ROTOR A POLES SAILLANTS COMPORTANT DES FLASQUES DE MAINTIEN DES CHIGNONS DE BOBINAGES ET FLASQUES DE MAINTIEN ASSOCIES [01] DOMAINE TECHNIQUE DE L'INVENTION [2] L'invention concerne un rotor à pôles saillants comportant des flasques de maintien des chignons de bobinages ainsi que des flasques de maintien associés. [3] L'invention trouve une application particulièrement avantageuse 10 dans le domaine des machines électriques tournantes telles que les alternateurs, les alterno-démarreurs et les ralentisseurs électromagnétiques. [4] ETAT DE LA TECHNIQUE [5] Le document WO 2007/003835 présente un rotor à pôles saillants pour une machine électrique tournante notamment un alternateur ou un 15 alterno-démarreur pour véhicule automobile. [6] On rappelle qu'un alterno-démarreur est une machine électrique tournante apte à travailler de manière réversible, d'une part, comme générateur électrique en fonction alternateur et, d'autre part, comme moteur électrique notamment pour démarrer le moteur thermique du véhicule 20 automobile. [7] Cette machine comporte essentiellement un carter et, à l'intérieur de celui-ci, un rotor solidaire en rotation d'un arbre central de rotor et un stator annulaire qui entoure le rotor de manière coaxiale à l'arbre. [8] Le stator comporte un corps en forme d'un paquet de tôles doté 25 d'encoches, par exemple du type semi-fermé, pour le montage d'un bobinage de stator comportant plusieurs enroulements. Ce bobinage de stator comporte par exemple un jeu d'enroulements triphasé en étoile ou en triangle, dont les sorties sont reliées à un pont redresseur comportant des éléments redresseurs. [9] D'une manière générale, l'alternateur est du type polyphasé et le ou les ponts redresseurs permettent notamment de redresser le courant alternatif produit dans les enroulements du stator en un courant continu notamment pour charger la batterie du véhicule automobile et alimenter les charges et les consommateurs électriques du réseau de bord du véhicule automobile. [10] Le carter est en au moins deux parties, à savoir un palier avant et un palier arrière. Les paliers sont de forme creuse et portent chacun centralement un roulement à billes respectivement pour le montage à rotation de l'arbre du rotor. [11] Le carter comporte une partie intermédiaire portant intérieurement le corps du stator. Cette partie intermédiaire est intercalée axialement entre les paliers dotés chacun d'une pluralité d'ouvertures pour ventilation interne de la machine grâce à au moins un ventilateur solidaire d'une des extrémités axiale du rotor. Ce ventilateur comporte des pales solidaires d'un flasque de manière décrite ci-dessous. [12] L'arbre du rotor porte à son extrémité avant une poulie qui est agencée à l'extérieur du carter. La poulie appartient à un dispositif de transmission de mouvements par l'intermédiaire d'au moins une courroie entre l'alternateur et le moteur thermique du véhicule automobile. [13] Un paquet de tôles est monté coaxialement sur l'arbre de rotor dans le carter, à l'intérieur du stator. Ce paquet de tôles est formé d'un empilement axial de tôles qui s'étendent dans un plan radial perpendiculaire à l'axe de l'arbre de rotor. Ce paquet de tôles comporte ici, une âme centrale cylindrique et une répartition circonférentielle de bras saillants radialement à partir de l'âme. [14] Dans un plan radial, les tôles du paquet de tôles ont toutes un contour identique. Le contour des tôles est découpé de forme globalement circulaire et comportant des pôles saillants, qui sont répartis régulièrement selon une direction radiale et saillants de l'arbre vers la périphérie externe. Le paquet de tôles comporte au moins deux pôles. [15] Chaque pôle est constitué d'un bras qui, à partir de l'âme, s'étend radialement vers la périphérie extérieure en direction du stator. L'extrémité libre du pôle se termine par un retour saillant circonférentiellement de part et d'autre du bras. Un entrefer annulaire existe entre l'extrémité libre des pôles et la périphérie intérieure du corps du stator. [16] La fonction du retour saillant de chaque pôle est de retenir dans la direction radiale un bobinage d'excitation électriquement conducteur, qui est enroulé autour du bras radial de chaque pôle, à l'encontre de la force centrifuge subie par le bobinage d'excitation lors de la rotation du rotor. [017] Les bobinages d'excitation de chaque pôle sont reliés électriquement entre eux par des fils de liaison, par exemple en série. Les bobinages d'excitation sont alimentés électriquement par un collecteur, qui comporte des bagues collectrices, qui sont agencées autour d'une extrémité arrière de l'arbre. Ce collecteur est par exemple réalisé par surmoulage de matière électriquement isolante sur des éléments électriquement conducteurs reliant les bagues à un anneau relié électriquement par des liaisons filaires aux extrémités du ou des bobinages d'excitation du rotor. [18] Les bagues collectrices sont alimentées électriquement par l'intermédiaire de balais qui appartiennent à un porte-balais et qui sont disposés de façon à frotter sur les bagues collectrices. Le porte-balais est généralement agencé dans le carter et il est relié électriquement à un régulateur de tension. [19] Chaque bobinage d'excitation est enroulé autour du bras d'orientation radiale de chaque pôle de manière que des portions d'extrémités axiales du bobinage d'excitation font saillie axialement par rapport à chaque face radiale d'extrémité axiale externe du paquet de tôles. Ces portions en saillie seront par la suite appelées "chignons". Chaque pôle comporte ainsi un bobinage d'excitation qui comporte lui-même deux chignons opposés. [020] Un premier flasque avant et un deuxième flasque arrière sont montés coaxialement à l'arbre de manière à enserrer axialement le paquet de tôles pour maintenir les tôles empilées en paquet. Chaque flasque a globalement la forme d'un disque s'étendant dans un plan radial perpendiculaire à l'axe de l'arbre. Chaque flasque comporte un orifice central pour le montage coaxial sur l'arbre. [21] Les flasques sont agencés axialement de part et d'autre du paquet de tôles de manière que les faces radiales internes des flasques sont en appui contre les faces radiales d'extrémité axiales externes du paquet de tôles. Chaque flasque comporte quatre trous destinés à permettre le passage de quatre tirants. Les bras du paquet de tôles comportent des trous de manière que les tirants puissent traverser axialement le paquet de tôles depuis le flasque avant jusqu'au flasque arrière. Les flasques sont en matière conductrice de chaleur, par exemple en métal. [22] Le bord périphérique externe des flasques en vis-à-vis du stator comporte des rainures axiales qui sont débouchantes dans les faces radiales interne et externe des flasques. Ces rainures permettent de renouveler l'air qui est compris radialement entre le stator et le rotor. Chaque flasque comporte aussi des logements qui sont réalisés dans leur face radiale interne. Ces logements sont destinés à recevoir les chignons saillants. Au moins un des logements d'au moins un flasque comporte une surface de contact avec la face radiale externe du chignon associé. Ainsi, lorsque les chignons sont échauffés, leur chaleur est transmise aux flasques notamment par conduction. [23] Pour éviter que le bobinage d'excitation ne soit abîmé et pour éviter les courts-circuits dans le bobinage d'excitation, le chignon est en contact avec le fond du logement par l'intermédiaire d'une substance conductrice de chaleur et non conductrice d'électricité, qui protège les fils du bobinage d'excitation. La substance est ici un vernis d'imprégnation conducteur de chaleur et isolant électrique. Ce verni durcit par polymérisation. [24] L'un des flasques comporte des orifices de remplissage qui débouchent chacun dans le fond d'un logement associé. Ces orifices de remplissage sont destinés à permettre l'imprégnation du vernis liquide autour du bobinage d'excitation associé audit logement, et plus particulièrement autour des deux chignons du bobinage d'excitation. [25] La face radiale externe de chaque flasque comporte des pales formant un ventilateur. Chaque pale s'étend axialement vers l'extérieur depuis la face radiale externe du flasque associé. Lorsque le rotor tourne, les pales permettent ainsi d'évacuer la chaleur emmagasinée notamment dans les flasques et le rotor par circulation d'air à l'intérieur de la machine par l'intermédiaire des ouvertures que présentent les paliers. [26] Cependant, pour une telle configuration de la machine et en particulier des flasques, la circulation de l'air à l'intérieur du rotor n'est pas optimale lorsque le nombre de pôles augmente. Lorsque le rotor présente un nombre de pôles élevés, ce rotor a tendance à s'échauffer rapidement. En outre, pour faciliter l'évacuation de la chaleur, une telle configuration connue de la machine électrique impose nécessairement de mettre en oeuvre une opération d'imprégnation de vernis qui est longue et coûteuse à réaliser. [27] OBJET DE L'INVENTION [028] L'invention a notamment pour but de proposer un rotor à pôles saillants perfectionné permettant un refroidissement amélioré sans avoir à effectuer nécessairement une étape d'imprégnation de vernis entre les bobinages et le paquet de tôles. [029] A cette fin, l'invention concerne un rotor de machine électrique tournante comportant : - un arbre de rotor destiné à être monté rotatif autour de son axe, - un paquet de tôles monté coaxialement sur l'arbre de rotor, ce paquet de tôles comportant au moins huit pôles saillants radialement, - un bobinage d'excitation enroulé autour de chaque pôle, de manière que des portions d'extrémité axiale du bobinage, dîtes « chignons » font saillie axialement par rapport à chaque face d'extrémité radiale externe du paquet de tôles, - des flasques de maintien du paquet de tôles et des chignons des bobinages agencés axialement de part et d'autre du paquet de tôles, caractérisé en ce que : - un espace interbobinage existe entre deux bobinages d'excitation successifs, - chaque flasque de maintien comporte : - une paroi radiale munie d'une ouverture principale autorisant le passage de l'arbre, - un rebord annulaire s'étendant sur toute la périphérie externe de la paroi radiale et s'étendant axialement en direction du paquet de tôles du rotor, ce rebord annulaire présentant une face en appui sur les faces d'extrémité radiale externe du paquet de tôles afin de maintenir en place les chignons malgré la force centrifuge provoquée par la rotation du rotor s'exerçant sur lesdits chignons, - au moins une série d'orifices traversant ménagé dans la paroi radiale assurant une circulation de l'air à l'intérieur du rotor entre deux pôles saillants - la surface totale de la série d'orifices traversant étant supérieure à 0, 3 fois la surface totale des espaces interbobinage. [030] Grâce à l'invention on évacue plus de chaleur par convection grâce à la série d'orifices traversant tout en ayant un plus grand nombre de pôles. En outre les flasques permettent d'évacuer de la chaleur par conduction et convection. [31] Selon une réalisation, chaque flasque comporte une première série d'orifices traversant situés autour de l'ouverture principale, ces orifices présentant un angle d'ouverture au moins égal à l'angle entre deux pôles saillants successifs. [32] Selon une réalisation les orifices de la première série d'orifices sont plus large circonférentiellement que haut radialement. [033] Selon une réalisation, chaque flasque comporte une deuxième série d'orifices traversant implantée à l'extérieur de la première série. [34] Selon une réalisation la taille de la première série d'orifice et /ou de la deuxième série d'orifice est différente d'un flasque à l'autre. [35] Selon une réalisation les orifices de la série d'orifices traversant sont plus hauts radialement que large circonférentiellement. [36] Selon une réalisation les dits orifices plus hauts radialement que larges circonférentiellement sont globalement en vis-à-vis d'au moins une portion d'un espace interbobinage. [37] Selon une réalisation la hauteur radiale de certains des orifices globalement en vis-à-vis d'au moins une portion d'un espace interbobinage est globalement égale à la hauteur radiale de l'espace interbobinage. [38] Selon une réalisation la hauteur radiale de certains des orifices globalement en vis-à-vis d'au moins une portion d'un espace interbobinage est inférieure à la hauteur radiale de l'espace interbobinage. [039] Selon un mode de réalisation la largeur circonférentielle de certains des orifices en vis-à-vis globalement d'au moins une portion d'un espace interbobinage est globalement égale à la largeur circonférentielle d'un espace interbobinage. [40] Selon un mode de réalisation la largeur circonférentielle de certains des orifices en vis-à-vis globalement d'au moins une portion d'un espace interbobinage est supérieure à la largeur circonférentielle d'un espace interbobinage. [41] Selon un mode de réalisation la largeur circonférentielle de certains des orifices en vis-à-vis globalement d'au moins une portion d'un espace interbobinage est inférieure à la largeur circonférentielle d'un espace interbobinage. [42] Selon une réalisation chaque flasque comporte une série d'orifices plus haut radialement que large circonférentiellement et la deuxième série d'orifices. [043] Selon une réalisation au moins un flasque porte des pales positionnées sur une première face de la paroi tournée vers l'extérieur du rotor. [044] Selon une réalisation les pales appartiennent à un ventilateur séparé rapporté à fixation sur le flasque par exemple par soudage par points, vissage ou rivetage. [45] Selon une réalisation les pales appartiennent au flasque en étant d'un seul tenant avec celui-ci. [46] Selon une réalisation, chaque flasque comporte une deuxième série d'orifices, chaque orifice de la deuxième série étant positionné entre deux pales successives. [47] Selon une réalisation, le rotor comporte en outre deux éléments isolants positionnés de part et d'autre du paquet de tôles, assurant l'isolation de chignons. [48] Selon une réalisation, - la paroi radiale de chaque flasque présente sur sa face interne tournée vers le rotor au moins un secteur s'étendant axialement vers le paquet de tôles, - chaque élément isolant présente au moins une partie évidée à l'intérieur de laquelle est inséré le secteur d'un des flasques. [049] Selon une réalisation, chaque élément isolant comporte : - des bras maintenus plaqués contre une face d'extrémité radiale d'un pôle saillant par un chignon, et - des casquettes situées à une extrémité des bras s'étendant circonférentiellement de part et d'autre du bras, ces casquettes étant positionnées entre la tête du bobinage et le rebord annulaire d'un flasque de manière à participer à la retenue des chignons. [50] Selon une réalisation, chaque flasque comporte au moins un pion de centrage destiné à coopérer avec des ouvertures axiales ménagées dans les pôles saillants. [51] Selon une réalisation, chaque flasque comporte au moins deux orifices, les orifices des flasques et les ouvertures axiales des pôles assurant le passage de tirants d'assemblage pour assembler les flasques autour du paquet de tôles. [52] Selon une réalisation, le rotor comporte au moins un aimant positionné entre deux pôles saillants adjacents. [53] Selon une réalisation, les flasques sont réalisés en matériau amagnétique, tel que l'aluminium ou de la matière plastique avantageusement renforcée par des fibres. [54] L'invention concerne en outre un ensemble de flasques de maintien d'un paquet de tôles et de chignons de bobinages agencés axialement de part et d'autre du paquet de tôles d'un rotor de machine électrique tournante comportant au moins huit pôles saillants avec formation d'espaces interbobinage entre deux bobinages successifs enroulés chacun autour d'un pôle saillant, caractérisé en ce que chaque flasque de maintien comporte : - une paroi radiale munie d'une ouverture principale autorisant le passage de l'arbre, - des pales positionnées sur une première face de la paroi radiale tournée vers l'extérieur du rotor, - un rebord annulaire s'étendant sur toute la périphérie externe de la paroi radiale et s'étendant axialement en direction du rotor, ce rebord annulaire présentant une face en appui sur les faces d'extrémité radiale externe du paquet de tôles afin de maintenir en place les chignons malgré la force centrifuge provoquée par la rotation du rotor s'exerçant sur lesdits chignons, - au moins une série d'orifices traversant ménagée dans la paroi radiale assurant une circulation de l'air à l'intérieur du rotor entre les deux pôles saillants - la surface totale de la série d'orifices étant supérieure à 0,3 fois la surface totale des espaces interbobinage. [055] BREVE DESCRIPTION DES FIGURES [056] L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. Elles montrent : [057] Figure 1 : une vue en coupe axiale d'une machine électrique tournante munie d'un rotor selon l'invention ; [58] Figure 2: une vue en perspective éclatée d'un rotor selon l'invention qui n'est pas bobiné ; [59] Figures 3a et 3b : des vues en perspective d'un rotor bobiné selon l'invention sans les flasques ni le résolveur ; [060] Figures 4a et 4b : des vues respectivement du dessus et du dessous d'un rotor selon l'invention sans les flasques ni le résolveur ; [61] Figures 5a-5b : des vues en perspective d'un rotor bobiné selon l'invention muni de ses flasques de maintien ; [62] Figure 6a-6b : des vues respectivement du dessus et du dessous d'un rotor selon l'invention muni de ses flasques de maintien dotés d'une première et d'une deuxième série d'orifices ; [63] Figure 7 : une vue en coupe d'un rotor selon l'invention présentant une variante d'ouverture pour sa fixation sur l'arbre. [64] Figure 8 : une vue d'un des flasques avec un nombre inférieur de deuxièmes orifices. [65] Figure 9 : une vue partielle de l'un des flasques doté d'une série d'orifices implantés en vis-à-vis d'un espace interbobinage. [66] Les éléments identiques, similaires ou analogues conservent la même référence d'une figure à l'autre. [067] DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION [68] L'invention concerne un rotor 30 à pôles saillants pour une machine 10 électrique tournante notamment un alternateur ou un alternodémarreur. Cette machine 10 est de préférence destinée à être mise en oeuvre dans un véhicule automobile. [69] On rappelle qu'un alterno-démarreur est une machine électrique tournante apte à travailler de manière réversible, d'une part, comme générateur électrique en fonction alternateur et, d'autre part, comme moteur électrique notamment pour démarrer le moteur thermique du véhicule automobile. Un tel alterno-démarreur est décrit par exemple dans le document WO-A-01/69762 auquel on se reportera pour plus de précisions. [70] Cette machine comporte essentiellement un carter 11 et, à l'intérieur de celui-ci, un rotor 30 solidaire en rotation d'un arbre 35 central de rotor et un stator 12 annulaire qui entoure le rotor 30 de manière coaxiale à l'arbre 35 d'axe B constituant également l'axe du rotor 30. [71] Le stator 12 comporte un corps en forme d'un paquet de tôles doté d'encoches, par exemple du type semi-fermé, pour le montage d'un bobinage de stator 13 comportant plusieurs enroulements. Ce bobinage de stator 13 comporte par exemple un jeu d'enroulements triphasé en étoile ou en triangle, dont les sorties sont reliées à un pont redresseur (non représenté) comportant des éléments redresseurs comportant des éléments redresseurs tels que des diodes ou des transistors du type MOSFET, notamment lorsque la machine 10 est du type réversible et consiste en un alterno-démarreur comme décrit par exemple dans le document FR-A2.745.445 (US-A-6.002.219). [72] Les enroulements du bobinage de stator 13 sont obtenus à l'aide d'un fil continu, électriquement conducteur, revêtu d'une couche isolante et 20 monté dans les encoches concernées du corps du stator 12. [73] Selon une variante non représentée, pour un meilleur remplissage des encoches du corps du stator 12, les enroulements 13 sont réalisés à l'aide de conducteurs en forme de barres, tel que des épingles, reliées entre elles par exemple par soudage. 25 [074] Selon une autre variante non représentée, pour réduire le taux d'ondulation et les bruits magnétiques, le bobinage de stator 13 comporte deux jeux d'enroulements triphasés pour former un dispositif d'enroulements composites de stator 12, les enroulements étant décalés de trente degrés électriques comme décrit par exemple dans les documents 30 US-A1-2002/0175589, EP-0.454.039 et FR-A-2.784.248. Dans ce cas il est prévu deux ponts redresseurs et toutes les combinaisons d'enroulements triphasés en étoile et/ou en triangle sont possibles. [75] D'une manière générale, l'alternateur est du type polyphasé et le pont redresseur permet notamment de redresser le courant alternatif produit dans les enroulements du stator 12 en un courant continu notamment pour charger la batterie (non représentée) du véhicule automobile et alimenter les charges et les consommateurs électriques du réseau de bord du véhicule automobile. [76] Comme illustré à la Figure 1, l'arbre 35 du rotor 30 est monté à rotation autour de son axe B d'orientation axiale dans le stator 12 de la machine 10. [077] Le carter 11 est en au moins deux parties, à savoir un palier 14 avant et un palier 15 arrière. Les paliers 14, 15 sont de forme creuse et portent chacun centralement un roulement à billes respectivement 16 et 17 pour le montage à rotation de l'arbre 35 du rotor 30. [078] Le carter 11 comporte une partie intermédiaire (non référencée) portant intérieurement le corps du stator. Cette partie intermédiaire est intercalée axialement entre les paliers 14, 15 dotés chacun d'une pluralité d'ouvertures dont l'une (non référencée)) est visible à la figure 1 pour ventilation interne de la machine à l'aide d'un ventilateur décrit plus en détails ci-après. [079] L'arbre 35 du rotor 30 porte à son extrémité avant une poulie 18 qui est agencée à l'extérieur du carter 11. La poulie 18 appartient à un dispositif de transmission de mouvements par l'intermédiaire d'au moins une courroie (non représentée) entre l'alternateur et le moteur thermique du véhicule automobile. [080] La Figure 2 montre le rotor 30 comportant l'arbre 35, un paquet 36 de tôles monté coaxialement sur l'arbre 35, ce paquet 36 de tôles comportant au moins huit pôles 44 saillants radialement. En variante le rotor pourra comporter dix pôles ou 12 pôles comme représenté dans les figures. 4a et 4b. Les pôles pourront être répartis circonférentiellement de manière régulière. Le rotor 30 comporte en outre un bobinage 50 d'excitation (cf. Figures 3a-3b) enroulé autour de chaque pôle 44, de manière que des portions 51 d'extrémité axiale du bobinage 50, dîtes « chignons » font saillie axialement par rapport à chaque face 40, 41 d'extrémité radiale externe du paquet 36 de tôles. Des flasques 55, 56 de maintien du paquet 36 de tôles et des chignons 51 des bobinages 50 sont agencés axialement de part et d'autre du paquet 36 de tôles. [081] Plus précisément, le paquet 36 de tôles est monté coaxialement sur l'arbre 35 de rotor 30 dans le carter 11, à l'intérieur du stator 12. Le paquet 36 de tôles est monté solidaire en rotation de l'arbre 35. A cet effet, le paquet 36 de tôles comporte un orifice 37 axial central qui est emmanché à force sur un tronçon moleté de l'arbre 35. En variante, l'âme du paquet 36 de tôles présente une ouverture 38 munie d'évidements répartis de manière régulière circonférentiellement autour de l'ouverture 38 destinés à coopérer avec des languettes de forme correspondante appartenant à l'arbre 35 (cf. Figure 7). Dans un exemple de réalisation, ces évidements présentent en vue de dessus une forme circulaire. [082] Le paquet 36 de tôles est formé d'un empilement axial de tôles qui s'étendent dans un plan radial perpendiculaire à l'axe B de l'arbre 35. Le paquet 36 de tôles forme le corps du rotor 30 et est en matière ferromagnétique. Ce paquet 36 de tôles comporte ici une âme centrale cylindrique et des pôles 44 saillants radialement à partir de l'âme. Ces pôles 44 sont dans un mode de réalisation d'un seul tenant avec l'âme. En variante les pôles 44 sont rapportés sur l'âme, par exemple par une liaison du type tenons-mortaises comme décrit dans le document FR 2 856 532. Un pôle 44 sur deux ou tous les pôles 44 sont rapportés sur l'âme de manière à faciliter le montage et le démontage des pôles 44. En variante, un retour 45 saillant d'un pôle 44 sur deux ou le retour 45 saillant de tous les pôles 44 est rapporté par rapport à un bras 39 correspondant. [083] Dans la suite de la description, des faces radiales orientées vers le milieu du paquet 36 de tôles seront qualifiées de faces internes tandis que les faces radiales orientées dans un sens opposé seront qualifiées de faces externes. On considère également que le côté arrière du rotor 30 est situé du côté du résolveur 100 tandis que le côté avant est situé du côté opposé. [84] Ainsi, le paquet 36 de tôles est délimité axialement par la première face 40 radiale externe d'extrémité avant et par la deuxième face 41 radiale externe opposée d'extrémité arrière. [85] Dans un plan radial, les tôles du paquet 36 de tôles ont toutes un contour identique. Le contour des tôles est découpé de forme globalement circulaire et comporte les pôles 44 saillants, qui sont répartis régulièrement selon une direction radiale et saillants de l'arbre 35 vers la périphérie externe, comme illustré aux Figures 4a-4b. Le paquet 36 de tôles comporte au moins huit pôles 44 et dans l'exemple représenté aux Figures, il comporte douze pôles 44. [86] Chaque pôle 44, comme mieux visible à la figure 7, est constitué d'un bras 39 et d'un retour 45 saillant. Le bras 39 s'étend radialement depuis l'âme vers la périphérie extérieure en direction du stator 12. L'extrémité libre du pôle 44 se termine par le retour 45 saillant circonférentiellement de part et d'autre du bras 39. Un entrefer annulaire existe entre l'extrémité libre des pôles 44 et la périphérie intérieure du corps du stator 12. [87] La fonction du retour 45 saillant de chaque pôle 44 est de retenir dans la direction radiale un bobinage 50 d'excitation électriquement conducteur, qui est enroulé autour du bras 39 radial de chaque pôle 44 comme cela est décrit ci-dessous, à l'encontre de la force centrifuge subie par le bobinage 50 d'excitation lors de la rotation du rotor 30. [88] Les bobinages 50 d'excitation de chaque pôle 44 sont reliés électriquement entre eux par des fils de liaison, par exemple en série en variante en parallèle. Les fils de liaison et des bobinages 50 pourront être des fils en cuivre recouverts d'émail. Ces bobinages 50 d'excitation sont alimentés électriquement par un collecteur 101, qui comporte des bagues collectrices 102, qui sont agencées autour d'une extrémité arrière de l'arbre 35. Ce collecteur 101 est par exemple réalisé par surmoulage de matière électriquement isolante sur des éléments électriquement conducteurs (non visibles) reliant les bagues 102 à un anneau (non référencé) relié électriquement par des liaisons filaires aux extrémités du ou des bobinages 50 d'excitation du rotor 30. [89] Les bagues collectrices 102 sont alimentées électriquement par l'intermédiaire de balais (non représentés) qui appartiennent à un porte-balais et qui sont disposés de façon à frotter sur les bagues collectrices 102. Le porte-balais est généralement agencé dans le carter 11 et il est relié électriquement à un régulateur de tension (cf. Figure 1). [90] Avantageusement, pour augmentation de la puissance de la machine électrique, le rotor 30 comporte en outre des aimants référencés 105 sur les Figures 4a-4b suivant un nombre égal au nombre de pôles (en l'occurrence douze). Les aimants 105 s'étendent axialement au voisinage de la périphérie externe du rotor 30. Ainsi les aimants 105 sont agencés régulièrement autour de l'arbre 35 en alternance avec les pôles 44. A cet effet, chaque aimant 105 est positionné entre deux pôles 44 saillants adjacents, les extrémités libres des deux pôles 44 saillants, constituées par les retours 45, étant munies d'encoches maintenant l'aimant 105 de manière immobile entre les deux pôles. Une même encoche peut contenir un seul ou une pluralité d'aimants 105, par exemple deux aimants 105 dont un en terre rare et un en ferrite. [91] Le rotor 30 comporte au moins huit pôles 44 répartis par paire de pôles diamétralement opposés. Aux Figures 4a-4b il est prévu une alternance circonférentielle de douze pôles 44 et de douze aimants 105. Le nombre de pôles 44 et le nombre d'aimant 105 sont variables suivant l'application. On peut prévoir un mode de réalisation sans aimants 105. Dans un autre mode de réalisation le nombre d'aimants 105 est inférieur au nombre de pôles comme visible à la figure 7. Toutes ces dispositions permettent d'augmenter à volonté la puissance de la machine. Par simplicité, à titre non limitatif, on supposera dans la suite qu'il est prévu douze pôles 44 diamétralement opposés, douze bobinages 50 et douze aimants 105. Les pôles 44 et les aimants 105 sont répartis ici circonférentiellement de manière régulière. [092] Plus précisément dans les figures les aimants 105 sont montés entre les retours saillants 45 de deux pôles saillants 44, lesdits retours 45 présentant des encoches sous la forme de rainures à profil en forme de U, comme décrit par exemple dans le document FR 2 784 248. Le montage des aimants dans au moins une rainure pourra donc être réalisé à l'aide d'une lame et interposition d'une colle plus souple que l'aimant. En variante les aimants sont montés dans les rainures à l'aide de ressorts. [93] D'une manière générale un faible jeu, appelé entrefer, existe entre la périphérie externe des pôles 44 et la périphérie interne du corps du stator 12. [94] Le rotor 30 comporte en outre un dispositif 80 d'isolation électrique des bobinages 50 par rapport au paquet de tôles 36. Ce dispositif 80 comporte deux éléments 81, 82 isolants. Le premier élément 81 isolant, dit élément 81 avant, est positionné contre la face 40 radiale externe du paquet 36 de tôles, tandis que le deuxième élément 82 isolant, dit élément 82 arrière, est positionné contre la face 41 radiale externe du paquet 36 de tôles. Ces éléments 81, 82 isolants assurent l'isolation électrique des chignons 51 des bobinages 50. Le dispositif 80 d'isolation de bobinages comporte en outre des isolants 83 d'encoche assurant l'isolation électrique des parties axiales des bobinages 50. [95] Plus précisément, chaque élément 81, 82 isolant comporte une paroi 85 radiale centrale munie d'une ouverture 86 principale autorisant le passage de l'arbre 35. Chaque élément 81, 82 comporte des bras 88 s'étendant radialement à partir du bord externe de la paroi 85 radiale vers l'extérieur de chaque élément 81, 82. Chacun de ces bras 88 comporte à son extrémité libre une casquette 89 s'étendant circonférentiellement de part et d'autre du bras 88. La casquette 89 s'étend également axialement en direction opposée au paquet de tôles 36 et ce à la périphérie interne des retours 45. [96] Les bras 88 des éléments 81, 82 isolants présentent de préférence, sur leur face externe, des rainures assurant un maintien radial des spires des bobinages 50. Les rainures des bras 88 de l'élément 81 isolant avant sont inclinées afin de faciliter le changement de rang lors de l'opération de bobinage consistant à enrouler un fil conducteur autour des différents pôles pour obtenir les bobinages 50. [97] Des pions 95 de guidage sont positionnés sur une face externe de la paroi 85 radiale de l'élément 82. Ces pions 95 qui présentent des faces latérales sur lesquelles les fils prennent appui permettent ainsi de guider les fils lors de l'opération de bobinage des pôles 44. Ces pions 95 permettent également de maintenir en position les fils des bobinages 50 dans une position fixe une fois l'opération de bobinage terminée. Ces pions 95 de guidage sont répartis sur la face externe de la paroi 85 radiale de manière adaptée à la configuration de bobinage souhaitée. [98] Chaque paroi 85 radiale comporte en outre deux parties 91 évidées destinées à recevoir des secteurs internes 79 d'un des flasques 55, 56 de maintien. Pour l'élément 82 isolant arrière, les parties 91 évidées sont diamétralement opposées. Bien entendu, le nombre et la forme des parties 91 évidées, en particulier l'angle d'ouverture et l'écart annulaire entre deux parties 91 évidées, pourront être adaptés en fonction du nombre et de la forme des secteurs 79 correspondants. Pour l'élément 81 isolant avant, les parties 91 évidées et l'ouverture 86 principale sont reliées entre elles, les parois internes délimitant l'orifice étant destinées à prendre appui localement sur la circonférence externe de l'arbre 35. [99] L'élément isolant 82 arrière comporte un rebord 96 annulaire délimitant l'ouverture 86 principale. Ce rebord 96 annulaire s'étend axialement depuis la face externe de l'élément 82 isolant vers l'extérieur du rotor 30. Lorsque le rotor 30 est monté, le rebord 96 est situé entre le colleteur 101 et un épaulement de l'arbre 35 du rotor 30. [0100] Les éléments 81, 82 isolants comportent chacun deux dispositifs 98 d'encliquetage (de clipsage) destinés à coopérer par encliquetage (clipsage) avec des ouvertures correspondantes ménagées sur chaque face d'extrémité radiale de l'âme du paquet 36 de tôles (cf. Figures 5a-5b, 6a-6b). [0101] Les isolants 83 d'encoche prennent la forme d'une membrane fine, réalisée dans un matériau électriquement isolant et conducteur de chaleur, par exemple un matériau aramide de type dit Nomex (marque déposée), cette membrane fine étant pliée de manière que chaque isolant 83 d'encoche est plaqué contre les parois internes axiales du paquet 36 de tôles entre deux pôles 44 adjacents. A cet effet, l'isolant 83 d'encoche présente cinq parties 110-114, chaque partie 110-114 étant pliée par rapport à une partie adjacente suivant un segment de pliage sensiblement parallèle à l'axe B du rotor 30. Une première partie 110 située vers le centre du rotor 30 est plaquée contre une partie de la circonférence externe de l'âme située entre deux pôles 44 adjacents. Deux parties 111, 112 en regard une de l'autre sont plaquées contre deux faces tournées l'une vers l'autre des bras 39 des pôles 44. Deux parties 113, 114 sont plaquées contre deux portions de deux retours 45 saillants adjacents. Le nombre d'isolants 83 d'encoche dépend du nombre de pôles 44, auquel il est égal. Ici, le nombre d'isolants 83 d'encoche est de douze. [0102] Chaque bobinage 50 d'excitation comporte des spires enroulées autour du bras 39 d'orientation radiale de chaque pôle 44 recouvert d'isolants 83 d'encoche et des deux bras 88 des éléments 81, 82 isolants situés chacun à une extrémité de ce pôle 44, de manière que les chignons 51 du bobinage 50 d'excitation font saillie axialement par rapport à chaque face 40, 41 d'extrémité radiale externe du paquet 36 de tôles, comme représenté aux Figures 3a-3b. Plus particulièrement, la face radiale externe de chaque chignon 51 est décalée axialement vers l'extérieur par rapport à la face 40, 41 radiale externe associée du paquet 36 de tôles. Chaque pôle 44 comporte ainsi un bobinage 50 d'excitation qui comporte lui-même deux chignons 51 opposés. Comme visible dans les figures 4a, 4b un espace 200 existe entre deux bobinages 50 adjacents. Cet espace 200 sera appelé par la suite espace interbobinage. Chaque espace 200 est délimité à sa périphérie externe par les aimants 105 implantés entre deux retours 45 successifs et à sa périphérie interne par le bord externe de la paroi radiale centrale 85. Chaque espace est délimité latéralement par les deux bobinages successifs 50. La hauteur radiale de cet espace 200 est supérieure à sa largeur circonférentielle. Chaque espace 200 présente ainsi une surface S, qui tient compte également de l'épaisseur des casquettes 89. Lorsqu'il n'y a pas d'aimant cet espace est délimité par le prolongement virtuel de la périphérie externe des casquettes 89. Chaque espace 200 délimite un passage traversant le paquet de tôles 36.0n notera que la largeur des chignons 51 et des bobinages 50 est dans ce mode de réalisation décroissante par couche en allant de la périphérie externe à la périphérie externe des chignon 51 et des bobinages 50. [0103] Suivant ce bobinage 50, chaque chignon 51 est en appui contre la face axiale de la casquette 89 tournée vers le chignon 51. La casquette 89 est maintenue immobile par rapport au pôle 44 grâce aux bras 88 associés plaqué entre une face radiale du pôle 44 et les fils des bobinages. La casquette 89 en combinaison avec le rebord 75 du flasque permet ainsi de retenir les chignons 51 malgré la force centrifuge provoquée par la rotation du rotor 30 s'exerçant sur lesdits chignons 51. [0104] Le premier flasque 55 de maintien du paquet 36 de tôle, dit flasque 55 avant et le deuxième flasque 56 de maintien du paquet 36 de tôle, dit 10 flasque 56 arrière, sont montés coaxialement à l'arbre 35 de manière à enserrer axialement les éléments 81, 82 isolants et le paquet 36 de tôles. Ces flasques 55, 56 sont en matériau amagnétique en étant avantageusement métalliques pour mieux évacuer la chaleur. [0105] Chaque flasque 55, 56 comporte une paroi 59 radiale s'étendant 15 dans un plan radial perpendiculaire à l'axe B de l'arbre 35. Cette paroi 59 radiale est munie d'une ouverture 60 principale autorisant le passage de l'arbre 35. Le flasque 56 arrière comporte deux évidements 61 diamétralement opposés débouchant vers l'ouverture 60. Ces évidements 61 de forme sensiblement carrée vue du dessus permettent le passage chacun 20 d'une patte (Dont l'une est référencée en 198 à la figure 4a) du collecteur 101 du type de celui décrit dans le document FR 2 710 197 auquel on se reportera. Dans cette figure 4a les pattes 198 ne sont pas encore rabattues pour serrer les extrémités des fils des bobinages 50. On notera que quatre des pions 95 internes d'extrémités sont décalés radialement par rapport aux 25 autres pions 95 pour un montage en parallèles des bobinages 50. Plus précisément deux pions internes d'extrémité 95 sont disposés de part et d'autre de chaque patte 198. Dans cette figure on a coupé pour plus de clarté les extrémités des fils de liaison entre les bobinages 50 pour mieux montrer les pattes 198. Ces extrémités sont enroulés autour des pions 30 internes 95 et destinées à être fixés par sertissage dans les pattes 198. Les pions 95 ont une section de forme rectangulaire à coins chanfreinés pour ne pas blesser les portions de fils de liaison entre deux bobinages 50 consécutifs. Comme visible dans cette figure 4a les autres pions 95 sont implantés globalement sur la même circonférence et les extrémités de chaque bobinage 50 sont en contact avec les bords latéraux concernés de deux pions consécutifs pour une liaison en continue des bobinages 50. Les bords longitudinaux inférieur des pions 95 de guidage retiennent radialement le fil de liaison entre deux bobinages consécutifs. Le montage a ainsi une bonne tenue malgré l'action de la force centrifuge. Bien entendu lorsque les bobinages 50 sont montés en série deux pions inférieurs 95 suffisent. [0106] On appréciera que la solution précitée à pions 95 assure la continuité entre les différents bobinages 50, qui sont tous au même potentiel. Les bobinages peuvent être réalisées à l'aide d'une aiguille centralement creuse pour passage du fil et qui se déplace circonférentiellement, axialement et radialement. Cette aiguille bascule pour passer d'un pion 95 à un autre. Bien entendu en variante on peut supprimer les pions internes et fixer directement les extrémités des fils sur les pattes 198. [0107] La paroi 59 radiale de chaque flasque 55, 56 présente un rebord 75 annulaire s'étendant sur toute la périphérie externe de la paroi 59 radiale et s'étendant axialement en direction du centre du rotor 30. Ce rebord 75 annulaire présente une face en appui sur les faces d'extrémité radiale externe des pôles 44 de sorte que les casquettes 89 des éléments 81 ,82 isolants sont prises en sandwich entre une face annulaire interne du rebord 75 et les chignons 51. Une telle configuration permet aux flasques 55, 56 de participer avec les casquettes 89 au maintien des chignons 51 malgré la force centrifuge provoquée par la rotation du rotor 30. Dans une variante, il serait également possible de faire appel uniquement au rebord 75 annulaire des flasques 55, 56 pour maintenir les chignons 51 en position. Dans ce cas les éléments 51, 52 isolants sont donc dépourvus de casquettes 89. [0108] La face externe de la paroi 59 de chaque flasque 55, 56 comporte d'un seul tenant des pales 70 formant un ventilateur. Chaque pale 70 s'étend axialement vers l'extérieur du rotor 30 depuis la face radiale externe du flasque 55, 56 associé. Avantageusement pour une meilleure évacuation de la chaleur, les pales 70 sont réalisées venues de matière avec le flasque 55, 56 associé. De préférence, les pales 70 sont agencées à la périphérie de la face radiale externe du flasque 55, 56 de façon dissymétrique par rapport à l'axe B de l'arbre 35 pour augmenter les performances de ventilation et réduire les bruits lorsque le rotor 30 tourne. [0109] En variante, les pales 70 appartiennent à un ventilateur séparé du flasque 55, 56. L'utilisation de flasques 55, 56 et de ventilateurs séparés permet d'adapter facilement les ventilateurs en fonction de la puissance de la machine 10 ciblée. Le flasque 55, 56 et le ventilateur sont alors fixés entre eux au moyen d'un dispositif de fixation formé par exemple par des éléments de fixation associés aux flasques 55, 56 coopérant avec des orifices du ventilateur. Cette fixation pourra être réalisée à l'aide de vis comme à la figure 16 du document US 6 784 586, en variante par rivetage ou soudage par points. [0110] Chaque flasque 55, 56 comporte par ailleurs une première série d'orifices traversant 72 pour assurer une circulation de l'air à l'intérieur du rotor entre deux pôles saillants 44. Ces orifices 72 sont situés autour de l'ouverture 60 principale et présentent un angle d'ouverture au moins égal à l'angle entre deux pôles 44 saillants successifs. Ils sont plus larges circonférentiellement et moins haut radialement. Ici, cette première série d'orifices 72 comporte quatre orifices 72 présentant le même angle d'ouverture. Ainsi les orifices 72 sont en regard d'au moins la base (la périphérie interne) d'un espace 200 entre deux bobinages 50 successifs pour assurer une circulation de l'air à l'intérieur du rotor entre les deux pôles saillants 44 concernés. Bien entendu, cela dépend des applications. Les quatre orifices 72 du flasque 55 avant sont agencés de manière régulière autour de l'ouverture 60 principale. On notera que les orifices 72 n'ont pas la même taille d'un flasque à l'autre et qu'il est réalisé un écoulement axial e l'air entre les bobinages 50. [0111] Les orifices 72 du flasque 55 sont plus larges circonférentiellement et radialement que ceux du flasque 55. Les orifices 72 sont en vis-à-vis de la base de deux espaces 200, tandis que les orifices du flasque 55 sont en vis- à-vis de la base d'un seul espace 200 et d'une portion de la base d'un autre espace 200. [0112] Chaque flasque 55, 56 comporte en outre une deuxième série d'orifices 73 traversant pour assurer une circulation à l'intérieur du rotor. The invention relates to a rotor with salient poles comprising holding flanges for winding windings as well as a rotor with salient poles, which includes protruding poles with holding poles of coils. associated holding flanges. [3] The invention finds a particularly advantageous application in the field of rotating electrical machines such as alternators, alternator starters and electromagnetic retarders. [4] STATE OF THE ART [5] WO 2007/003835 discloses a rotor with salient poles for a rotating electrical machine, in particular an alternator or a starter-alternator for a motor vehicle. [6] It will be recalled that an alternator / starter is a rotating electrical machine capable of reversibly working, firstly, as an alternator-based electrical generator and, secondly, as an electric motor in particular for starting the engine. of the automobile vehicle. [7] This machine essentially comprises a housing and, inside thereof, a rotor rotatably connected to a central rotor shaft and an annular stator which surrounds the rotor coaxially with the shaft. [8] The stator comprises a body in the form of a pack of sheets with notches, for example of the semi-closed type, for mounting a stator winding having a plurality of windings. This stator winding comprises for example a set of three-phase star or delta windings, the outputs of which are connected to a rectifier bridge comprising rectifying elements. [9] In general, the alternator is of the polyphase type and the rectifier bridge or bridges make it possible in particular to rectify the alternating current produced in the stator windings into a direct current, in particular for charging the battery of the motor vehicle and supplying the electric loads and consumers of the on-board network of the motor vehicle. [10] The housing is in at least two parts, namely a front bearing and a rear bearing. The bearings are hollow in shape and each carries a central ball bearing respectively for the rotational mounting of the rotor shaft. [11] The housing has an intermediate portion internally bearing the body of the stator. This intermediate portion is interposed axially between the bearings each having a plurality of openings for internal ventilation of the machine with at least one fan secured to one of the axial ends of the rotor. This fan has blades integral with a flange as described below. [12] The rotor shaft carries at its front end a pulley which is arranged outside the housing. The pulley belongs to a motion transmission device via at least one belt between the alternator and the engine of the motor vehicle. [13] A package of plates is coaxially mounted on the rotor shaft in the housing, inside the stator. This bundle of sheets is formed of an axial stack of sheets which extend in a radial plane perpendicular to the axis of the rotor shaft. This bundle of plates comprises here a cylindrical central core and a circumferential distribution of arms projecting radially from the core. [14] In a radial plane, the laminations of the laminations all have an identical contour. The outline of the sheets is cut into a generally circular shape and having salient poles, which are regularly distributed in a radial direction and projecting from the shaft towards the outer periphery. The sheet package has at least two poles. [15] Each pole consists of an arm which, from the core, extends radially towards the outer periphery towards the stator. The free end of the pole ends with a return protruding circumferentially on either side of the arm. An annular gap exists between the free end of the poles and the inner periphery of the stator body. [16] The function of the protruding return of each pole is to retain in the radial direction an electrically conductive excitation coil, which is wound around the radial arm of each pole, against the centrifugal force experienced by the coil winding. during rotation of the rotor. [017] The excitation windings of each pole are electrically interconnected by connecting son, for example in series. The excitation windings are electrically powered by a collector, which has slip rings, which are arranged around a rear end of the shaft. This collector is for example made by overmolding electrically insulating material on electrically conductive elements connecting the rings to a ring electrically connected by wire links to the ends of the rotor or excitation coils. [18] The slip rings are electrically powered by means of brushes belonging to a brush holder and which are arranged so as to rub on the slip rings. The brush holder is generally arranged in the housing and is electrically connected to a voltage regulator. [19] Each excitation coil is wound around the radially oriented arm of each pole so that axial end portions of the excitation coil protrude axially from each radial outer end face of the package. of sheets. These protruding portions will subsequently be called "buns". Each pole thus comprises an excitation winding which itself comprises two opposite buns. [020] A first front flange and a second rear flange are mounted coaxially to the shaft so as to axially clamp the sheet of paper to keep the sheets stacked in a package. Each flange generally has the shape of a disk extending in a radial plane perpendicular to the axis of the shaft. Each flange has a central hole for coaxial mounting on the shaft. [21] The flanges are arranged axially on either side of the plate bundle so that the inner radial faces of the flanges bear against the outer axial radial end faces of the sheet bundle. Each flange has four holes to allow the passage of four tie rods. The arms of the plate bundle have holes so that the tie rods can axially traverse the bundle of sheets from the front flange to the rear flange. The flanges are heat conductive material, for example metal. [22] The outer peripheral edge of the flanges vis-à-vis the stator has axial grooves which are open in the radial inner and outer faces of the flanges. These grooves make it possible to renew the air which is included radially between the stator and the rotor. Each flange also has housings that are made in their inner radial face. These accommodations are intended to receive the salient buns. At least one of the housing of at least one flange has a contact surface with the outer radial face of the associated bun. Thus, when the buns are heated, their heat is transmitted to the flasks including conduction. [23] To prevent the excitation winding from being damaged and to avoid short-circuits in the excitation winding, the bun is in contact with the bottom of the housing via a heat conductive substance and non-electrically conductive, which protects the wires of the excitation winding. The substance is here a coating of impregnation conductive heat and electrical insulation. This varnish cures by polymerization. [24] One of the flanges has filling holes which each open into the bottom of an associated housing. These filling holes are intended to allow the impregnation of the liquid varnish around the excitation winding associated with said housing, and more particularly around the two bunches of the excitation winding. [25] The outer radial face of each flange comprises blades forming a fan. Each blade extends axially outwardly from the outer radial face of the associated flange. When the rotor rotates, the blades thus make it possible to evacuate the heat stored in particular in the flanges and the rotor by circulating air inside the machine via the openings that the bearings present. [26] However, for such a configuration of the machine and in particular the flanges, the flow of air inside the rotor is not optimal when the number of poles increases. When the rotor has a high number of poles, this rotor tends to heat up quickly. In addition, to facilitate the removal of heat, such a known configuration of the electric machine necessarily requires to implement a varnish impregnation operation which is long and expensive to achieve. OBJECT OF THE INVENTION The object of the invention is in particular to propose an improved projecting pole rotor enabling improved cooling without necessarily having to perform a varnish impregnation step between the coils and the sheet package. . [029] To this end, the invention relates to a rotating electric machine rotor comprising: - a rotor shaft intended to be rotatably mounted about its axis, - a package of sheets mounted coaxially on the rotor shaft, this package of sheets having at least eight radially projecting poles, - an excitation winding wound around each pole, so that axial end portions of the winding, said "buns" protrude axially with respect to each radial end face external package of sheets, - flanges for holding the bundle of sheets and bunches windings arranged axially on both sides of the bundle of sheets, characterized in that: - an interbobinage space exists between two successive excitation windings each retaining flange comprises: a radial wall provided with a main opening allowing the passage of the shaft; an annular flange extending over the entire outer periphery of the paro; i radial and extending axially in the direction of the bundle of laminations of the rotor, this annular flange having a face bearing on the outer radial end faces of the bundle of sheets to keep in place the buns despite the centrifugal force caused by the rotation of the rotor acting on said buns, - at least one series of through orifices formed in the radial wall ensuring a circulation of air inside the rotor between two salient poles - the total surface of the series of passing orifices being greater than 0, 3 times the total surface of the inter-winding spaces. [030] Thanks to the invention is evacuated more heat by convection through the series of orifices passing while having a greater number of poles. In addition the flanges can evacuate heat by conduction and convection. [31] According to one embodiment, each flange comprises a first series of through orifices located around the main opening, these orifices having an opening angle at least equal to the angle between two successive salient poles. According to one embodiment, the orifices of the first series of orifices are circumferentially wider than radially high. [033] In one embodiment, each flange comprises a second series of through holes implanted outside the first series. [34] In one embodiment the size of the first set of ports and / or the second set of ports is different from one flange to the other. According to one embodiment, the orifices of the series of through orifices are higher radially than broad circumferentially. [36] According to one embodiment said radially higher than circumferentially wide openings are generally vis-à-vis at least a portion of an inter-rewinding space. [37] In one embodiment, the radial height of some of the orifices generally vis-à-vis at least a portion of an inter-rewinding space is generally equal to the radial height of the inter-rewinding space. [38] In one embodiment the radial height of some of the orifices generally vis-à-vis at least a portion of an inter-rewinding space is less than the radial height of the inter-rewinding space. [039] According to one embodiment, the circumferential width of some of the orifices vis-à-vis globally of at least a portion of an inter-winding space is generally equal to the circumferential width of an inter-winding space. [40] According to one embodiment, the circumferential width of some of the orifices vis-à-vis globally of at least a portion of an inter-winding space is greater than the circumferential width of an inter-winding space. [41] According to one embodiment, the circumferential width of some of the orifices vis-à-vis globally of at least a portion of an inter-rewinding space is less than the circumferential width of an inter-rewinding space. [42] According to one embodiment each flange comprises a series of orifices higher radially than wide circumferentially and the second series of orifices. [043] In one embodiment at least one flange door blades positioned on a first face of the wall facing outwardly of the rotor. [044] In one embodiment the blades belong to a separate fan attached to fixing on the flange for example by spot welding, screwing or riveting. [45] In one embodiment the blades belong to the flange being in one piece with it. [46] According to one embodiment, each flange comprises a second series of orifices, each orifice of the second series being positioned between two successive blades. [47] According to one embodiment, the rotor further comprises two insulating elements positioned on either side of the sheet package, ensuring the insulation of buns. [48] According to one embodiment, - the radial wall of each flange has on its inner face facing the rotor at least one sector extending axially to the sheet package, - each insulating member has at least one recessed portion to the inside which is inserted the sector of one of the flasks. [049] According to one embodiment, each insulating element comprises: - arms held pressed against a radial end face of a pole protruding by a bun, and - caps located at one end of the arms extending circumferentially from and on the other hand, these caps being positioned between the winding head and the annular flange of a flange so as to participate in the retention of buns. [50] According to one embodiment, each flange comprises at least one centering pin intended to cooperate with axial openings formed in the projecting poles. [51] According to one embodiment, each flange comprises at least two orifices, the orifices of the flanges and the axial openings of the poles ensuring the passage of tie rods to assemble the flanges around the sheet package. According to one embodiment, the rotor comprises at least one magnet positioned between two adjacent salient poles. [53] According to one embodiment, the flanges are made of non-magnetic material, such as aluminum or plastic material advantageously reinforced with fibers. [54] The invention furthermore relates to a set of flanges for holding a package of sheets and coils of windings arranged axially on either side of the laminations of a rotary electric machine rotor comprising at least eight salient poles with formation of interwinding spaces between two successive windings each wrapped around a projecting pole, characterized in that each holding flange comprises: a radial wall provided with a main opening allowing the passage of the shaft; blades positioned on a first face of the radial wall facing outwardly of the rotor; - an annular flange extending over the entire outer periphery of the radial wall and extending axially towards the rotor, this annular flange having a face bearing on the outer radial end faces of the sheet package to keep in place the buns despite the centrifugal force caused by the rotation of the rotor exerts on said buns, - at least one series of through orifices formed in the radial wall ensuring a circulation of air inside the rotor between the two salient poles - the total surface of the series of orifices being greater than 0.3 times the total area of the interwinding spaces. [055] BRIEF DESCRIPTION OF THE FIGURES [056] The invention will be better understood on reading the description which follows and on examining the figures that accompany it. These figures are given for illustrative but not limiting of the invention. They show: [057] FIG. 1: an axial sectional view of a rotary electric machine provided with a rotor according to the invention; [58] Figure 2: an exploded perspective view of a rotor according to the invention which is not coiled; [59] Figures 3a and 3b: perspective views of a wound rotor according to the invention without the flanges or the resolver; [060] Figures 4a and 4b: views respectively of the top and bottom of a rotor according to the invention without the flanges or the resolver; [61] Figures 5a-5b: perspective views of a wound rotor according to the invention provided with its holding flanges; [62] Figure 6a-6b: views respectively of the top and bottom of a rotor according to the invention provided with its holding flanges with a first and a second series of orifices; [63] Figure 7: a sectional view of a rotor according to the invention having an alternative opening for attachment to the shaft. [64] Figure 8: a view of one of the flanges with a smaller number of second orifices. [65] Figure 9: a partial view of one of the flanges having a series of orifices implanted vis-à-vis an inter-rewinding space. [66] Identical, similar or similar elements retain the same reference from one figure to another. [067] DESCRIPTION OF EXAMPLES OF THE INVENTION [68] The invention relates to a rotor 30 with salient poles for a rotating electrical machine, in particular an alternator or an alternator / starter. This machine 10 is preferably intended to be implemented in a motor vehicle. [69] It will be recalled that an alternator / starter is a rotating electrical machine able to work in a reversible manner, on the one hand, as an electric generator in alternator function and, on the other hand, as an electric motor in particular for starting the engine. of the motor vehicle. Such an alternator-starter is described for example in the document WO-A-01/69762 to which reference will be made for more details. [70] This machine essentially comprises a housing 11 and, inside thereof, a rotor 30 integral in rotation with a central rotor shaft and an annular stator 12 which surrounds the rotor 30 coaxially with the rotor. B-axis shaft 35 also constituting the axis of the rotor 30. [71] The stator 12 comprises a body in the form of a sheet metal package with notches, for example of the semi-closed type, for mounting a stator winding 13 having a plurality of windings. This stator winding 13 comprises, for example, a set of three-phase star or delta windings, the outputs of which are connected to a rectifier bridge (not shown) comprising rectifier elements comprising rectifying elements such as diodes or transistors of the type MOSFET, especially when the machine 10 is of the reversible type and consists of an alternator-starter as described for example in the document FR-A2.745.445 (US-A-6,002,219). [72] The windings of the stator winding 13 are obtained by means of a continuous, electrically conductive wire coated with an insulating layer and mounted in the respective notches of the stator body 12. [73] According to a variant not shown, for better filling of the notches of the stator body 12, the windings 13 are made using bar-shaped conductors, such as pins, interconnected for example by welding. [074] According to another variant not shown, to reduce the rate of ripple and magnetic noise, the stator winding 13 comprises two sets of three-phase windings to form a composite windings device stator 12, the windings being shifted by thirty electrical degrees as described for example in US-A1-2002 / 0175589, EP-0,454,039 and FR-A-2,784,248. In this case, two rectifier bridges are provided and all combinations of three-phase star and / or delta windings are possible. [75] In general, the alternator is of the polyphase type and the rectifier bridge makes it possible, in particular, to rectify the alternating current produced in the stator windings 12 into a direct current, in particular for charging the battery (not represented) of the motor vehicle and powering the loads and the electrical consumers of the onboard network of the motor vehicle. [76] As illustrated in Figure 1, the shaft 35 of the rotor 30 is rotatably mounted about its axially oriented axis B in the stator 12 of the machine 10. [077] The housing 11 is in at least two parts, namely a front bearing 14 and a rear bearing 15. The bearings 14, 15 are of hollow form and each bear a ball bearing respectively 16 and 17 for the rotational mounting of the shaft 35 of the rotor 30. [078] The casing 11 comprises an intermediate portion (not referenced) carrying internally the body of the stator. This intermediate portion is interposed axially between the bearings 14, 15 each having a plurality of openings one of which (not referenced) is visible in Figure 1 for internal ventilation of the machine using a fan described in more detail below. [079] The shaft 35 of the rotor 30 carries at its front end a pulley 18 which is arranged outside the housing 11. The pulley 18 belongs to a device for transmitting movements through at least one belt (not shown) between the alternator and the engine of the motor vehicle. [080] FIG. 2 shows the rotor 30 comprising the shaft 35, a bundle 36 of metal plates coaxially mounted on the shaft 35, this bundle 36 of metal sheets comprising at least eight radially protruding poles 44. Alternatively the rotor may have ten poles or 12 poles as shown in the figures. 4a and 4b. The poles may be distributed circumferentially in a regular manner. The rotor 30 further comprises an excitation winding 50 (see FIGS. 3a-3b) wound around each pole 44, so that portions 51 of axial end of the winding 50, referred to as "buns", protrude axially relative to each other. at each face 40, 41 of the outer radial end of the pack 36 of sheets. Flanges 55, 56 for holding the package 36 of sheets and buns 51 of the coils 50 are arranged axially on either side of the package 36 of sheets. [081] More specifically, the package 36 of sheets is mounted coaxially on the rotor shaft 30 in the housing 11, inside the stator 12. The package 36 of sheets is mounted to rotate with the shaft 35. For this purpose, the bundle 36 of plates comprises a central axial orifice 37 which is force-fitted on a knurled section of the shaft 35. In a variant, the core of the bundle 36 of sheets has an opening 38 provided with recesses. distributed regularly circumferentially around the opening 38 for cooperating with correspondingly shaped tongues belonging to the shaft 35 (see Figure 7). In an exemplary embodiment, these recesses have a top view in a circular shape. [082] The package 36 of sheets is formed of an axial stack of sheets which extend in a radial plane perpendicular to the axis B of the shaft 35. The package 36 of sheets forms the body of the rotor 30 and is in ferromagnetic material. This bundle 36 of plates here comprises a central cylindrical core and poles 44 projecting radially from the core. These poles 44 are in one embodiment in one piece with the soul. As a variant, the poles 44 are attached to the core, for example by a tenon-mortise type connection as described in document FR 2 856 532. One pole on every two or all of the poles 44 are attached to the core in such a way that to facilitate assembly and disassembly of the poles 44. Alternatively, a return 45 projecting from a pole 44 on two or 45 salient return of all the poles 44 is reported with respect to a corresponding arm 39. [083] In the following description, radial faces oriented towards the middle of the pack 36 of sheets will be called internal faces while the radial faces oriented in an opposite direction will be called external faces. It is also considered that the rear side of the rotor 30 is located on the resolver 100 side while the front side is on the opposite side. [84] Thus, the bundle 36 of metal sheets is delimited axially by the first external radial face 40 of the front end and the second opposite outer radial face 41 of the rear end. [85] In a radial plane, the sheets of the bundle 36 of sheets all have an identical contour. The contour of the sheets is cut in generally circular shape and has the salient poles 44, which are evenly distributed in a radial direction and projecting from the shaft 35 towards the outer periphery, as illustrated in FIGS. 4a-4b. The bundle 36 of sheets has at least eight poles 44 and in the example shown in the figures, it comprises twelve poles 44. [86] Each pole 44, as best seen in FIG. 7, consists of an arm 39 and a salient return. The arm 39 extends radially from the core towards the outer periphery in the direction of the stator 12. The free end of the pole 44 terminates in the return 45 protruding circumferentially on either side of the arm 39. An annular air gap exists between the free end of the poles 44 and the inner periphery of the stator body 12. [87] The function of the protruding return 45 of each pole 44 is to retain in the radial direction an electrically conductive excitation coil 50, which is wound around the radial arm 39 of each pole 44 as described below, against the centrifugal force experienced by the excitation winding 50 during the rotation of the rotor 30. [88] The excitation windings 50 each pole 44 is electrically connected to each other by connecting wires, for example alternately in series in parallel. The connecting son and windings 50 may be copper son covered with enamel. These excitation windings 50 are electrically powered by a collector 101, which has slip rings 102, which are arranged around a rear end of the shaft 35. This collector 101 is for example made by overmolding electrically insulating material on electrically conductive elements (not visible) connecting the rings 102 to a ring (not referenced) electrically connected by wire bonds to the ends of the or coils 50 for excitation of the rotor 30. [89] The slip rings 102 are electrically powered by by means of brushes (not shown) which belong to a brush holder and which are arranged so as to rub on the slip rings 102. The brush holder is generally arranged in the housing 11 and is electrically connected to a regulator. voltage (see Figure 1). [90] Advantageously, to increase the power of the electric machine, the rotor 30 further comprises magnets referenced 105 in Figures 4a-4b in a number equal to the number of poles (in this case twelve). The magnets 105 extend axially in the vicinity of the outer periphery of the rotor 30. Thus the magnets 105 are arranged regularly around the shaft 35 alternately with the poles 44. For this purpose, each magnet 105 is positioned between two poles 44. protruding adjacent, the free ends of the two poles 44 salient, formed by the returns 45, being provided with notches now the magnet 105 immovably between the two poles. The same notch may contain one or a plurality of magnets 105, for example two magnets 105 including a rare earth and a ferrite. [91] The rotor 30 has at least eight poles 44 distributed in pairs of diametrically opposed poles. In Figures 4a-4b there is provided a circumferential alternation of twelve poles 44 and twelve magnets 105. The number of poles 44 and the number of magnets 105 are variable depending on the application. An embodiment without magnets 105 may be provided. In another embodiment, the number of magnets 105 is smaller than the number of poles as can be seen in FIG. 7. All these provisions allow the power of the machine to be increased as desired. . For simplicity, without limitation, it will be assumed in the following that there are twelve diametrically opposed poles 44, twelve coils 50 and twelve magnets 105. The poles 44 and the magnets 105 are distributed circumferentially in a regular manner. [092] More specifically in the figures the magnets 105 are mounted between the projecting returns 45 of two salient poles 44, said returns 45 having notches in the form of U-shaped profile grooves, as described for example in the document FR 2 784 248. The mounting of the magnets in at least one groove can therefore be achieved using a blade and interposition of a glue softer than the magnet. Alternatively the magnets are mounted in the grooves with the aid of springs. [93] In general, a small clearance, called air gap, exists between the outer periphery of the poles 44 and the inner periphery of the stator body 12. [94] The rotor 30 further comprises a device 80 for electrically isolating windings 50 relative to the package of plates 36. This device 80 comprises two insulating elements 81, 82. The first insulating element 81, referred to as the front element 81, is positioned against the outer radial face 40 of the sheet package 36, whereas the second insulating element 82, referred to as the rear element 82, is positioned against the outer radial face 41 of the package 36 of the sheets. These insulating elements 81, 82 ensure the electrical insulation of the buns 51 of the windings 50. The winding isolation device 80 further comprises notch insulators 83 ensuring the electrical insulation of the axial portions of the windings 50. [95] More specifically, each insulating element 81, 82 comprises a central radial wall 85 provided with a main aperture 86 allowing the passage of the shaft 35. Each element 81, 82 comprises arms 88 extending radially from the outer edge of the wall 85 radially outwardly of each element 81, 82. Each of these arms 88 has at its free end a cap 89 extending circumferentially on either side of the arm 88. The cap 89 also extends axially in the direction opposite to the bundle of plates 36 and this at the inner periphery of the returns 45. [96] The arms 88 of the elements 81, 82 insulators preferably have, on their outer face, grooves ensuring a main The grooves of the arms 88 of the front insulating element 81 are inclined to facilitate the change of rank during the winding operation of winding a conductive wire around the different poles to obtain the coils. 50. [97] Guide pins 95 are positioned on an outer face of the radial wall 85 of the element 82. These pins 95, which have lateral faces on which the wires bear, thus make it possible to guide the wires during operation. These pins 95 also make it possible to keep the wires of the windings 50 in position in a fixed position once the winding operation has been completed. These guide pins 95 are distributed on the outer face of the radial wall 85 in a manner adapted to the desired winding configuration. [98] Each radial wall 85 further comprises two recessed portions 91 for receiving internal sectors 79 of one of the holding flanges 55, 56. For the rear insulating member 82, the recessed portions 91 are diametrically opposed. Of course, the number and shape of the recessed portions 91, in particular the opening angle and the annular gap between two recessed portions 91, may be adapted according to the number and shape of the corresponding sectors 79. For the front insulating element 81, the recessed portions 91 and the main aperture 86 are interconnected, the inner walls delimiting the aperture being intended to bear locally on the outer circumference of the shaft 35. [99] rear insulating member 82 has an annular flange 96 defining the main aperture 86. This annular rim 96 extends axially from the outer face of the insulating element 82 towards the outside of the rotor 30. When the rotor 30 is mounted, the rim 96 is situated between the collector 101 and a shoulder of the shaft 35. of rotor 30. [0100] Insulating elements 81, 82 each comprise two devices 98 snap (clipping) intended to cooperate by snapping (clipping) with corresponding openings provided on each radial end face of the core of the Pack 36 of sheets (see Figures 5a-5b, 6a-6b). The notch insulators 83 take the form of a thin membrane made of an electrically insulating and heat conducting material, for example an aramid material of the so-called Nomex (registered trademark) type, this thin membrane being folded in such a manner each notch insulator 83 is pressed against the axial inner walls of the plate package 36 between two adjacent poles 44. For this purpose, the notch insulation 83 has five parts 110-114, each part 110-114 being folded with respect to an adjacent part along a folding segment substantially parallel to the axis B of the rotor 30. A first part 110 located towards the center of the rotor 30 is pressed against a portion of the outer circumference of the core located between two adjacent poles 44. Two parts 111, 112 facing one another are pressed against two faces facing each other of the arms 39 of the poles 44. Two parts 113, 114 are pressed against two portions of two adjacent projecting returns 45. The number of notching insulators 83 depends on the number of poles 44, to which it is equal. Here, the number of notch insulators 83 is twelve. Each excitation coil 50 comprises turns wound around the radially oriented arm 39 of each pole 44 covered with notch insulators 83 and the two arms 88 of the insulating elements 81, 82 each located at one end of the coil. this pole 44, so that the buns 51 of the excitation winding 50 project axially relative to each face 40, 41 of the outer radial end of the package 36 of sheets, as shown in Figures 3a-3b. More particularly, the outer radial face of each bun 51 is offset axially outwards with respect to the associated outer radial face 40, 41 of the sheet package 36. Each pole 44 thus comprises an excitation winding 50 which itself comprises two opposing buns 51. As seen in Figures 4a, 4b a space 200 exists between two adjacent coils 50. This space 200 will be called thereafter interbobinage space. Each space 200 is delimited at its outer periphery by the magnets 105 implanted between two successive returns 45 and at its inner periphery by the outer edge of the central radial wall 85. Each space is delimited laterally by the two successive coils 50. The radial height of this space 200 is greater than its circumferential width. Each space 200 thus has a surface S, which also takes into account the thickness of the caps 89. When there is no magnet this space is delimited by the virtual extension of the outer periphery of the caps 89. Each space 200 delimits a passage through the pack of sheets 36.0n note that the width of the buns 51 and the coils 50 is in this embodiment descending per layer from the outer periphery to the outer periphery of the bun 51 and the coils 50. [ 0103] According to this winding 50, each bun 51 is in abutment against the axial face of the cap 89 turned towards the bun 51. The cap 89 is held stationary relative to the pole 44 thanks to the associated arms 88 pressed between a radial face of the pole 44 and the winding wires. The cap 89 in combination with the rim 75 of the flange thus allows to retain the buns 51 despite the centrifugal force caused by the rotation of the rotor 30 exerted on said buns 51. [0104] The first flange 55 for holding the package 36 of sheet, said flange 55 before and the second flange 56 holding the package 36 of sheet metal, said rear flange 56, are mounted coaxially with the shaft 35 so as to axially clamp the elements 81, 82 insulating and the package 36 of plates . These flanges 55, 56 are of non-magnetic material being advantageously metallic to better evacuate the heat. Each flange 55, 56 comprises a radial wall 59 extending in a radial plane perpendicular to the axis B of the shaft 35. This radial wall 59 is provided with a main opening 60 allowing the passage of the The rear flange 56 has two diametrically opposed recesses 61 opening towards the opening 60. These recesses 61 of substantially square shape seen from above allow the passage of each one of a tab (one of which is referenced in 198). Figure 4a) of the collector 101 of the type described in FR 2 710 197 to which reference will be made. In this FIG. 4a the tabs 198 are not yet folded down to clamp the ends of the wires of the windings 50. It will be noted that four of the internal end pins 95 are offset radially with respect to the other 25 pins 95 for parallel assembly of the coils. 50. Specifically two internal end pins 95 are disposed on either side of each lug 198. In this figure was cut for clarity the ends of the connecting son between the windings 50 to better show the legs 198 These ends are wound around the internal pins 95 and intended to be fixed by crimping in the tabs 198. The pins 95 have a rectangular cross-section with chamfered corners so as not to injure the portions of connecting wires between two consecutive windings 50. . As can be seen in this FIG. 4a, the other pins 95 are implanted generally on the same circumference and the ends of each winding 50 are in contact with the relevant lateral edges of two consecutive pins for a continuous connection of the coils 50. The lower longitudinal edges of the guide pins 95 radially retain the connecting wire between two consecutive windings. The assembly thus has a good performance despite the action of the centrifugal force. Of course when the windings 50 are mounted in series two lower pins 95 are sufficient. It will be appreciated that the aforementioned solution with pins 95 ensures continuity between the different windings 50, which are all at the same potential. The windings can be made using a centrally hollow needle for passage of the wire and which moves circumferentially, axially and radially. This needle switches to move from one 95 to another. Of course, in a variant, the inner pins may be removed and the ends of the wires may be fixed directly on the lugs 198. The radial wall 59 of each flange 55, 56 has an annular flange 75 extending over the entire outer periphery of the flange. wall 59 radial and extending axially towards the center of the rotor 30. This annular rim 75 has a bearing surface on the outer radial end faces of the poles 44 so that the caps 89 of the elements 81, 82 insulators are taken sandwiched between an inner annular face of the flange 75 and the buns 51. Such a configuration allows the flanges 55, 56 to participate with the caps 89 in maintaining the buns 51 despite the centrifugal force caused by the rotation of the rotor 30. In a variant it would also be possible to use only the flange 75 annular flanges 55, 56 to keep the buns 51 in position. In this case the elements 51, 52 insulators are therefore capless 89. The outer face of the wall 59 of each flange 55, 56 comprises integrally blades 70 forming a fan. Each blade 70 extends axially outwardly of the rotor 30 from the outer radial face of the flange 55, 56 associated. Advantageously for better heat dissipation, the blades 70 are made integral with the flange 55, 56 associated. Preferably, the blades 70 are arranged at the periphery of the outer radial face of the flange 55, 56 asymmetrically with respect to the axis B of the shaft 35 to increase the ventilation performance and reduce the noise when the rotor 30 turned. As a variant, the blades 70 belong to a separate fan of the flange 55, 56. The use of flanges 55, 56 and separate fans makes it possible to easily adapt the fans according to the power of the targeted machine 10. The flange 55, 56 and the fan are then fixed together by means of a fixing device formed for example by fixing elements associated with the flanges 55, 56 cooperating with the orifices of the fan. This attachment can be made using screws as in Figure 16 of US 6,784,586, alternatively by riveting or spot welding. Each flange 55, 56 further comprises a first series of orifices through 72 to ensure a flow of air inside the rotor between two salient poles 44. These orifices 72 are located around the opening 60 main and have an opening angle at least equal to the angle between two successive poles 44 salient. They are wider circumferentially and lower radially. Here, this first series of orifices 72 comprises four orifices 72 having the same opening angle. Thus the orifices 72 are facing at least the base (the inner periphery) of a space 200 between two successive coils 50 to ensure a circulation of air inside the rotor between the two salient poles 44 concerned. Of course, it depends on the applications. The four orifices 72 of the front flange 55 are arranged in a regular manner around the main opening 60. It should be noted that the orifices 72 do not have the same size from one flange to the other and that an axial flow is effected in the air between the coils 50. The orifices 72 of the flange 55 are more circumferentially and radially wider than those of the flange 55. The orifices 72 are vis-à-vis the base of two spaces 200, while the orifices of the flange 55 are vis-à-vis the base of a single space 200 and a portion of the base of another space 200. Each flange 55, 56 further comprises a second series of orifices 73 through to ensure circulation within the rotor.
Chaque orifice 73 de la deuxième série est positionné entre deux pales 70 successives. Il est possible de ménager de tels orifices 73 dans toutes les zones séparant deux pales 70 successives ou uniquement dans certaines de ces zones en fonction du circuit de ventilation souhaité. Ces orifices 73 présentent un angle d'ouverture plus petit que l'angle d'ouverture des orifices 72 de la première série d'orifices 72. Ici, les deuxièmes séries d'orifices 73 comportent quatorze orifices 73 de taille inégale. Cette deuxième série 72 donne accès à au moins une portion d'un espace 200 au niveau de la périphérie externe de cet espace. [0113] Comme visible dans les figures les orifices 73 sont implantés radialement à l'extérieur des orifices 72, c'est-à-dire sur une circonférence moyenne supérieure à celle des premiers orifices, et ce, d'une part, au voisinage de la périphérie externe d'au moins un espace 200 et d'autre part, dans les zones libres entre deux pales 70 agencée de manière dissymétrique pour réduire les bruits. Il est réalisé ainsi une dissymétrie entre les deux flasques 55, 56 permettant une circulation axiale de l'air non perturbée par la présence éventuelle des aimants 105 implantés à la périphérie externe du paquet de tôles 36 entre deux retours 45 implantés à l'extérieur des fentes. [0114] L'invention tire partie de la présence des espaces 200 et donc des passages axiaux traversant entre deux bobinages 50 en vis à vis pour implanter les orifices 72, 73. [0115] Suivant une caractéristique la surface totale de la première 72 et de la deuxième série d'orifices 73 est supérieure à 0,3 fois la surface totale des espaces interbobinage 200 pour bien refroidir le rotor 30 et obtenir un bon passage de l'air tout en ayant un grand nombre de pôles 44. [0116] Bien entendu les ouvertures 72, 73 peuvent être symétriques ou asymétriques d'un flasque 55 à l'autre 56. Tout dépend des applications. [0117] En variante il est prévu des lamages supplémentaires à l'image des lamages 68 décrits ci après. Ces lamages affectent radialement la périphérie externe de la paroi radiale 59 et axialement une partie du rebord 75. Ces lamages pourront être implantés au niveau des espaces libres entre deux retours 45. Bien entendu on peut supprimer des orifices 73 et remplacer ceux-ci par des lamages. Tout dépend des applications. La deuxième série d'orifices 73 pourra ne pas avoir la même taille d'un flasque à l'autre. [0118] Lorsque le rotor 30 tourne, les pales 70 et les deux séries d'orifices 72, 73 ainsi que les lamages permettent ainsi d'évacuer la chaleur emmagasinée notamment par circulation d'air à l'intérieur de la machine 10. Suivant le circuit de ventilation, l'air issu de l'extérieur du rotor 30 va pénétrer à l'intérieur du rotor 30 par les orifices 72, 73 d'un flasque 55, 56 pour s'écouler ensuite le long du rotor 30 à l'intérieur des espaces 200 entre deux pôles 44 successifs pour ensuite ressortir du côté opposé via les orifices 72, 73 du flasque 55, 56 opposé. Les flasques 55, 56 constituent via leurs pales 70 des ventilateurs internes, les paliers 14, 15 présentant de manière connue des ouvertures d'entrée et de sortie d'air. Le nombre d'orifices 72, 73, et de lamages leurs dimensions, le nombre de pales 70, ainsi que leur agencement, pourront être adaptés en fonction du circuit de ventilation souhaité tout en conservant la résistance mécanique des flasques 55, 56. [0119] La paroi 59 radiale de chaque flasque 55, 56 présente en outre sur sa face interne tournée vers le paquet 36 de tôles deux secteurs internes 79 s'étendant axialement vers le paquet 36 de tôles. Chaque secteur 79 est inséré dans une partie 91 évidée d'une paroi 85 radiale d'un élément 81, 82 isolant. Dans un exemple ces secteurs 79 sont constitués par deux portions diamétralement opposées d'un même anneau. Les secteurs constituent des butées axiales pour l'âme du paquet de tôles 36. [0120] Le rebord 75 annulaire de chaque flasque 55, 56 comporte deux pions 77 de centrage destinés à coopérer avec des ouvertures 66 axiales ménagées dans les pôles 44 saillants. Les pions 77 permettent ainsi de faciliter le positionnement angulaire des flasques 55, 56 lors du montage. [0121] Dans un mode de réalisation les flasques 55, 56 en matériau amagnétique sont réalisés en matière moulable tel que de l'aluminium pour 30 bien évacuer la chaleur ou en variante en matière plastique avantageusement renforcée par des fibres. [0122] Les flasques 55, 56 sont fixés l'un à l'autre par des tirants 62 d'orientation axiale, qui sont ici au nombre de trois. A cet effet chaque flasque 55, 56 comporte trois orifices 65 destinés à permettre le passage de chaque tirant 62. Les tirants 62 traversent axialement, via les ouvertures 66 axiales ménagées dans les pôles, le paquet 36 de tôles depuis le flasque 55 avant jusqu'au flasque 56 arrière. Ces tirants 62 sont en matériau amagnétique, par exemple en Aluminium ou en inox. [0123] La face radiale externe de chaque flasque 55, 56 comporte des lamages 68 pour loger les extrémités de chaque tirant 62. Ces lamages 68 autorisent un passage de l'air [0124] Selon une variante non représentée de l'invention, les flasques comportent d'autres moyens de refroidissement tels qu'au moins un caloduc implanté au niveau d'un retour 45. Ce caloduc pourra être implanté à la faveur d'un orifice 65 libre. L'arbre peut être un arbre conformé pour constituer un caloduc. [0125] Selon un autre aspect les orifices 65 de fixation du flasque 55 avant sont taraudés. Les tirants 62 comportent une extrémité filetée qui est vissée dans les orifices taraudés du flasque 55 avant lors du montage du rotor 30. En variante l'extrémité filetée du tirant 62 est autotaraudeuse en sorte que l'orifice 65 associé du flasque 55 est lisse. En variante, l'extrémité du tirant 62 est lisse et traverse l'orifice 65 associé du flasque 55, l'extrémité libre du tirant 62 étant écrasée au contact de la face externe du flasque 55 pour une fixation par rivetage. En variante, le tirant 62 est remplacé par une tige traversant les orifices 65 des flasques 55, 56 et du paquet 36 de tôles, les extrémités axiales de la tige étant écrasées au contact des faces externes des flasques 55, 56 pour une fixation par rivetage. [0126] Le rotor 30 comporte un résolveur 100 permettant de connaître la position en rotation du rotor 30. Le résolveur 100 intervient notamment lorsque la machine 10 fonctionne en mode moteur (fonction démarreur), afin de pouvoir adapter convenablement la tension appliquée aux bobinages 50 du stator 12 en fonction de la position du rotor 30. Dans un exemple le résolveur 100 est remplacé par une cible magnétique associée à un ensemble de capteurs à effet Hall porté par un porte- capteur. [0127] Plus précisément, le flasque arrière 56 est configuré pour porter un porte-cible qui est destiné à permettre à des capteurs associés de détecter la position angulaire du rotor 30. Les capteurs sont portés par un porte-capteurs dont la position est réglable circonférentiellement. La lecture de la cible est ici radiale. Le porte-cible avec sa cible et les capteurs solidaires d'un porte capteur appartiennent à des moyens de suivi de la rotation du rotor comme décrit dans le document W001/69762 auquel on se reportera pour plus de précisions [0128] On décrit ci-après le montage du rotor 30. Les isolants 83 d'encoche sont chacun installés entre deux pôles 44 successifs. Ensuite, les éléments 81, 82 isolants sont fixés sur le paquet 36 de tôle par encliquetage (clipsage) via les deux dispositifs 98. Chaque face d'extrémité radiale externe de chaque pôle 44 est alors en contact direct avec un bras 88 d'un élément 81, 82 isolant. [0129] Les bobinages 50 d'excitation sont ensuite enroulés autour de chaque pôle 44 recouvert d'isolants 83 d'encoche et des deux bras 88 des éléments 81, 82 isolants associés à ce pôle 44, les fils des bobinages 50 étant guidés et maintenus par les rainures des bras 88 et par les pions 95 de guidage des éléments 81, 82 isolants. [0130] Le paquet 36 de tôles, les éléments 81, 82 isolants et les bobinages 50 d'excitation associés sont montés sur l'arbre 35 de rotor 30, par exemple par emmanchement à force. Puis les flasques 55, 56 sont agencés axialement de part et d'autre du paquet 36 de tôles de manière que les pions 77 de centrage entrent dans des ouvertures 66 axiales ménagées dans les pôles 44 saillants et que les secteurs 79 sont positionnés à l'intérieur des parties 91 évidées des parois 85 des éléments 81, 82 isolants. Le collecteur 101 est positionné sur l'arbre 35, entre le deuxième flasque 56 et le deuxième élément 82 isolant. [0131] Les rebords 75 annulaires des flasques 55, 56 présentent alors une face en appui sur les faces d'extrémité radiale externe des pôles 44 de sorte que les casquettes 89 des éléments 81, 82 isolants sont prises en sandwich entre une face annulaire interne du rebord 75 et les chignons 51. Une telle configuration permet aux flasques 55, 56 de participer avec les casquettes 89 au maintien des chignons 51 malgré la force centrifuge provoquée par la rotation du rotor 30. [0132] La tige filetée des tirants 62 est ensuite introduite axialement dans les orifices 65 de fixation du flasque 55 avant. Les tirants 62 sont ensuite vissés dans les orifices 65 de fixation taraudés du flasque 56 arrière jusqu'à ce que la tête de chaque tirant 62 soit en appui au fond du lamage 68 associé du flasque 55 avant. Ainsi les tirants 62 permettent d'enserrer axialement le paquet 36 de tôle et les éléments 81, 82 isolants entre les deux flasques 55, 56. [0133] Puis une opération d'équilibrage des flasques 55, 56 est réalisée. Cette opération consiste par exemple dans le perçage de trous ou d'évidements dans la périphérie de la face externe de la paroi 59 radiale de chaque flasque 55, 56 de manière que le rotor 30 ne vibre pas lorsqu'il est entraîné en rotation. Grâce à l'invention l'opération d'équilibrage est facilitée grâce aux flasques 55, 56 permettant de réduire le nombre d'organes de fixation. [0134] Le résolveur 101 est positionné autour de l'arbre 35, sur la face externe de la paroi 59 radiale du deuxième flasque 56. [0135] Lors du fonctionnement d'un tel rotor 30, les bobinages 50 d'excitation ont tendance à s'échauffer compte tenu du courant qui les parcourt. [0136] Les flasques 55, 56 tournent avec l'arbre 35 du rotor 30. Les pales 70 brassent ainsi de l'air et de l'air circule entre les deux flasques 55, 56 le long des espaces interbobinage entre deux pôles adjacents grâce aux deux séries d'orifices 72, 73 de chaque flasque 55, 56. Les pales 70 et les orifices 72, 73 dissipent ainsi dans l'air la chaleur accumulée à l'intérieur du rotor 30. La chaleur est donc évacuée de manière efficace dans l'air environnant par l'intermédiaire des pales 70 et des orifices 72, 73. L'air environnant est renouvelé grâce au brassage et aux turbulences induits par les pales 70. [0137] Ainsi qu'il ressort à l'évidence de la description et des dessins les paquets de tôles du stator et du rotor permettent de diminuer les pertes dues aux courants de Foucault. Les évidements de l'ouverture 38 de la figure 7 permettent de diminuer les contraintes lors de l'emmanchement à force de l'arbre moleté dans l'orifice central de l'âme du paquet de tôles 36. La solution à pôles 44 d'un seul tenant avec l'âme centrale du paquet de tôles 36 est plus avantageuse qu'une solution à pôles rapportés car cette solution présente une meilleur tenue à la force centrifuge et permet de garantir un plus petit entrefer entre la périphérie externe du rotor 30 et la périphérie interne du corps du stator. Les modes de réalisations décrits ci-dessus permettent d'utiliser les collecteurs 101 des alternateurs conventionnels, par exemple du type de ceux décrits dans le document FR 2 710 197 et également les montage conventionnels des aimants de ces alternateurs. [0138] Il ressort également à l'évidence de la description et des dessins que les flasques 55, 56, de forme creuse, présentent un rebord 75 constituant un élément de pression pour maintenir le paquet de tôles 36 et éviter une déformation, notamment une ouverture de celui-ci. Le paquet de tôle 36 est serré entre les flasques 55, 56. Les rebords 75, configurés pour venir en contact avec les retours 45, rigidifient les flasques 55, 56 et constituent via leur périphérie interne une buté radiale pour les casquettes 89 des éléments 81, 82. Ainsi sous l'action de la force centrifuge la périphérie externe des casquettes 89 est admise à coopérer avec la périphérie interne des rebords 75 des flasques 55, 56. Ces flasques 55, 56 constituent par l'intermédiaire de leur rebord 75 une butée axiale pour les aimants 105 implantés entre deux retours consécutifs 45. La forme creuse des flasques permet de loger les chignons 51, les éléments 81, 82 avec leurs casquettes 89 et une partie du collecteur 101. On appréciera que les secteurs internes 79 des flasques évitent une déformation de l'âme du paquet 36 en combinaison avec les parois 85 des éléments 81, 82. [0139] Les éléments 81, 82 sont, de manière précitée, en matière électriquement isolante. Ils pourront être en matière plastique, telle que du PA 6.6. Ils sont plus épais et moins bon conducteur de chaleur que les isolant d'encoche 83. [0140] Bien entendu la présente invention n'est pas limitée aux exemples de réalisation décrits. [0141] Ainsi on peut réduire le nombre d'orifices 73 comme visible à la figure 8, un des orifices 73 étant adjacent à un lamage 68. Dans cette figure on a supprimé les orifices 73 de petite taille des figures 6a et 6b, la relation entre la surface totale des orifices 72, 73 supérieure à 0, 3 fois celle de la surface totale des espaces 200 étant toujours vérifiée. [0142] Il en est de même dans le mode de réalisation de la figure 9. Dans cette figure il est prévu une série d'orifices 172 en vis-à-vis globalement d'au moins une portion d'un espace 200. Les orifices 172 sont donc plus hauts radialement que large circonférentiellement. Certains des orifices 172, dont un seul est visible à la figure 9, ont globalement radialement la même hauteur radiale et circonférentiellement la même largeur que celle des espaces 200. Ces orifices sont implantés en partie entre deux pales successives. D'autres orifices 172 ont globalement la même largeur circonférentielle que celle des espaces 20 mais sont moins hauts radialement que les espaces 200. Ces orifices sont implantés pour partie à l'intérieur des pales 70 et pour partie entre deux pales 70. L'implantation des orifices 172 dépend de l'implantation des pales 70. [0143] Dans la réalisation qui précède la largeur circonférentielle des orifices 172 est globalement égale à la largeur circonférentielle des espaces 20 200. En variante les orifices 172 sont moins larges ou plus larges circonférentiellement que les espaces 200. [0144] Dans une autre réalisation les orifices 172 sont décalés circonférentiellement par rapport aux espaces 200. Cela est rendu possible grâce à la forme creuse des flasques. On notera que certains des orifices 73 25 sont uniquement en vis-à-vis d'une portion d'un chignon 51 et que néanmoins l'air peut atteindre les espaces 220 du fait que les chignons 51 sont arrondis et que les flasques 55, 56 sont creux. [0145] Bien entendu on peut remplacer une partie des orifices 172 par des orifices de la deuxième série 73 ou ajouter (comme visible en pointilles à 30 la figure 9) des orifices de la deuxième série 73 implantée à l'extérieur de la série d'orifices 172. On peut réduire la largeur circonférentielle des orifices 72 pour implanter des orifices 172. [0146] Bien entendu il est possible de prévoir quatre tirants 62 à savoir un trou par tirant 62. En variante il est prévu deux tirants 62 diamétralement opposés et deux caloducs diamétralement opposés, chaque caloduc comportant une tige engagée dans au moins un trou d'un des flasques 55, 56 et au moins dans un tronçon des trous du paquet 36 de tôles et débouchant à l'extérieur du flasque 55, 56 concerné. Ces caloducs peuvent traverser complètement les flasques 55, 56 et le paquet 36 de tôles et être configurés à l'extérieur des flasques 55, 56 pour former des pales 70 de ventilateur. De tels caloducs sont décrits par exemple dans les figures 11A et 11B du document FR 2 855 673 auquel on se reportera. Les dispositions des figures 12, 13 et 24 de ce document sont également applicables. [0147] Le nombre de pôles 44 dépend de manière précitée des applications. Ce nombre est égal à 12 dans les figures. En variante il peut être de 8 ou 10 ou plus de 12. Par rapport au document WO 2007/00385 on augmente dans tous les cas le nombre de bobinages 50 tout en ayant la possibilité d'augmenter le nombre d'aimants à volonté pour augmenter la puissance de la machine électrique tournante à pôles saillants. Ainsi le nombre d'aimants pourra être inférieur au nombre de pôles 44. [0148] Bien entendu on peut remplacer les aimants par des pièces amagnétiques pour avoir une continuité de matière à la périphérie externe du rotor. On peut réaliser de nombreuses combinaisons. Ainsi tous les espaces entre les retours 45 pourront être libres. En variante une partie de ces espaces entre les retours 45 pourront être libres et les autres occupés par des aimant et/ou des pièces amagnétiques. En variante les aimants pourront être de nuance différente. Par exemple certains des espaces entre deux retours 45 pourront être occupés par des aimants en ferrite et une partie au moins des autres espaces pourra être occupé par des aimants en terre rare. [0149] Bien entendu en variante l'un au moins des éléments 81, 82 est dépourvu de rainures et l'isolant 83 peut être d'un seul tenant avec l'un des éléments 81, 82, par exemple par moulage. Dans encore une autre variante l'isolant pourra être en deux parties chacune d'un seul tenant avec l'un des éléments 81, 82. L'isolant 83 pourra être donc en variante en PA 6.6 en étant moins épais que les éléments 81, 82. [0150] La présence des pions 95 n'est pas obligatoire, les bobinages pouvant être relié entre eux comme dans le document WO 2007/003835 précité. [0151] En variante les flasques 55, 56 sont obtenus par moulage, ou forgeage ou par injection de matière plastique ou de métal. [0152] En variante les pales 70 d'au moins un flasque 55, 56 sont supprimées. Les deux flasques sont en variante dépourvues de pales, notamment lorsque la machine électrique tournante est refroidie par eau. Plus précisément en variante la partie intermédiaire du carter 11 comporte un canal pour circulation d'un liquide de refroidissement, tel que le liquide de refroidissement du moteur thermique et le corps du stator est monté par frettage à l'intérieur de la partie intermédiaire. [0153] Bien entendu lorsque les deux flasques ne portent pas de pales ont a plus de liberté pour implanter la deuxième série d'ouvertures 73, qui peuvent ainsi être plus larges circonférentiellement pour s'étendre de part et d'autre d'un bobinage. [0154] Dans tous les cas au moins l'une des séries d'orifices 72, 73 et /ou de lamages est différente d'un flaque à l'autre. [0155] Bien entendu en variante les séries d'orifices 72 ,73 et/ou de lamages sont identiques d'un flasque 55, 56 à l'autre. [0156] En variante le carter comporte un palier avant et un palier arrière comme divulgué par exemple à la figure 14 du document US 6 784 586 25 dans le document montrant une partie des balais et du pont redresseur de courant. [0157] La machine électrique tournante est en variante un alternateur dépourvu de résolveur ou de tout autre moyen de suivi de la rotation du rotor. [0158] Le refroidissement du rotor 30 est amélioré. En effet, l'invention augmente les performances aérauliques intrinsèques des flasques 55, 56 et permet une meilleure évacuation de la chaleur au niveau du rotor 30 par convection. En outre, on diminue le bruit sonore de type aéraulique. Ce meilleur refroidissement du rotor 30 permet de maintenir les bobinages 50 du rotor 30 sur la plage de fonctionnement de 0 à 18000 tours par minute et d'augmenter le nombre de pôles 44 du rotor 30.De plus, on diminue le coût et le temps de fabrication du rotor 30 en minimisant opération d'imprégnation de vernis qui est longue et coûteuse. En effet on peut déposer des gouttes de vernis au niveau des chignons pour avoir une meilleure cohésion des spires des bobinages 50, ainsi qu'une meilleur tenue à la force centrifuge. En variante Les fils de liaison et des bobinages 50 pourront être recouverts d'une couche supplémentaire de liaison sous la forme d'un polymère d'imprégnation, qui par chauffage et polymérisation permet de lier entre elles les spires des bobinages pour une meilleure tenue à la force centrifuge. [0159] La quantité de vernis est réduite dans tous les cas. Ce vernis ou la couche de liaison assurent la cohésion des bobinages. Ils ne servent pas à la transmission de chaleur avec le paquet de tôles et les flasques 55, 56. Each orifice 73 of the second series is positioned between two successive blades 70. It is possible to provide such orifices 73 in all the zones separating two successive blades 70 or only in some of these zones depending on the desired ventilation circuit. These orifices 73 have an opening angle smaller than the opening angle of the orifices 72 of the first series of orifices 72. Here, the second series of orifices 73 comprise fourteen orifices 73 of unequal size. This second series 72 gives access to at least a portion of a space 200 at the outer periphery of this space. As shown in the figures the orifices 73 are located radially outside the orifices 72, that is to say on a mean circumference greater than that of the first orifices, and on the one hand, in the vicinity the outer periphery of at least one space 200 and secondly, in the free zones between two blades 70 arranged asymmetrically to reduce noise. There is thus an asymmetry between the two flanges 55, 56 allowing axial circulation of the undisturbed air by the possible presence of the magnets 105 implanted at the outer periphery of the sheet package 36 between two returns 45 implanted outside the slots. The invention takes advantage of the presence of the spaces 200 and thus the axial passages passing between two windings 50 facing each other to implant the orifices 72, 73. According to one characteristic, the total area of the first 72 and of the second series of orifices 73 is greater than 0.3 times the total surface of the interwinding spaces 200 to cool the rotor 30 and get a good passage of air while having a large number of poles 44. [0116] Of course the openings 72, 73 may be symmetrical or asymmetrical from one flange 55 to the other 56. It all depends on the applications. [0117] In a variant, additional counterbores are provided in the image of countersinks 68 described below. These countersinks radially affect the outer periphery of the radial wall 59 and axially a portion of the flange 75. These countersinks can be located at the free spaces between two returns 45. Of course, it is possible to eliminate orifices 73 and replace them with facings. It all depends on the applications. The second set of orifices 73 may not have the same size from one flange to the other. When the rotor 30 rotates, the blades 70 and the two series of orifices 72, 73 and the countersinks thus allow the stored heat to be evacuated in particular by air circulation inside the machine 10. Next the ventilation circuit, the air coming from outside the rotor 30 will penetrate inside the rotor 30 through the orifices 72, 73 of a flange 55, 56 to then flow along the rotor 30 to the inside the spaces 200 between two successive poles 44 and then emerge on the opposite side via the orifices 72, 73 of the opposite flange 55, 56. The flanges 55, 56 constitute, via their blades 70, internal fans, the bearings 14, 15 having, in known manner, air inlet and outlet openings. The number of orifices 72, 73, and countersinks their dimensions, the number of blades 70, as well as their arrangement, may be adapted depending on the desired ventilation circuit while maintaining the mechanical strength of the flanges 55, 56. [0119 ] The radial wall 59 of each flange 55, 56 further has on its internal face facing the sheet 36 bundle two inner sectors 79 extending axially towards the sheet package 36. Each sector 79 is inserted into a recessed portion 91 of a radial wall 85 of an insulating element 81, 82. In one example these sectors 79 are constituted by two diametrically opposite portions of the same ring. The sectors constitute axial abutments for the core of the sheet bundle 36. The annular flange 75 of each flange 55, 56 comprises two centering pins 77 intended to cooperate with axial openings 66 formed in the projecting poles 44. The pins 77 thus facilitate the angular positioning of the flanges 55, 56 during assembly. In one embodiment the flanges 55, 56 of non-magnetic material are made of moldable material such as aluminum to remove heat well or alternatively plastic material advantageously reinforced with fibers. The flanges 55, 56 are fixed to each other by tie rods 62 of axial orientation, which are here three in number. For this purpose each flange 55, 56 comprises three orifices 65 intended to allow the passage of each tie rod 62. The tie rods 62 pass axially through the axial openings 66 formed in the poles, the 36 sheet metal package from the front flange 55 to flange 56 back. These tie rods 62 are made of non-magnetic material, for example aluminum or stainless steel. The outer radial face of each flange 55, 56 includes countersinks 68 to accommodate the ends of each tie rod 62. These countersinks 68 allow passage of air [0124] According to a not shown variant of the invention, the flasks comprise other cooling means such as at least one heat pipe implanted at a return 45. This heat pipe may be implanted in favor of a free orifice 65. The shaft may be a shaped shaft to form a heat pipe. In another aspect the mounting holes 65 of the flange 55 before are tapped. The tie rods 62 comprise a threaded end which is screwed into the tapped holes of the front flange 55 when the rotor 30 is mounted. In a variant, the threaded end of the tie rod 62 is self-tapping so that the associated orifice 65 of the flange 55 is smooth. Alternatively, the end of the tie rod 62 is smooth and passes through the associated orifice 65 of the flange 55, the free end of the tie rod 62 being crushed in contact with the outer face of the flange 55 for fastening by riveting. In a variant, the tie rod 62 is replaced by a rod passing through the orifices 65 of the flanges 55, 56 and the plate pack 36, the axial ends of the rod being crushed in contact with the external faces of the flanges 55, 56 for fastening by riveting. . The rotor 30 includes a resolver 100 making it possible to know the rotational position of the rotor 30. The resolver 100 intervenes in particular when the machine 10 operates in motor mode (starter function), in order to be able to suitably adapt the voltage applied to the coils 50 of the stator 12 depending on the position of the rotor 30. In one example the resolver 100 is replaced by a magnetic target associated with a set of Hall effect sensors carried by a sensor holder. Specifically, the rear flange 56 is configured to carry a target holder which is intended to allow associated sensors to detect the angular position of the rotor 30. The sensors are carried by a sensor holder whose position is adjustable circumferentially. The reading of the target is here radial. The target holder with its target and the sensors integral with a sensor holder belong to means for monitoring the rotation of the rotor as described in the document W001 / 69762, to which reference will be made for more details [0128]. after installation of the rotor 30. The notch isolators 83 are each installed between two successive poles 44. Then, the insulating elements 81, 82 are fixed on the sheet metal package 36 by clipping (clipping) via the two devices 98. Each external radial end face of each pole 44 is then in direct contact with an arm 88 of a element 81, 82 insulator. The excitation coils 50 are then wound around each pole 44 covered with notch insulators 83 and the two arms 88 of the elements 81, 82 insulators associated with this pole 44, the son of the coils 50 being guided and held by the grooves of the arms 88 and the pins 95 for guiding the elements 81, 82 insulators. The package 36 of plates, the elements 81, 82 insulators and the associated excitation windings 50 are mounted on the rotor shaft 30, for example by press fit. Then the flanges 55, 56 are arranged axially on either side of the pack 36 of plates so that the centering pins 77 enter axial openings 66 formed in the projecting poles 44 and that the sectors 79 are positioned at internal portions 91 recessed 85 walls of the elements 81, 82 insulating. The collector 101 is positioned on the shaft 35 between the second flange 56 and the second insulating element 82. The annular flanges 75 of the flanges 55, 56 then have a bearing surface on the outer radial end faces of the poles 44 so that the caps 89 of the insulating elements 81, 82 are sandwiched between an inner annular face. 75 Such a configuration allows the flanges 55, 56 to participate with the caps 89 in maintaining the buns 51 despite the centrifugal force caused by the rotation of the rotor 30. The threaded rod of the tie rods 62 is then introduced axially into the orifices 65 for fixing the front flange 55. The tie rods 62 are then screwed into the threaded fastening holes 65 of the rear flange 56 until the head of each tie rod 62 bears against the bottom of the associated countersink 68 of the front flange 55. Thus the tie rods 62 make it possible to axially grip the sheet package 36 and the insulating elements 81, 82 between the two flanges 55, 56. Then, a balancing operation of the flanges 55, 56 is carried out. This operation consists for example in the drilling of holes or recesses in the periphery of the outer face of the radial wall 59 of each flange 55, 56 so that the rotor 30 does not vibrate when it is rotated. Thanks to the invention the balancing operation is facilitated by the flanges 55, 56 to reduce the number of fasteners. The resolver 101 is positioned around the shaft 35, on the outer face of the radial wall 59 of the second flange 56. During operation of such a rotor 30, the excitation coils 50 tend to to warm up given the current that runs through them. The flanges 55, 56 rotate with the shaft 35 of the rotor 30. The blades 70 and stir air and air flows between the two flanges 55, 56 along the interbobinage spaces between two adjacent poles through the two sets of orifices 72, 73 of each flange 55, 56. The blades 70 and the orifices 72, 73 and dissipate in the air heat accumulated inside the rotor 30. The heat is effectively evacuated in the surrounding air by means of the blades 70 and the orifices 72, 73. The surrounding air is renewed thanks to the mixing and to the turbulences induced by the blades 70. [0137] As is evident from The description and drawings of the stator and rotor laminations make it possible to reduce the losses due to eddy currents. The recesses of the opening 38 of FIG. 7 make it possible to reduce the stresses during force-fitting of the knurled shaft in the central orifice of the core of the sheet metal bundle 36. The pole solution 44 of FIG. one piece with the central core of the sheet package 36 is more advantageous than a reported poles solution because this solution has a better resistance to the centrifugal force and ensures a smaller air gap between the outer periphery of the rotor 30 and the inner periphery of the stator body. The embodiments described above make it possible to use the collectors 101 of conventional alternators, for example of the type described in document FR 2 710 197, and also the conventional mounting of the magnets of these alternators. It is also evident from the description and the drawings that the flanges 55, 56, of hollow shape, have a flange 75 constituting a pressure element to maintain the sheet package 36 and prevent deformation, in particular a opening of it. The sheet package 36 is clamped between the flanges 55, 56. The flanges 75, configured to come into contact with the flaps 45, stiffen the flanges 55, 56 and constitute, via their inner periphery, a radial stop for the caps 89 of the elements 81. 82. Thus, under the action of the centrifugal force, the outer periphery of the caps 89 is allowed to cooperate with the inner periphery of the flanges 75 of the flanges 55, 56. These flanges 55, 56 constitute, via their flange 75, a axial stop for the magnets 105 implanted between two consecutive returns 45. The hollow form of the flanges accommodates the buns 51, the elements 81, 82 with their caps 89 and a portion of the collector 101. It will be appreciated that the inner sectors 79 of the flanges avoid deformation of the core of the package 36 in combination with the walls 85 of the elements 81, 82. The elements 81, 82 are, in a previously mentioned manner, made of electrically insulating material. nte. They may be plastic, such as PA 6.6. They are thicker and less good heat conductor than notch insulation 83. Of course, the present invention is not limited to the described embodiments. Thus, the number of orifices 73 can be reduced as can be seen in FIG. 8, one of the orifices 73 being adjacent to a counterbore 68. In this figure, the small orifices 73 of FIGS. 6a and 6b have been removed. relationship between the total surface of the orifices 72, 73 greater than 0.3 times that of the total area of the spaces 200 being always verified. It is the same in the embodiment of Figure 9. In this figure there is provided a series of orifices 172 vis-à-vis globally of at least a portion of a space 200. The orifices 172 are therefore higher radially than broad circumferentially. Some of the orifices 172, only one of which is visible in FIG. 9, have radially generally the same radial height and circumferentially the same width as that of the spaces 200. These orifices are located partly between two successive blades. Other orifices 172 generally have the same circumferential width as that of the spaces 20 but are less high radially than the spaces 200. These orifices are located partly inside the blades 70 and partly between two blades 70. orifices 172 depends on the location of the blades 70. In the embodiment which precedes the circumferential width of the orifices 172 is generally equal to the circumferential width of the spaces 200. As a variant, the orifices 172 are narrower or wider circumferentially 200. In another embodiment the orifices 172 are offset circumferentially relative to the spaces 200. This is made possible by the hollow form of the flanges. Note that some of the orifices 73 25 are only vis-à-vis a portion of a bun 51 and that nevertheless the air can reach the spaces 220 because the buns 51 are rounded and the flanges 55, 56 are hollow. Of course we can replace a portion of the orifices 172 by orifices of the second series 73 or add (as shown in dots in Figure 9) orifices of the second series 73 located outside the series of orifices 172. It is possible to reduce the circumferential width of the orifices 72 in order to implant orifices 172. Of course it is possible to provide four tie-rods 62, namely one hole per tie 62. In a variant, two tie-rods 62 are provided which are diametrically opposed. and two diametrically opposed heat pipes, each heat pipe comprising a rod engaged in at least one hole of one of the flanges 55, 56 and at least in one section of the holes of the bundle 36 of sheets and opening outwardly from the flange 55, 56 concerned . These heat pipes can completely cross the flanges 55, 56 and the package 36 of sheets and be configured outside the flanges 55, 56 to form fan blades 70. Such heat pipes are described for example in FIGS. 11A and 11B of the document FR 2 855 673 to which reference will be made. The provisions of Figures 12, 13 and 24 of this document are also applicable. The number of poles 44 depends in the aforementioned manner of the applications. This number is 12 in the figures. Alternatively, it may be 8 or 10 or more than 12. Compared with WO 2007/00385, the number of coils 50 is increased in all cases while having the possibility of increasing the number of magnets at will to increase the power of the rotating electrical machine with salient poles. Thus the number of magnets may be less than the number of poles 44. Of course, the magnets can be replaced by non-magnetic parts in order to have continuity of material at the outer periphery of the rotor. Many combinations can be made. Thus all the spaces between the returns 45 may be free. Alternatively a portion of these spaces between the returns 45 may be free and the others occupied by magnet and / or non-magnetic parts. Alternatively the magnets may be of different shade. For example some of the spaces between two returns 45 may be occupied by ferrite magnets and at least some of the other spaces may be occupied by rare earth magnets. Of course in a variant at least one of the elements 81, 82 is devoid of grooves and the insulation 83 may be integral with one of the elements 81, 82, for example by molding. In yet another variant the insulation may be in two parts each in one piece with one of the elements 81, 82. The insulation 83 may be alternatively PA 6.6 being thinner than the elements 81, 82. [0150] The presence of the pins 95 is not obligatory, the windings being able to be connected to each other as in the aforementioned document WO 2007/003835. Alternatively the flanges 55, 56 are obtained by molding, or forging or injection of plastic or metal. As a variant, the blades 70 of at least one flange 55, 56 are removed. The two flanges are alternatively blade-free, especially when the rotating electrical machine is cooled by water. More specifically, the intermediate portion of the housing 11 comprises a channel for circulating a cooling liquid, such that the cooling fluid of the engine and the stator body is mounted by shrinking inside the intermediate portion. Of course when the two flanges do not have blades have more freedom to implement the second series of openings 73, which can be wider circumferentially to extend on either side of a winding . In all cases at least one of the series of orifices 72, 73 and / or countersinks is different from one pool to another. Of course alternatively the series of orifices 72, 73 and / or countersinks are identical of a flange 55, 56 to the other. [0156] In a variant, the casing comprises a front bearing and a rear bearing as disclosed for example in FIG. 14 of document US Pat. No. 6,784,586 in the document showing part of the brushes and the current rectifier bridge. The rotating electrical machine is alternatively an alternator devoid of resolver or any other means of monitoring the rotation of the rotor. The cooling of the rotor 30 is improved. Indeed, the invention increases the intrinsic aeraulic performance of the flanges 55, 56 and allows better heat dissipation at the rotor 30 by convection. In addition, it reduces the noise sound aeraulic type. This better cooling of the rotor 30 makes it possible to maintain the windings 50 of the rotor 30 over the operating range of 0 to 18000 revolutions per minute and to increase the number of poles 44 of the rotor 30. Moreover, the cost and the time are reduced. of making the rotor 30 minimizing varnish impregnation operation which is time consuming and expensive. Indeed one can deposit drops of varnish at the buns to have a better cohesion of the turns of the coils 50, and a better resistance to the centrifugal force. In a variant, the connecting wires and windings 50 may be covered with an additional bonding layer in the form of an impregnating polymer, which, by heating and polymerization, makes it possible to bond the coils of the coils together for better performance. the centrifugal force. The amount of varnish is reduced in all cases. This varnish or the bonding layer ensure the cohesion of the coils. They are not used for heat transfer with the bundle of plates and flanges 55, 56.