'application de la loi de Mie est faite à une longueur d'onde sensiblement égale à la moyenne de la plage d'absorption du deuxième module. 13. Photovoltaic cell according to claim 12, characterized in that the application of the Mie law is made at a wavelength substantially equal to the average of the absorption range of the second module. 14. Cellule photovoltaïque selon la revendication 11, 15 caractérisée en ce que l'indice de réfraction n2 est au minimum égal à 2,5 et la dimension caractéristique d est égale sensiblement à 0,3 microns. 14. Photovoltaic cell according to claim 11, characterized in that the refractive index n2 is at least 2.5 and the characteristic dimension d is substantially equal to 0.3 microns. 15. Panneau solaire comprenant au moins deux ensembles photovoltaïques selon l'une des revendications 1 à 14, le premier ensemble 20 comprenant des premières cellules Cl mises en série par leur grand côté de dimension L, et le deuxième ensemble comprenant des deuxièmes cellules C2 mises en série par leur grand côté de même dimension L et ayant chacune une dimension L x 11 et L x 12 respectivement, ledit panneau étant caractérisé en ce que le rapport des dimensions 11 et 12 desdites premières 25 et deuxièmes cellules desdits ensembles est égal au rapport des tensions circuit ouvert de Cl et C2. 15. Solar panel comprising at least two photovoltaic assemblies according to one of claims 1 to 14, the first set 20 comprising first cells C1 in series by their long side of dimension L, and the second set comprising second cells C2 put in series by their long side of the same dimension L and each having a dimension L x 11 and L x 12 respectively, said panel being characterized in that the ratio of the dimensions 11 and 12 of said first 25 and second cells of said sets is equal to the ratio open circuit voltages of C1 and C2.
FR1162451A 2011-12-26 2011-12-26 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE Pending FR2985374A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1162451A FR2985374A1 (en) 2011-12-26 2011-12-26 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
FR1250141A FR2985375A1 (en) 2011-12-26 2012-01-06 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
PCT/EP2012/076466 WO2013098204A2 (en) 2011-12-26 2012-12-20 Photovoltaic panel having diodes mounted in parallel and comprising a central diffuse structure and a rear reflective structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1162451A FR2985374A1 (en) 2011-12-26 2011-12-26 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE

Publications (1)

Publication Number Publication Date
FR2985374A1 true FR2985374A1 (en) 2013-07-05

Family

ID=45757715

Family Applications (2)

Application Number Title Priority Date Filing Date
FR1162451A Pending FR2985374A1 (en) 2011-12-26 2011-12-26 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
FR1250141A Withdrawn FR2985375A1 (en) 2011-12-26 2012-01-06 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE

Family Applications After (1)

Application Number Title Priority Date Filing Date
FR1250141A Withdrawn FR2985375A1 (en) 2011-12-26 2012-01-06 PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE

Country Status (2)

Country Link
FR (2) FR2985374A1 (en)
WO (1) WO2013098204A2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085711A (en) 1989-02-20 1992-02-04 Sanyo Electric Co., Ltd. Photovoltaic device
US5656098A (en) * 1992-03-03 1997-08-12 Canon Kabushiki Kaisha Photovoltaic conversion device and method for producing same
JP2756050B2 (en) * 1992-03-03 1998-05-25 キヤノン株式会社 Photovoltaic device
JP4959127B2 (en) * 2004-10-29 2012-06-20 三菱重工業株式会社 Photoelectric conversion device and substrate for photoelectric conversion device
KR20100125443A (en) * 2008-03-25 2010-11-30 코닝 인코포레이티드 Substrates for photovoltaics
JP5544774B2 (en) * 2008-08-27 2014-07-09 三菱マテリアル株式会社 Multi-junction solar cell
US20100059101A1 (en) * 2008-09-10 2010-03-11 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method of photovoltaic device
FR2948498B1 (en) * 2009-07-23 2012-06-15 Solsia PHOTOVOLTAIC SOLAR PANEL WITH THIN FILM DIODES

Also Published As

Publication number Publication date
WO2013098204A3 (en) 2013-11-07
FR2985375A1 (en) 2013-07-05
WO2013098204A2 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5615885B2 (en) Interference solar cell
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
US7964789B2 (en) Germanium solar cell and method for the production thereof
EP2901496B1 (en) Photovoltaic component with a high conversion efficiency
US20090159123A1 (en) Multijunction photovoltaic cells
WO2006005889A1 (en) Photovoltaic solar cell and solar module
FR2970599A1 (en) PHOTODETECTOR OPTIMIZED BY METALLIC TEXTURATION AGENCED IN REAR FACING
FR2961022A1 (en) PHOTOVOLTAIC CELL FOR APPLICATION UNDER CONCENTRATED SOLAR FLUX
EP0007878B1 (en) Photoelectric generator
EP3011592A1 (en) Multi-junction solar cell
FR2985374A1 (en) PHOTOVOLTAIC PANEL WITH DIODES MOUNTED IN PARALLEL WITH DIFFUSING CENTRAL STRUCTURE AND RE-REFLECTIVE REAR STRUCTURE
EP3000136B1 (en) Method for producing a light concentrating photovoltaic system
EP2842170B1 (en) Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector
FR2985604A1 (en) PHOTODETECTION DEVICE
EP4272261A1 (en) Photovoltaic module with potential electrode for a photovoltaic power plant
WO2004059746A1 (en) Integrated photovoltaic module for concentrating system and production method thereof
FR2979436A1 (en) REFLECTOR DEVICE FOR REAR FRONT OF OPTICAL DEVICES
FR3131083A1 (en) PHOTOVOLTAIC CELL WITH PASSIVE CONTACTS AND ANTIREFLECTIVE COATING